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Stacking two TMDs
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Stacking structure: R%,
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Type-II Band Alignment
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Exciton Formation
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Introducing Twist Angle
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e band gap as effective potential for excitons:
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Moiré Potential
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IX Hamiltonian

_ M
H =~ A4+ V()

@ approximate excitons as bosons

effective single-particle Hamiltonian for center of mass motion

solve H in Bloch basis

@ Wannier functions from Bloch functions via Fourier like transform

Wau et al., Phys. Rev. B 97, 035306 (2018)
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IX Wave Functions
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Bose-Hubbard Model

Gotting et al., Phys. Rev. B 105, 165419 (2022)
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Bose-Hubbard Model

(i5) @ @ (ig)

Mean-field approximation:
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Bose-Hubbard Model
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Mean-field approximation:
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Hubbard Parameters

Hopping parameter:
1 .
ty = D _ e kg
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Hubbard U parameter:
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hBN is used as sub- and superstrate
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Quantum Phases of IXs

e maximal one boson per lattice site
e material system: MoSs /WS,

o relaxed: phases are pushed deeper into MI region
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Quantum Phases of IXs

e maximal one boson per lattice site
e material system: MoSs /WS,
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Quantum Phases of IXs
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Conclusion
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Conclusion
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Outlook

o cluster mean-field [1] or Monte-Carlo methods [2]
o finite-temperature theory by using the thermal average [1]

e include description of exciton-polaritons [3]

[1] Malakar et al. Phys. Rev. B 102, 184515 (2020)
[2] Bogner et al. Eur. Phys. J. B 92, 111 (2019)
[3] Byrnes et al. Phys. Rev. B 81, 205312 (2010)
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Atomic Reconstructions
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Band gap as a function of in-plane distance between adjacent metal atoms and interlayer
distance:

Ey = Eg(Ary,, d(Ary,))
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Moiré Potential
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IX Hamiltonian

Effective single particle Hamiltonian for IXs:

h’ M
H = —mAr +V (7")

Bloch functions:
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Wannier functions as IX wave functions:
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Band Structure

FE in meV
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Quantum Phases of IXs
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Bose-Hubbard Model

Extended Bose-Hubbard Hamiltonian:
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Bose-Hubbard Model

Extended Bose-Hubbard Hamiltonian:
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X X
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Hopping parameters:
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Bose-Hubbard Model
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Hopping Parameter

Hubbard ¢, and ¢y
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Dipole-Dipole Interaction

Dipole-dipole repulsive interaction:
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Transformation to momentum space:
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Dipole-Dipole Interaction

Fromfactor accounting the finite width of the bilayer!
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