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Type-II Band Alignment
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Exciton Formation
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Introducing Twist Angle
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Atomic Reconstructions
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Moiré Potential

band gap as effective potential for excitons:

V M(r) =
∑
G

VGeiGr
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Moiré Potential

band gap as effective potential for excitons:

V M(r) =
∑
G

VGeiGr

17.8 nm

17
.8

nm

17.8 nm

17
.8

nm

−60

−40

−20

0

20

40

60

m
eV

rigid reconstructed1.0°

1
Wu et al., Phys. Rev. Lett. 118, 1474019 (2017)
Nielsen et al., Phys. Rev. B 108, 045402 (2023)

9/16



Moiré Potential

band gap as effective potential for excitons:
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IX Hamiltonian

H = −
–h2

2M
∆+ V M(r)

approximate excitons as bosons

effective single-particle Hamiltonian for center of mass motion

solve H in Bloch basis

Wannier functions from Bloch functions via Fourier like transform

Wu et al., Phys. Rev. B 97, 035306 (2018)
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IX Wave Functions

H = −
–h2

2M
∆+ V M(r)
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Bose-Hubbard Model

Götting et al., Phys. Rev. B 105, 165419 (2022)

H = −t
∑
⟨ij⟩

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i +
V

2

∑
⟨ij⟩

n̂in̂j

Mean-field approximation:

φi = ⟨b̂i⟩
ϱi = ⟨n̂i⟩
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Hubbard Parameters

Hopping parameter:

tn =
1

N

∑
Q

ei(R0−Rn)QEQ

Hubbard U parameter:

Un =

∫ ∫
R2

|ωR0(r)|2|ωRn(r
′)|2Ũ(r − r′)d2rd2r′

hBN is used as sub- and superstrate
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Quantum Phases of IXs

maximal one boson per lattice site

material system: MoS2/WS2

relaxed: phases are pushed deeper into MI region
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Quantum Phases of IXs
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Conclusion
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Outlook

cluster mean-field [1] or Monte-Carlo methods [2]

finite-temperature theory by using the thermal average [1]

include description of exciton-polaritons [3]

[1] Malakar et al. Phys. Rev. B 102, 184515 (2020)
[2] Bogner et al. Eur. Phys. J. B 92, 111 (2019)
[3] Byrnes et al. Phys. Rev. B 81, 205312 (2010)
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Atomic Reconstructions
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Moiré Potential
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IX Hamiltonian

Effective single particle Hamiltonian for IXs:

H = −
–h2

2M
∆r + V M(r)

Bloch functions:

χ
(α)
Q =

1√
V

∑
GM

c
(α)

Q−GMe
i(Q−GM)r

Wannier functions as IX wave functions:

ωR(r) =
1√
N

∑
Q

e−iQRχQ(r)
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Band Structure

Ĥ = −
–h2

2M
∆+ V M(r)
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Quantum Phases of IXs
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Bose-Hubbard Model

Extended Bose-Hubbard Hamiltonian:

H = −t
∑
⟨ij⟩

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i +
V

2

∑
⟨ij⟩

n̂in̂j

Mean-field approximation:

φi =
〈
Ψ
∣∣∣ b̂i ∣∣∣Ψ〉

ϱi = ⟨Ψ | n̂i |Ψ⟩

b̂†i b̂j = (φ∗
i + δb̂†i )(φj + δb̂j)

= φ∗
iφj + φ∗

i δb̂j + φjδb̂
†
i + δb̂†iδb̂j
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Bose-Hubbard Model

Extended Bose-Hubbard Hamiltonian:

HMF
UC =− t

∑
X

(−φ∗
XφX + φ∗

X b̂X + φX b̂†X) +
U

2

∑
X

n̂X(n̂X − 1)− µ
∑
X

n̂X

+ V
∑
X

ϱX(n̂X − 1

2
ϱX)

Hopping parameters:

tn =
1

N

∑
Q

ei(R−R′)QEQ

Interaction parameters:

Un =

∫ ∫
R2

|ωR0(r)|2|ωRn(r
′)|2Ũ(r − r′) d2r d2r′
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Bose-Hubbard Model
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Hopping Parameter
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Dipole-Dipole Interaction

Dipole-dipole repulsive interaction:

Ũ(r) =
e2

2πεrε0

(
1

r
− 1√

r2 + d2

)
Transformation to momentum space:

Ũ(q) =
e2

ε0εr

1

q

(
1− e−dq

)

εr(q) → εTMD
1− ε̃1α− ε̃2α+ ε̃1ε̃2
1 + ε̃1α+ ε̃2α+ ε̃1ε̃2

ε̃1 =
1− εhBN

1 + εhBN
, ε̃2 =

εTMD − 1

εTMD + 1
, α = e−qhTMD
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Dipole-Dipole Interaction

Fromfactor accounting the finite width of the bilayer1

F (q) =
2

π
arctan

(
π

qheff

)

Ũ(r) =
1

2π

e2

ε0

1

εTMD

∫ ∞

0
F (q)

(
1− e−dq

) 1 + ε̃1α+ ε̃2α+ ε̃1ε̃2
1− ε̃1α− ε̃2α+ ε̃1ε̃2

J0(qr) dq

1Rösner et al. Phys. Rev. B 92, 085102 (2015)
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