ADAPTIVE OPERATIONAL DESIGN DOMAIN

Institute for Al Safety and Security 13-14 of November 2024, Safetronic Ryan Mut, Gerald Sauter, Yannick Kees, Frank Köster and Sven Hallerbach

Presenter

Introduction

- Terms and Definitions
- Adaptive Operational Design Domain (AODD) and Resilience
- Subsystem
- Demonstration
- Summary

Institute for Al Safety & Security Al Engineering: Convince the Engineer.

AI Engineering

Providing AI engineers with robust process models, procedures and tools to accelerate the development of safe and secure AI-based systems for a wide range of application domains.

Assessment & Test

Supporting engineers to find vulnerabilities in Al eco-systems before others will do. This includes all components that influences Al decision making.

Human-in-the-Loop

Focusing on **AI scenarios within different domains** where human interaction and judgement is required and **identifying potential for improvements** in the context of safety and security.

- Strategy for system and AI safety e.g., automotive domain
- Address violations of safety conditions
- Provide solutions for handling exceptional system behavior
- Not considered here Minimum Risk Manoeuvre (ISO 23793-1:2024)
- Increase system availability and reducing interruptions
- \rightarrow Increase the availability and safety of the AI-based system

Introduction

Terms and Definitions

- AODD and Resilience
- Subsystem
- Demonstration
- Summary

Operational Design Domain

- Different standards have proposed definitions for an Operational Design Domain (ODD) over the years:
 - ISO 21448:2022 Safety of the intended functionality
 - SAE J3016 Taxonomy and definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles
 - or the UL4600 Evaluation of Autonomous Products
- In SAE J3016 the ODD is defined:

"Operating conditions under which a given driving automation system or feature thereof is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics"

Scenario Descriptions

Functional scenarios	Logical scenarios		Concrete scenarios	
Base road network:	Base road network:		Base road network:	
three-lane motorway in a curve, 100 km/h speed limit indicated by traffic signs	Lane width Curve radius Position traffic sign	[2.33.5] m [0.60.9] km n [0200] m	Lane width Curve radius Position traffic sign	[3.2] m [0.7] km n [150] m
<u>Stationary objects:</u> -	<u>Stationary objects:</u> -		Stationary objects: -	
Moveable objects:	Moveable objects:		Moveable objects:	
Ego vehicle, traffic jam; Interaction: Ego in maneuver "approaching" on the middle lane, traffic jam moves slowly	End of traffic jam Traffic jam speed Ego distance Ego speed	[10200] m [030] km/h [50300] m [80130] km/h	End of traffic jam Traffic jam speed Ego distance Ego speed	40 m 30 km/h 200 m 100 km/h
Environment:	Environment:		Environment:	
Summer, rain	Temperature Droplet size	[1040] °C [20100] μm	Temperature Droplet size	20 °C 30 μm

Level of abstraction

Number of scenarios

PEGASUS, "Scenario Description", 2018. [Online]. Available: https://www.pegasusprojekt.de/files/tmpl/PDF-Symposium/04_Scenario-Description.pdf. Accessed on: March 03, 2020.

System Capability

- The system capability (SC) is derived from the capabilities of hardware and software e.g., Advanced Driving Systems (ADS).
- Builds on DoDAF and ISO 9000:2015
- System Capability:

"The ability to achieve specified performance metrics within a specific operating environment or condition"

Set of Scenarios determine SC and ODD

Ryan Mut, Institute for AI Safety and Security

- The SC is a set of safe scenarios for which the ADS is functioning safely.
- The safe functionality is determined by the developer of ADS.
- The ODD defines a set of safe scenarios and is controlled by a third party.

PEGASUS, "Scenario Description", 2018. [Online]. Available: https://www.pegasusprojekt.de/files/tmpl/PDF-Symposium/04_Scenario-Description.pdf. Accessed on: March 03, 2020.

Impairment: Operational Design Domain

System impairments reduce the range of safe Logical Scenarios for the ADS

- Introduction
- Terms and Definitions
- AODD and Resilience
- Subsystem
- Demonstration
- Summary

Impairment: Adaptive Operational Design Domain (AODD)

The Adaptive Operational Design is a reduced set of safe Logical Scenarios of the Operational Design Domain, due to the reduction of System Capability.

 Resilience: System impairment does not reduce the range of safe Logical Scenarios for ADS

Impairment: Adaptive Operational Design Domain and Resilience

- Introduction
- Terms and Definitions
- AODD and Resilience
- Subsystem
- Demonstration
- Summary

System Capability, ODD and Subsystem

Ryan Mut, Institute for AI Safety and Security

Resilience and Subsystem

- Introduction
- Terms and Definitions
- AODD and Resilience
- Subsystem
- Demonstration
- Summary

Demonstration of an Impairment Nocturne

visible states + ego state

Vehicle

goal position

safetronic®

Demonstration: Traffic scenario within Nocturne

https://github.com/daph necor/nocturne

Evaluation:

Real Driven Scenario

'goal_achieved': True, 'collided': False 'veh_veh_collision': False, 'veh_edge_collision': False

AI driven Scenario

'goal_achieved': True, 'collided': False, 'veh_veh_collision': False, 'veh_edge_collision': False

■ Impaired Braking system → Reduced maximum Speed

 $S_{B_max} \rightarrow Cost.$

• The reduction of maximum Speed is proportional to the los of braking force. The reduced maximum Speed $V_{max} \downarrow$.

Demonstration: Impaired system with an applied AODD

• Impaired Braking system \rightarrow Reduced maximum Speed

Evaluation:

'goal_achieved': True, 'collided': False, 'veh_veh_collision': False, 'veh_edge_collision': False

'goal_achieved': False, 'collided': False, 'veh veh collision': False, 'veh_edge_collision': False safetronic®

- Introduction
- Terms and Definitions
- AODD and Resilience
- Subsystem
- Demonstration
- Summary

- Strategy for impaired systems to handle exceptional conditions
- SC and ODD for Automated Driving Systems (ADS)
- Impaired system and AODD
- Impaired system and Resilience
- Dependencies between SC, ODD, Resilience and AODD
- \rightarrow AODD and Resilience increase the availability of the system

Contact

Ryan Mut, Institute for AI Safety and Security German Aerospace Center (DLR) Institute for AI-Safety and Security Postal Address: Rathausallee 12 53757 Sankt Augustin Germany

A

ryan.mut@dlr.de