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Background and Motivation
Numerical Simulation – Key Enabler for Future Aircraft Design

Future aircraft

▪ Goals: drastic reduction CO2, NOx and noise emissions

▪ Step changes in aircraft technology and new designs

High-fidelity CFD methods indispensable

▪ Flight characteristics dominated by non-linear effects

▪ Reliable insight to new aircraft technologies

▪ High-fidelity CFD simulation of aircraft aerodynamics

Efficient linear system solving important

▪ CFD requires solving of large linear equation systems

▪ Linear systems solving makes up majority of time

Further improvement of simulation capabilities, 

computational efficiency and scalability necessary.
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Blended wing body design

Electric aircraft design



CODA Software Environment

CODA CFD Software

▪ Collaboration of ONERA, DLR and Airbus*

▪ 2nd order Finite Volume method and higher-order DG for 

unstructured grids and compressible flows

▪ Hybrid parallelization (MPI/GASPI + OpenMP/threads) with 

overlap of communication & computation

▪ Seamless integration into multi-disciplinary simulations

FlowSimulator

▪ Provides plug-ins for all steps of a full aircraft simulation

▪ FSMesh class for unified data exchange among plug-ins

Spliss: Sparse Linear Systems Solver

▪ Linear systems solving for implicit methods

▪ Full HPC support: MPI/GASPI, Threads, SIMD, GPUs
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*CODA is the computational fluid dynamics (CFD) software

being developed as part of a collaboration between the French

Aerospace Lab ONERA, the German Aerospace Center (DLR),

Airbus, and their European research partners. CODA is jointly

owned by ONERA, DLR and Airbus.



EXCELLERAT (P2 2023 – 2026) 
The European Centre of Excellence for Engineering Applications (P1 2019 – 2022)

Preparing European engineering for exascale computing

▪ 15 partners

▪ 7 use cases: Alya, AVBP, CODA, m-AIA, Neko, Flew, OpenFoam

▪ Aerospace & Energy; CFD & Combustion

Cooperation with European engineering and HPC community

▪ Expertise from other leading-edge engineering codes with 

similar challenges and problems

▪ Access to the largest HPC systems in Europe

▪ Early access and experiences with new hardware and trends
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EXCELLERAT Project Targets

Evaluate and demonstrate CODA’s and FlowSim’s readiness 

for exascale computing

▪ Continuous evaluation (and analysis) of CODA/FlowSimulator 

scalability improvements

▪ Large scale demonstrator: large mesh + large system

▪ Evaluation of new systems and emerging technologies

Use case: external aircraft aerodynamics

▪ Airflow for steady forward flight at subsonic speed

▪ Reynolds-averaged Navier-Stokes equations (RANS) with 

Spalart-Allmaras turbulence model (SA-neg)
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EXCELLERAT Use Case and Inputs

Strong and weak scaling use case

▪ NASA Common Research Model CRM (wing-body configuration)

▪ Mesh set with 3, 10, 24, 81 and 192 million elements

▪ Practical size to see large scaling effects at smaller scales*

▪ Public, widely used and well-studied (also experimentally)

Capability demonstrator

▪ Demonstrate capabilities for big meshes on big systems

▪ Mesh with about 1 – 5 billion elements

▪ Upcoming European (pre-)exascale systems

* within the range of available resources at DLR, i.e. up to 32/64k cores
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Preparing for Extreme Scale (Exascale)

Three main challenges

▪ Efficiency

▪ Scale as efficiently as possible on current systems

→ Estimate performance for large systems

▪ Scalability

▪ Support large meshes in FlowSimulator framework

▪ Support large core counts in the entire workflow

→ Overcome any hard scalability limits

▪ Heterogeneity

▪ Readiness for a variety of different systems (CPU, GPU, …)

→ Support offloading to Nvidia and AMD GPUs
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The CARA and CARO HPC Systems at DLR
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CARA (AMD Naples architecture):

▪ 2168 nodes with 128 GB DDR4 (2666 MHz)

▪ 2x AMD Epyc 7601 (32 cores; 2,2 GHz) per node

▪ 145.920 cores delivering 1.7 TFLOP/s

▪ Infiniband HDR network

CARO (AMD Rome architecture)

▪ 1354 nodes with 256 GB DDR4 (3200 MHz) RAM

▪ 2x AMD Epyc 7702 (64 cores; 2,0 GHz) per node

▪ 174592 cores delivering 3.5 TFLOP/s

▪ Infiniband HDR network



The CARA and CARO HPC Systems – Comparison
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Number of cores:

▪ CARO (AMD Epyc 7702) has 2x cores (128 vs. 64 per node)

Cache:

▪ CARO has 4x last-level cache (256 MiB vs 64 MiB), i.e. twice 
as much per core.

▪ 16 vs. 8 NUMA domains

▪ 3 NUMA distances (on die, on socket, 2nd socket)

▪ 4 cores per die share L3

Memory access:

▪ 8 memory channels and memory controllers

▪ Memory controllers: 3200MHz (CARO) vs. 2666MHz (CARA) 

▪ CARO has 1.2x memory bandwidth (191 GiB/s vs. 159 GiB/s) 
for twice the number of cores.
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Efficiency: Scalability on Current Systems (CARA)

Scalability assessment on DLR’s production system CARA

▪ Strong scaling (CRM, fixed problem size, 24M elements):

▪ Scaling from 1 – 512 nodes (largest available partition)

▪ Reduce runtime from 1.2 days to 4.2 minutes

▪ Small mesh: just 730 elements/core @ 32,768 cores

▪ Scaling 64 – 32,768 cores: 85% strong scaling efficiency

▪ Small super-linear speedup

▪ Weak scaling (CRM, fixed workload per core, 3M – 192M elements):

▪ Scaling 512 – 32,768 cores: 96% weak scaling efficiency
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Runtime | strong scaling 24M elements

Runtime | weak scaling 3M–192M elements



Efficiency: Extrapolation

Extrapolation (same architecture but more cores)

▪ ~55% efficiency at 5M cores (~0.1 Exa-FLOP)

▪ Requires a 13B elements mesh

▪ Not required for industrial RANS simulations                              

(only marginally better resolution)

Applications for extreme scale

▪ Scale-resolving simulations (hybrid RANS+LES) for turbulent flows         

→ require much finer meshes

▪ Unsteady RANS simulations (URANS)

▪ Parameter exploration: run thousands of simulations in parallel to 

optimize for different input parameters
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Scalability of the Entire Workflow (FlowSimulator)

Scalability assessment on DLR’s production system CARO

▪ The entire workflow needs to …

▪ support large meshes (>1B elements)

▪ support large core counts (>1M cores)

Achievements (so far)

▪ Several improvements in FlowSimulator to scale to full system

▪ Improved hierarchical graph partitioning

▪ Support for meshes >1 billion elements tested

▪ Efficient scaling to 131,072 cores (full system CARO@DLR)
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Runtime | CARO (AMD Rome) vs. Juwels (4x Nvidia A100)

M6 wing, 69.2M elements, implicit Euler, Jacobi + Block Inv.

12k

128 GPUs

64 GPUs

32 GPUs

8k

6k

4k

Heterogeneity: Support for Nvidia GPUs via Spliss

System – Juwels Booster

▪ AMD Epyc 7401 (2x 24 cores) per node

▪ 4x Nvidia Tesla A100 per node

System – CARO

▪ Nodes with 128 cores (AMD Rome, 2x CARA)

▪ 8 memory channels @3.2GHz (1.2x CARA)

Observations

▪ Node-wise comparison (“unfair”): 8-9x speedup

▪ Energy-wise comparison (“fair”): 1.6-1.9 speedup

▪ Performance limited by non-linear part on slow CPU

▪ Hypothetical Juwels Booster node with CARO CPU: 

1.8-2.3 speedup (energy-wise)
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J. Mohnke and M. Wagner: A Look at Performance and Scalability of 

the GPU Accelerated Sparse Linear System Solver Spliss. In: Euro-

Par 2023: Parallel Processing. DOI 10.1007/978-3-031-39698-4_43



Heterogeneity: Linear vs. Non-linear Part

▪ For implicit methods, linear equation systems are solved via Spliss on GPUs

▪ Thus, only the linear part benefits from GPUs via Spliss

▪ For future system with more or more powerful GPUs the non-linear part may become bottleneck

▪ Port relevant parts of CODA to GPUs

* i.e. CARA GPU partition
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40% 60%

4% 96% …

30% 70%

55% 45%

CARO

Juwels Booster

Juwels Booster with 

CARO CPU*

Future system with 2x 

GPU performance

non-linear    linear CPU / linear GPU

1.4 Speedup for 1.8x Energy



Summary

▪ Is CODA ready for extreme scale?

▪ Efficiency

▪ Efficient scaling on current systems (96% full system)

▪ Scalability

▪ Tested with meshes >1B elements

▪ Tested on full DLR system (131.072 cores)

▪ Heterogeneity

▪ Support for Nvidia GPUs, AMD (ongoing)
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