
Big Earth Data

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tbed20

Enhancing satellite-based emergency mapping:
Identifying wildfires through geo-social media analysis

Sebastian Schmidt, Monika Friedemann, David Hanny, Bernd Resch, Torsten
Riedlinger & Martin Mühlbauer

To cite this article: Sebastian Schmidt, Monika Friedemann, David Hanny, Bernd Resch,
Torsten Riedlinger & Martin Mühlbauer (30 Jan 2025): Enhancing satellite-based emergency
mapping: Identifying wildfires through geo-social media analysis, Big Earth Data, DOI:
10.1080/20964471.2025.2454526

To link to this article:  https://doi.org/10.1080/20964471.2025.2454526

© 2025 The Author(s). Published by Taylor
& Francis Group and Science Press on
behalf of the International Society for
Digital Earth, supported by the International
Research Center of Big Data for Sustainable
Development Goals.

Published online: 30 Jan 2025.

Submit your article to this journal 

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbed20

https://www.tandfonline.com/journals/tbed20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/20964471.2025.2454526
https://doi.org/10.1080/20964471.2025.2454526
https://www.tandfonline.com/action/authorSubmission?journalCode=tbed20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tbed20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/20964471.2025.2454526?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/20964471.2025.2454526?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2025.2454526&domain=pdf&date_stamp=30%20Jan%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2025.2454526&domain=pdf&date_stamp=30%20Jan%202025
https://www.tandfonline.com/action/journalInformation?journalCode=tbed20


RESEARCH ARTICLE

Enhancing satellite-based emergency mapping: Identifying 
wildfires through geo-social media analysis
Sebastian Schmidt a,b, Monika Friedemann c, David Hanny a,b, Bernd Resch a,b,d, 
Torsten Riedlinger c and Martin Mühlbauer c

aDepartment of Geoinformatics - Z_GIS, University of Salzburg, Salzburg, Austria; bGeosocial Artificial 
Intelligence, IT:U Interdisciplinary Transformation University Austria, Linz, Austria; cGeo-Risks and Civil 
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ABSTRACT
When a disaster emerges, timely acquisition of information is crucial 
for a rapid situation assessment. Although automation in the stan-
dard satellite-based emergency mapping workflow has been 
advanced, delays still occur at crucial steps. In order to speed up 
the provision of satellite-based crisis products to emergency man-
agers, this paper proposes a geo-social media-based approach that 
detects disaster events based on the spatio-temporal analysis of 
georeferenced, disaster-related Tweets. The proposed methodol-
ogy is validated on the basis of two use cases: wildfires in Chile and 
British Columbia. The results show the general ability of Twitter to 
forecast events several days in advance, at least for the Chile use 
case. However, there are large spatial differences, as there is 
a correlation between population density and the reliability of 
Twitter data. Consequently, only few meaningful alerts could be 
generated for British Columbia, an area with very low population 
numbers.
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1. Introduction

Satellite-based emergency mapping (SEM) services such as the Copernicus Emergency 
Management Service (CEMS) Rapid Mapping (European Commission, 2023) provide geos-
patial information on demand in support of disaster management activities before, 
during, or immediately following a disaster (Voigt et al., 2016). Recent undertakings to 
accelerate SEM workflows in terms of delivery timeliness of crisis information by utilising 
early warning systems have proven effective (Wania et al., 2021). However, the process 
remains user-driven at crucial steps, thus inducing significant delays in tasking, data 
analysis and information provision.
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While the automation of data analysis processes has been extensively researched, 
significant time delays still exist between the initial early warning and the SEM process 
activation – which is manually performed by an authorised user – and between the 
activation and satellite tasking. Considering these delays, initial uncertainties affect both 
users and SEM providers during disasters. Additionally, requesting authorities must be 
aware of the event location to define the AOI for a SEM activation. Therefore, this paper 
investigates possible automation enhancements to the initial steps of a SEM activation 
and proposes a concept for utilising disaster-related data from geo-social media to 
improve the timely provision of relevant EO-based crisis information.

We develop a methodology based on a spatio-temporal analysis of georeferenced, 
disaster-related Tweets. For this purpose, we take into account the difference in the 
relative number of disaster-related Tweets within an area compared to a baseline from 
the previous year. For the semantic classification of Tweets, we rely on a Robustly 
Optimized BERT Pre-training Approach (RoBERTa) model that was fine-tuned with the 
help of an active learning approach (Hanny et al., 2024). Our focus lies on two different 
2023 wildfires in British Columbia and Chile, respectively. In doing so, we test the 
portability of our proposed methodology to find out for which regions a social media- 
based methodology for satellite tasking might be suitable. The AOIs differ in terms of their 
geographical structure (i.e. population density, topography), but also with regard to the 
language spoken. For this evaluation, we compare our results to official alerts and burnt 
areas derived from satellite imagery, i.e. post-event wildfire footprints. Consequently, we 
aim to answer the following research questions:

● RQ1: Is the analysis of geo-social media data suitable for the timely identification of 
areas affected by a wildfire and thus for improving SEM?

● RQ2: How do alerts derived from geo-social media posts differ spatially from official 
alerts or Sentinel-3 derived burnt areas?

● RQ3: Does the social media-based methodology work equally well for different 
geographical regions?

2. Related works

Today, SEM processes usually start with a user-driven activation, typically performed by an 
official authority in need of satellite-based crisis information. Upon activation, the state-of 
-the-art process follows the steps 1) tasking of on-demand satellites, 2) image acquisi-
tion, 3) image delivery, and 4) map product delivery including image analysis (Wania et al.,  
2021). Step 1 is only necessary for EO satellites which do not collect data on a permanent 
basis and instead have to be tasked. Examples are commercial Very High Resolution (VHR) 
optical satellites (e.g. WorldView-3) and radar satellites (e.g. TerraSAR-X).

Most attention has been given to optimising the delay produced in the last step by the 
time- and labour-intense manual and semi-automatic visual image interpretation. This has 
seen ongoing improvements, such as fully automated burnt area derivation (Knopp et al.,  
2020; Nolde et al., 2020). Such a real-time processor, which derives burnt areas from 
medium-resolution images (e.g. Sentinel-3), has recently been integrated into DLR’s ZKI 
Fire Monitoring System (https://services.zki.dlr.de/fire). Similarly, Ajmar et al. (2019) pro-
pose to include early warning alerts like those of GDACS to reduce acquisition times by up 
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to one day (GDACS, 2023a, 2023b). While such approaches shorten the time for triggering, 
they are limited to specific natural events, and in some cases are not commonly 
accessible.

Geo-social media data has already been used in some studies as an alternative data 
source to detect events induced by natural hazards (Hasan et al., 2019; Saeed et al., 2019) 
or even create “disaster alerts”. Twitter has even already been used as a data source in 
GDACS since 2011 (Stollberg & De Groeve, 2012), albeit with a rather simplistic, solely 
keyword-filtering-based methodology. Nevertheless, relevant information on earthquake- 
related building collapses can be detected with this approach within the first half an hour 
of an event. Similarly, Shah et al. (2021) propose thresholds for alert generation based on 
the ratio of disaster-related, keyword-filtered Tweets in an AOI, starting at a threshold of 
10%. More complex approaches for event detection based on machine learning algo-
rithms have also been developed. For example, Rezaei et al. (2023) propose a semi- 
supervised framework based on an HAN. Havas and Resch (2021) use LDA to cluster 
Tweets in semantic topics for real-time monitoring of natural disasters. An extended LDA- 
based method that includes the location and time of a post and is conducted by 
performing similarity joins from a social media stream is presented by Zhou and Chen 
(2014). Azlan et al. (2020) compare KNN, SVM and NB for application in event detection. 
Pennington et al. (2022) develop a CNN-based system that detects landslide imagery from 
a keyword-filtered, live Twitter stream. Similarly, de Bruijn et al. (2019) use BERT to create 
a database of flood events from social media posts. Pinto et al. (2023) create wildfire 
probability heatmaps in Portugal from Twitter data by using a fine-tuned BERT model and 
employing location extraction with SpaCy. Li et al. (2022) propose a multimodal graph 
message propagation network based on a Graph Neural Network (GNN) that simulta-
neously considers text and images. While some existing approaches use georeferenced 
social media data, none of them explicitly compares their results to official alerts or 
satellite-derived information products.

There is a large body of literature that deals with the semantic classification of social 
media posts, especially in relation to natural hazards (e.g Resch et al. (2018); Huang et al. 
(2018); Parimala et al. (2021); Chae et al. (2012)). In this context, research dedicated to 
wildfires has been published, e.g. on the spatio-temporal distribution of wildfire-related 
Tweets in Israel (Zohar et al., 2023) and California (Wang et al., 2016). Common methods 
used in these studies include LDA (Havas & Resch, 2021), CNN (Huang et al., 2020) and 
BERT (Adwaith et al., 2022; Madichetty et al., 2021). Some studies also try to assign 
disaster-related posts to certain categories of relevance for disaster management (e.g. 
de Albuquerque et al. (2015); Powers et al. (2023); Blomeier et al. (2024)) or sentiments 
(e.g. Lever and Arcucci (2022)). An active learning based approach, such as the one used in 
this paper, has so far rarely been implemented for the classification of Twitter data (Cyril 
et al., 2021; Paul et al., 2023).

In general, there have been a few research approaches that explicitly combine social 
media analysis with remote sensing data. To map urban sprawl in Tanzania, Shao et al. 
(2021) combine user locations from Twitter data and Landsat 7 imagery. Karasov et al. 
(2022) investigate the demand for selected cultural ecosystem services (e.g. wildlife 
watching) in Estonia by classifying Landsat 8 data and geotagged photos from Flickr. 
Similarly, Lingua et al. (2023) use Flickr imagery and Landsat imagery to assess forest 
recreation in British Columbia. Vaz et al. (2019) use MODIS and Sentinel-2 data in 
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combination with Flickr and Wikiloc images for the mapping of non-native tree species. By 
fusing social media data to remote sensing-based features via a residual CNN- and Long 
Short-Term Memory (LSTM)-based neural network, Cao et al. (2020) propose to improve 
land use classification. In the context of natural hazards and disasters, Huang et al. (2018) 
use Normalised Difference Water Index (NDWI) values from post-disaster satellite images 
to assign reliability scores to georeferenced, disaster-related Tweets and calculate inun-
dation probability maps. Similarly, Rosser et al. (2017) combine Flickr data, Landsat-8 
imagery and a Digital Elevation Model (DEM) to calculate similar flood probability maps. 
Zhong et al. (2023) propose fusing information derived from remote sensing, Weibo and 
mobile phone data for tracking wildfires based on a knowledge graph. Ahmad et al. (2019) 
use geo-location information in multi-modal social media data (text, images and videos) 
about disasters to retrieve and link it with Google Earth data for visualisation purposes. 
Boulton et al. (2021) find strong spatio-temporal correlations between the occurrence of 
keyword-filtered Tweets and MODIS-derived wildfires in some US states, without measur-
ing the precision of their results. Bischke et al. (2016) enrich remote sensing data by 
classifying corresponding texts and images from social media and visualising them 
simultaneously.

There have also already been some studies on using social media data in connection with 
the acquisition of remote sensing images. Cervone et al. (2016) propose to employ 
a keyword filtering approach to identify disaster-related Tweets and subsequently spatial 
hot spots. However, their analysis focuses on flood events and does not include an evalua-
tion of the speed of their approach. In their approach, Yang et al. (2022) similarly focus on 
flood events and Chinese language social media posts. Mühlbauer et al. (2024) present 
a method to speed up the SEM process by determining AOI from web data acquired by 
national or international entities, such as GDACS or the German Meteorological Service 
(DWD). Based on their proposal, we assess the applicability of geo-social media as a possible 
extension of their work. We are not aware of any study that uses geo-social media data to 
detect wildfires and, at the same time, compares the spatio-temporal accuracy of their 
results to official alerts or information derived from satellite imagery.

3. Methodology

In the following section, we will provide an overview of our data and methodological 
approach. We extracted data for our use cases from the official Twitter Application 
Programming Interface (API). We then trained a BERT-based model to classify these 
posts into two categories: disaster-related and unrelated. Subsequently, we generated 
alerts based on the spatially aggregated relative number of disaster-related Tweets. For 
this, we proposed three different methods that collate this Twitter activity against 
a baseline from the previous year. Figure 1 shows a schematic overview of our methodo-
logical approach. Lastly, we compared the output of the alert generation to spatio- 
temporal information derived from satellite imagery and official alerts.

3.1. Use cases

In the following, we will briefly describe the two use cases of our paper. We deliberately 
chose two AOI that differ in terms of their population structure and topography. The AOI 
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in Central Chile is characterised by several large cities including Concepción (one of the 
largest Chilean agglomerations), Talca, and Los Ángeles, as well as several, rather clearly 
demarcated mountain ranges and valley. The AOI in British Columbia is a very rural area 
with large forests and more vast, continuous plains. Figure 2 shows the population 
distribution of our AOIs. We accessed the underlying data from the Global Human 
Settlement Layer (European Commission - Joint Research Centre, 2015), which has 
a spatial resolution of 1 km. We used the tool “Zonal statistics” in QGIS 3.32.2 to calculate 
the total population per grid cell.

3.1.1. 2023 Chile forest fires
In early February 2023, Central Chile was heavily affected by forest fires. Red alerts were 
declared by the Chilean National Disaster Prevention and Response Service (SENAPRED) 

Figure 1. Overview of methodology.

Figure 2. Population density of AOIs.
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for the region of Ñuble on 2 February 20:18 UTC (17:18 local time), for the commune of 
Nacimiento in the Biobío region on 3 February 00:24 UTC (2 February 21:24 local time), 
and for the region of La Araucanía on 3 February at 22:09 UTC (19:09 local time). On 
5 February, Chile requested support from UCPM member and participating states to 
mitigate the effects of the destructive fires. The CEMS Rapid Mapping was activated by 
the ERCC on the same day at 20:28 UTC (EMSR647) (European Commission, 2023) in 
support of operations in the affected areas. GDACS issued a first red alert on 14 February 
at 07:17:40 UTC (WF 1,012,119). In support of local authorities, DLR provided iteratively 
and automatically updated burnt area research products for the region of Ñuble starting 
from 3 February 15:22 UTC, for the commune of Nacimiento from 3 February 14:46 UTC 
and for the Region of La Araucanía from 1 February at 15:38 UTC through the ZKI Fire 
Monitoring System (available https://services.zki.dlr.de/fire). Figure 5 features the location 
of wildfire footprints, while Figure 3 shows a timeline of the alerts.

3.1.2. 2023 British Columbia forest fires
Beginning in March 2023, and with increased intensity starting in June, Canada was 
affected by a record-setting series of wildfires. As the worst wildfire season in recorded 
Canadian and North American history, eleven provinces and territories were affected, with 
large fires in Alberta, Nova Scotia, Ontario, and Québec. In northeastern British Columbia 
(BC), the Donnie Creek Wildfire became the single largest wildfire in BC history on June 18. 
By June 24, the fire was burning over an area of more than 5,648 square kilometres. The BC 
Fire Service discovered the wildfire on May 13 at 08:58:26 UTC (01:58:26 local time) and 
issued a first evacuation alert at 23:00:00 UTC (16:00:00 local time) (https://prrd.bc.ca/ 
donnie-creek-tommy-lakes-evacuation-alert/). On May 19 a first map with the fire peri-
meters was published (G80280). CEMS rapid mapping was not activated and GDACS 
created a first green alert for the event on 23 June at 12:01:04 UTC (WF 1,015,007). 
Figure 6 features the location of wildfire footprints, while Figure 4 shows a timeline of 
the alerts.

3.2. Data

The social media platform Twitter (now: X) provides data access through various 
API endpoints. We retrieved Tweets using both the REST and the streaming API of 
Twitter, via which georeferenced data can be accessed. In our data collection 
approach, we followed Havas et al. (2021) and Schmidt et al. (2023). In a first 

Figure 3. Timeline of public alerts and Eo-based crisis information provisions during forest fires in the 
region of Ñuble, Chile.
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step, we collected global georeferenced data in 2022 and 2023. Then, we 
employed spatial and temporal filtering, i.e. for our Chile use case we extracted 
data for the Biobío, Ñuble and Araucanía regions and the first half of 2023. 
Semantic filtering was handled by the Disaster-RoBERTa model presented in 
Section 3.3. Table 1 shows the number of categorised Tweets for each of our use 
cases. To be able to calculate a baseline for our event detection, we also extracted 
data for the same timeframe and region in the previous year (2022) and performed 
the same analysis.

Figure 4. Timeline of public alerts and eo-based crisis information provisions during forest fires in the 
region of British Columbia.

Figure 5. Evaluation of Chile alerts (Method 3). The temporal difference between the Twitter-based 
alerts and the burnt area derivation based on Sentinel-3 imagery is shown in five categories.
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3.3. Disaster-relatedness classification

To categorise Tweets as “related” or “unrelated” to a natural hazard and disaster, we used 
the multilingual Twitter-XLM-RoBERTa-base model (Barbieri et al., 2022) fine-tuned on 
labelled data as presented in Hanny et al. (2024). The base model was pre-trained on 
198 M multilingual Tweets and fine-tuned using 179,391 Tweets labelled as “related” or 
“unrelated” to a disaster from the CrisisLexT6 (Olteanu et al., 2014) and CrisisLexT26 
datasets (Olteanu et al., 2015), which reflect a broad collection of Tweets gathered during 
crises situations. Subsequently, the model was fine-tuned further using an active learning 
strategy where a total of 200 Tweets regarding the 2021 Ahr Valley floods in Germany and 
the 2023 Chile wildfires was labelled and returned to the model.

Table 2 compares the classification accuracy of the fine-tuned RoBERTa model 
against a keyword filtering approach as described in Hanny et al. (2024). The fine- 
tuned RoBERTa approach performed significantly better, achieving an accuracy score 

Figure 6. Evaluation of British Columbia alerts (Method 3). The temporal difference between the 
Twitter-based alerts and the burnt area derivation based on Sentinel-3 imagery is shown in five 
categories.

Table 1. Twitter data for use cases.

Use case
Timeframe Population Number of Tweets

all disaster-related

2023 British Columbia fires 01.05.2023–30.06.2023 524,887 101,358 2,516
2023 Chile fires 01.01.2023–29.06.2023 3,464,883 2,282,470 97,846
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of 0.94 versus 0.7 for a test dataset compromised of 44,848 Tweets from CrisisLex. The 
authors also evaluated the model on (1) 192 Tweets regarding the 2021 Ahr Valley 
flood in Germany where it performed on par with keyword filtering, and (2) 364 
Tweets from the 2023 Chile wildfires. For the latter dataset, the fine-tuned RoBERTa 
model achieved an accuracy of 0.80 versus 0.71 for keyword filtering. In general, the 
training data of the model included multiple natural disasters including floods, forest 
fires, earthquakes, landslides and tropical storms.

3.4. Event detection

To detect specific events caused by natural hazards, we performed a daily spatial aggre-
gation of our geo-social media data. For this, we used Uber’s H3 grid, which provides 
a regular hexagonal, hierarchical grid of the entire planet (Uber, 2023). We opted for 
a hexagonal grid format as it fits the nearest neighbour logic for data aggregation less 
ambiguously than other approaches (Birch et al., 2007). We worked with grid level 5 
(average edge length: 9.85 km) for both use cases. We chose this approach to achieve 
spatially comparable results. Since most of the geometries for Tweets are provided as 
polygons, i.e. bounding boxes of “places” specified by the user, we converted them to 
their centroids for the aggregation. For each grid cell, we then counted the number of 
disaster-related Tweets and all Tweets. Additionally, we calculated the ratio between both 
of these indicators to reduce the impact of the general population distribution, since 
considering only the pure number of disaster-related Tweets would have led to a bias 
towards larger agglomerations. Based on this data, we created a time series with daily 
interval. However, in our calculations we also considered a moving window for the 
previous 3 days to smooth the data a little, since disaster-related social media data can 
be quite noisy, i.e. contain a lot of unnecessary information. We only considered grid cells 
where the number of Tweets was higher than the previous year’s median count to reduce 
the occurrence of outliers.

Based on the aforementioned ratio, i.e. number of disaster-related Tweets per grid cell 
in the given timeframe normalised by the overall amount of Tweets, we performed 
a spatial hot spot analysis using the Getis-Ord Gi* statistic (cf. Formula 1): 

Table 2. Accuracy of keyword filtering and the fine-tuned RoBERTa model 
presented by Hanny et al. (2024) for a binary disaster-relatedness classi-
fication task using different crisis tweet datasets. The fine-tuned RoBERTa 
model performed notably better across all test datasets.

Data Keyword filtering Fine-tuned RoBERTa

CrisisLex T6/T26 0.70 0.94
2021 Ahr Valley Floods 0.96 0.96
2023 Chile wildfires 0.71 0.80
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Where xj is the attribute value of feature j; wi;j is the spatial weight between feature i 
and j; n the sample size; �X the mean value and S the standard deviation of the dataset (Ord 
& Getis, 1995). As the relative amount of disaster-related Tweets per grid cell, xj had values 
between 0 and 1. As our data was aggregated on a regular, hexagonal grid, we considered 
the Queen contiguity as the most sensible approach for the definition of our spatial 
neighbourhood, i.e. spatial weights matrix. It only considers directly adjacent observa-
tions, i.e. sharing a vertex, as relevant for the calculation.

Overall, we proposed and implemented three different methods to detect events from 
geo-social media data:

● Method 1: An alert is generated if the amount of disaster-related Tweets within a cell 
is significantly higher than in the previous year (cf. Algorithm 1). For this method, the 
ratio of disaster-related posts is analysed, which must be two standard deviations 
higher than the average value of the baseline. As this ratio is usually very small, one 
standard deviation, i.e. the variation around the mean, was not enough to detect 
unusual social media activity. Additionally, only grid cells are analysed where the 
number of Tweets is higher than the median of the baseline, as we assumed that 
social media activity would be considerably higher than usual in the event of 
a disaster (Wang et al., 2021).

Algorithm 1: Event Detection - Method 1 
Input: Count of disaster-related and all Tweets per H3 grid cell for 2022 (baseline) and 2023 
Result: Disaster alert 
Calculate ratio (disaster-related/all Tweets) 
if Tweet count > median baseline count then 
if Ratio > mean baseline ratio + two standard deviations then 
Generate disaster alert; 
end 
end

● Method 2: An alert is generated if the amount of disaster-related Tweets 
within a cell is significantly higher than in the previous year (cf. Method 1) 
and there is at least one neighbouring cell to which this also applies (cf. 
Algorithm 2).

Algorithm 2: Event Detection - Method 2 
Input: Count of disaster-related and all Tweets per H3 grid cell for 2022 (baseline) and 2023 
Result: Disaster alert 
Calculate ratio (disaster-related/all Tweets) 
if Tweet count > median baseline count then 
if Ratio > mean baseline ratio + two standard deviations then 
if At least one neighbouring cell: Ratio > mean baseline ratio + two standard deviations then 
Generate disaster alert; 
end 
end 
end

● Method 3: An alert is generated if the results of the spatial hot spot 
analysis identify a cell as a highly significant hot spot (cf. Algorithm 3). 
For this, a p-value ≤ 0.1 is used as a threshold for statistical significance. 
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As with the other methods, only grid cells with considerably higher social 
media activity than usual are selected for the analysis.

Algorithm 3: Event Detection - Method 3 
Input: Count of disaster-related and all Tweets per H3 grid cell for 2022 (baseline) and 2023 
Result: Disaster alert 
Calculate Getis-Ord Gi* hot spot analysis based on ratio (disaster-related/all Tweets) 
if Tweet count > median baseline count then 
if z_score ≥ 1.65 and p_value ≤ 0.1 then 
Generate disaster alert; 
end 
end

3.5. Evaluation

For the evaluation of our methodology, we compared the results of our event detection 
with official alerts and information derived from satellites. For an overview of official alerts 
for our two use cases, see Table 3. It should be noted that GDACS alerts are not static, but 
are updated in the course of a disaster. As these changes are overwritten, the final update 
that we were able to retrieve from the GDACS event page and analyse retrospectively was 
not identical to the very first alert. This information is provided in a XML alert message file 
which, in the case of GDACS, the DWD and most public alert providers, is based on the 
Common Alerting Protocol (CAP) (OASIS, 2010). For Chile, the latest CAP update with the 
ID 3 (CAP “currentepisodeid” parameter) was sent on 15 February at 00:00:00 UTC (CAP 
“sent” parameter). For the Donnie Creek event, the last update with the ID 10 was 
provided on 01 July at 00:00:00 UTC. While some providers use the CAP structure to 
include AOI geometries, the evaluated services, at least for our use cases, only included 
point coordinates or very rough bounding boxes.

Burnt areas were identified using a modular processing chain for automated burnt area 
derivation from optical Sentinel-2/3 satellite imagery as well as Aqua/Terra MODIS data, 
following the fully automated burnt area derivation developed by Nolde et al. (2020). This 
processor monitors burnt areas in near-real time and the satellite-derived products are 
made available through the ZKI Fire Monitoring System (Angermann et al., 2024). It uses 
the red and NIR bands to calculate the NDVI and, depending on the data source, 
optionally SWIR information to calculate the NBR. The generated Donnie Creek Wildfire 
dataset covering the affected region for summer 2023 was derived from Sentinel-3/ 
Sentinel-2 imagery.

For each grid cell for which there was an event derived from the satellite data, we then 
calculated the difference between its timestamp and the date of our social media-based 
alerts in days. Additionally, we also derived a confusion matrix to check quantitatively 
how many areas were rightly identified and missed by our approach. For this, we 

Table 3. Comparison of official alerts for use cases.
Use case GDACS CEMS National alert

2023 Chile fires CAP (14.02.2023) EMSR647 Only textual alert by SENAPRED
2023 British Columbia fires CAP (30.06.2023) - Information by BC Wildfire Service
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converted both the social media alerts and satellite-based footprints into boolean values 
and checked their co-occurrence.

4. Results

In this section, we describe the results for our respective use cases. For this, we conducted 
a quantitative comparison between the social media-derived alerts and burnt areas based 
on Sentinel-3 imagery, as detailed in Section 3.5.

4.1. 2023 Chile forest fires

Figure 5 shows a comparison of the time lag between the Twitter-based alerts and burnt 
areas derived from Sentinel-3 imagery. It can be seen that the social media alerts were 
mostly simultaneous or even earlier than the satellite-based detection. This held particu-
larly true for the Valle Central region (i.e. the longitude-parallel area between Talca and 
Los Ángeles) which is an area with comparatively high population density. There are, 
however, also several regions where the alert was very much delayed, particularly along-
side the Andes mountain range in the East. The coastal region surrounding Concepción, 
the capital city, received early alerts, while the region close to Lebu and Angol had many 
late alerts. In other parts of the AOI that experienced wildfires, no alert was generated 
within the entire timeframe. However, this was only the case for very few regions and 
mostly very minor events. For larger agglomerations (e.g. Concepción, Los Ángeles, Talca), 
no alerts were generated, although most disaster-related Tweets originated from these 
urban centres. Since the methodology only considered the relative amount of disaster- 
related Tweets, this corresponded to the absence of wildfire footprints close to large 
urban centres. Overall, 399 alerts were generated for Method 1 over the entire timeframe. 
Since Method 2 only considered areas where Method 1 generated alerts in the respective 
cell and at least one of the neighbours, the number reduced to 138 alerts. For Method 3, 
2,542 alerts were derived.

In this use case, the areas covered by official alerts were very roughly delineated. It can 
be seen that they include the largest burnt areas, but omitted many smaller forest fires. 
Most of these, however, overlapped with areas where social media-based alerts were 
generated at some point within the timeframe. A GDACS alert for the AOI was generated 
on 14 February, which was several days after the outbreak of major wildfires in the region. 
This is due to the fact that GDACS alerts focus on sudden-onset disasters such as earth-
quakes and possible subsequent tsunamis, flash floods, and volcanic eruptions. 
Nevertheless, GDACS also generates alerts for forest fire events which include automatic 
estimates and risk analysis provided by the JRC. For 80 grid cells in our AOI, our Twitter- 
based methodology generated an alert before 14 February. This represented 65.6% of all 
grid cells for which we could generate an alert. However, it should be repeated that 
GDACS alerts are not static, i.e. not ideal for spatio-temporal comparisons. For this reason, 
we mainly focused on the satellite-derived information for evaluation purposes.

Table 4 shows a confusion matrix between our social media-based alerts and the 
events detected from Sentinel-3 data. To achieve this, we compared the two datasets at 
the same timestamp. Based on the values of both datasets (0 = no alert, 1 = alert for social 
media; 0 = no burnt area, 1 = burnt area for satellite data), we calculated various model 
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evaluation metrics based on the distribution of True Positives, False Positives, True 
Negatives and False Negatives. While the resulting values of precision, recall, and F1- 
score seem high on first glance, it should be noted that an overall accuracy as a quality 
measure is relatively misleading here, as a large proportion of the data points had no 
event and were therefore not categorised in either the social media data or the satellite 
images. Overall, the recall of our geo-social media alerts was considerably higher than 
their precision for all methods, i.e. a lot of the relevant disaster-affected areas were 
identified. Method 3 had the highest F1 score. The meaningfulness of this confusion 
matrix is discussed in Section 5.1. Nevertheless, we wanted to include a purely quantita-
tive evaluation of our methods.

4.2. 2023 British Columbia forest fires

Although the AOI was much larger than for the Chile wildfires, only very few areas were 
actually detected for the British Columbia use case. As shown in Figure 6, most of these 
areas were identified significantly earlier via geo-social media than satellite data. 
However, the time lag was mostly larger than 10 days. The largest wild fire event, the 
Donnie Creek Wildfire, which was located north of Fort St. John, was not detected at all 
based on Twitter data. The only major wildfire that was recognised well was one that 
affected the region south of the Hay-Zama Lakes Wildland Provincial Park, which is 
located in the northern most part of our AOI. Overall, only two alerts were generated 
for Method 1 over the entire timeframe. Unsurprisingly, Method 2, which required alerts in 
neighbouring cells, did not provide a single alert. For Method 3, 550 alerts were derived in 
total. Since there was no CEMS alert for this AOI, the corresponding polygons from 
Figure 6 could not be added to this visualisation. The BC Wildfire Service released some 
quite detailed fire perimeters for the Donnie Creek Wildfire on May 19, 2023. However, no 
overlap was found between our Twitter-based alerts and the reported fire perimeter.

Table 5 shows a confusion matrix between our social media-based alerts and the 
events detected from Sentinel-3 data. For this, once again, a comparison was 
conducted at the same timestamp. As described above, the high overall accuracy 

Table 4. Confusion matrix for Chile use case (class 0 = no alert, class 1 = alert). Precision, recall, and 
F1-score are standard statistical metrics to evaluate model performance. Support is the number of 
observations per category.

Method Class Precision Recall F1-score Support

Method 1 0 1.00 0.75 0.86 83,778
1 0.01 0.52 0.02 399
Accuracy 0.75
Macro avg 0.50 0.63 0.44 84,177
Weighted avg 0.99 0.75 0.85 84,177

Method 2 0 1.00 0.75 0.86 84,039
1 0.00 0.74 0.01 138
Accuracy 0.75
Macro avg 0.50 0.75 0.43 84,177
Weighted avg 1.00 0.75 0.86 84,177

Method 3 0 0.98 0.76 0.85 81,635
1 0.06 0.48 0.10 2,542
Accuracy 0.75
Macro avg 0.52 0.62 0.48 84,177
Weighted avg 0.95 0.75 0.83 84,177
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of the models is rather misleading. Since Method 1 generated almost no alerts and 
Method 2 none at all, the precision and recall of 0.00 were hardly surprising. For 
Method 3, a similar pattern to the Chile use case could be observed, i.e. higher 
recall than precision for areas with event, although the recall of 0.22 was signifi-
cantly lower.

5. Discussion

In the following, we discuss the results of our two case studies, before addressing some 
limitations of our proposed approach.

5.1. Discussion of results

As described in Section 4, the results for our two use cases differed greatly. We found that 
the social media-based alerts for Chile closely represented the actual events (i.e. with 
a reasonable anticipation). This held particularly true for the Valle Central area and larger 
events close to the city of Concepción. Smaller events, especially along the sparsely 
populated Andes mountain range, were unsurprisingly less likely to be identified. On 
the other hand, the results for British Columbia were not particularly meaningful. The 
most important event, the Donnie Creek Wildfire, was not identified at all. Only one event 
in the north-east of our AOI could be detected in advance based on social media data.

To achieve adequate data coverage, i.e. a significant amount of Tweets per spatial unit, 
we decided to aggregate our Twitter data on the level 5 h3 grid. Therefore, our social 
media-based grid cells were coarser than both CEMS (for Chile) or Sentinel-3 information. 
However, the aim of our study was not the exact spatial localisation of events, but the 
identification of possibilities to accelerate the SEM process. Satellites used in the SEM 
process chain generally have a swath width that also covers somewhat coarser AOI 
(between 120 km for SPOT-5 and 2,330 km for MODIS Aqua/Terra). Consequently, our 
timely geo-social media-based alerts should be well-suited as an early detection mechan-
ism in the SEM process, given their spatial resolution.

Table 5. Confusion matrix for British Columbia use case (class 0 = no alert, class 1 = alert). Precision, 
recall, and F1-score are standard statistical metrics to evaluate model performance. Support is the 
number of observations per category.

Method Class Precision Recall F1-score Support

Method 1 0 1.00 0.87 0.93 86,910
1 0.00 0.00 0.00 2
Accuracy 0.87
Macro avg 0.50 0.44 0.47 86,912
Weighted avg 1.00 0.87 0.93 86,912

Method 2 0 1.00 0.87 0.93 86,912
1 0.00 0.00 0.00 0
Accuracy 0.87
Macro avg 0.50 0.44 0.47 86,912
Weighted avg 1.00 0.87 0.93 86,912

Method 3 0 0.99 0.87 0.93 86,362
1 0.01 0.22 0.02 550
Accuracy 0.87
Macro avg 0.50 0.55 0.47 86,912
Weighted avg 0.99 0.87 0.92 86,912
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We found that the scarcity of social media data in affected regions can be seen as 
a potential limitation of our approach (Yang et al., 2022). This was especially true for the 
British Columbia use case, where the population density was very low and consequently 
there were only very few Tweets. In other regions of the world where Twitter is not 
popular, similar limitations are to be expected. To analyse this more quantitatively, we 
compared the population figures in the grid cells with alerts with the other cells, finding 
that areas with higher population densities were more likely to be identified. For the 
British Columbia use case, we found a Point-biserial correlation coefficient of 0.25935 (p: 
0.0) between an alert (Method 3) and the population numbers. For the Chile use case, this 
correlation was much lower with 0.08468 (p: 0.0). This could be related to the greater 
proximity of unpopulated areas to cities in Central Chile, such as more accessible and thus 
more popular nature parks.

In our study, we proposed three different methods. The first two methods, that were 
mainly based on the comparison of the ratio of disaster-related Tweets to all Tweets to 
a baseline from the previous year, generated a much smaller number of alerts. This was 
particularly noteworthy for the British Columbia use case, where the methods barely 
generated any alerts, although the wildfires were among the most devastating ever in the 
region. This was also confirmed by the generally lower performance with regard to 
precision and recall of Method 1 and Method 2 in both use cases. Furthermore, the results 
of Method 1 and Method 2 clustered much more around the big agglomeration of 
Concepción in the Chile use case, while affected regions closer to the Andes were more 
frequently identified by Method 1. Consequently, we evaluated Method 3 to be a more 
suitable approach.

In evaluating our results, we realised that a purely quantitative assessment as 
a comparison between our social media-based alerts and “ground-truth” from satellites 
was difficult conceptually. Merely comparing whether the same areas were detected at 
the same time (i.e. whether people are talking about the forest fire on social media at the 
time of the event), as we did it in Tables 4 and 5, does not fully meet the paper’s goal of 
early detection. One solution to this would be to incorporate a fixed time lag for this 
evaluation. However, the definition of such a threshold is always associated with a certain 
degree of arbitrariness.

5.2. Discussion of methodology

The methodology presented in this paper is to be understood as a conceptualisation and 
a proof-of-concept that a social media-based triggering of remote sensing imagery 
acquisition could be sensible. The implementation of more refined statistical methods, 
mainly for event detection from time series, might be needed to transfer this concept into 
practise.

A major issue of geo-social media analysis is often the quality of georeferences. Most of 
the georeferenced Tweets only receive their geometries by “place” mentions (e.g. cities, 
neighbourhoods) specified by the user, which are represented as bounding boxes of 
different sizes. In our Chile use case, about 55% of the Tweets had polygon geometries 
smaller than a H3 grid cell. The need to convert these polygons into point data for 
unequivocal spatial aggregation introduced a certain degree of spatial blurring into our 
analysis. Since we considered this study a proof-of-concept, we did not filter out Tweets 
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with coarser geometries in order not to reduce the size of our dataset. However, such an 
additional filtering would be advisable for a real-world application of our method, for 
which a use case-specific crawling of data should also be implemented.

Unfortunately, the same data quality restriction apply to many other social media 
platforms that mostly do not provide concrete georeferences in their data. Geocoding 
from textual content is an option (Serere et al., 2023), however, cannot provide the same 
spatial accuracy in many cases. The inclusion of other data sources, such as ground-sensor 
networks, might also be a valuable addition to our methodology. However, their often 
limited spatial availability would pose a major obstacle.

Another limitation of our social media analyses can be attributed to the semantic 
content of posts. While we were able to demonstrate generally good performance for the 
model we used to derive disaster-relatedness, other influencing factors, such as bot- 
generated content, can impact the reliability of results. However, there are indications 
that bot-generated content is not as frequent in georeferenced Tweets (Edry et al., 2021). 
A more fine-grained semantic analysis, e.g. by identifying specific topics within disaster- 
related Tweets, could further improve our approach.

Time series analysis is a quite wide field with a plethora of potential methods. For 
future research, more complex methods could be tested, such as the Pruned Exact Linear 
Time (PELT) algorithm (Killick et al., 2012) or piece-wise linear regression (Valsamis et al.,  
2019) for change point detection. Explicit spatio-temporal methods developed for other 
data sources could perhaps also be adapted (e.g. You et al. 2022; Anders et al. 2020). We 
decided to use the double standard deviation as a threshold for Method 1 and Method 2 
based on several tests for our use case data. As with most threshold-based approaches, 
this decision is arbitrary in some way. Another aspect that can lead to distortions in the 
results is generally the selection of parameters. In our case, this mainly related to the 
choice of H3 resolution and the number of previous days taken into account for smooth-
ing the time series. The latter might introduce autocorrelation into the analysis, since each 
smoothed value is dependent on previous values. While this creates rather gradual trends 
with less noise, it can also cause distortions (e.g. delays of signals) (Guerrero et al., 2018). In 
our case, this could lead either to alerts that are too late or to alerts that persist for an 
unnecessarily long time. As only the previous days are taken into account when smooth-
ing, it should not lead to premature alerts. Nevertheless, to determine the optimal time 
lag, future studies could employ approaches such as the ACF (Box, 2008). We decided to 
use an uniform H3 resolution for comparability purposes and chose level 5, as we 
assumed that there would still be a considerable amount of Tweets per time step and 
grid cell at this level of aggregation.

For this first conceptualisation, we defined the baseline of Tweets as the values per 
region from the previous year. In principle, however, it would make more sense to 
consider a longer time series in order to mitigate the influence of individual disasters. 
However, we did not want to incur the additional, significant computational effort this 
would entail. As wildfire-related Tweets were also clustered in the larger Chilean cities in 
2022, it can be assumed that this influenced the lack of alerts in vicinity to some large 
urban areas (e.g. Concepción, Los Ángeles, Talca). A baseline calculated over multiple 
years could possibly have reduced this effect. However, these regions were also typically 
not directly affected by wildfires, i.e. the relative amount of disaster-related Tweets was 
lower than in more rural zones in both years. Some of the social media-based alerts had 
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a premature offset of more than 10 days to the satellite-based detections and were even 
outside of the actual fire season. These could be interpreted as “false alarms”, assuming 
that the timing of the respective events by the satellites was correct. These unwanted 
deviations could possibly be minimised by carrying out the baseline calculation over 
a longer period.

As stated in the introduction, satellite data acquisition planning usually constitutes 
a manual, time-consuming search and coordination process in a SEM workflow. Based on 
the results of this study, we will consider incorporating AOI automatically extracted from 
geo-social media and other open data (e.g. public alerts) (Mühlbauer et al., 2024) in 
combination with automatically processed satellite acquisition plans for an improved 
identification of possible and upcoming satellite data acquisitions. However, we realised 
that this approach only seems suitable for regions with a considerable activity on Twitter. 
Analysing the global distribution and density of geo-referenced Tweets would be a useful 
next step to identify regions of the world where our proposed approach could produce 
reliable results.

This paper shows the high relevance of geo-social media data in the disaster manage-
ment context, which is why the availability of such data will remain of utmost importance. 
However, since the takeover of Twitter by Elon Musk in late 2022, access to Twitter data 
for research has been increasingly restricted. Additionally, there might be changes in the 
user profiles and discourses on the platform that can affect the quality of research based 
on Twitter data (Schmidt et al., 2023). The application of the methodology developed here 
to other data sources (e.g. Facebook, Telegram, YouTube) should therefore be explored. 
However, the limited spatial resolution of georeferences provided by these platforms will 
probably be a methodological challenge.

6. Conclusion

This paper presented a methodology to generate alerts for wildfires from Twitter data. 
There are three potential use cases for this information: Firstly, these alerts could be used 
to define and refine the AOI used for activating the SEM process. Secondly, AOI auto-
matically extracted from geo-social media could help authorities in identifying for which 
regions on-demand satellites could be tasked actively. Thirdly, it is also conceivable that 
this data can be used to augment satellite-based crisis information, and vice versa.

We were able to show that georeferenced Twitter data can provide information on 
a wildfire simultaneously or even earlier than official alerts or information derived from fixed- 
orbit satellites like Sentinel-3, at least for some use cases and regions (RQ1). For regions with 
a high population density and Twitter activity, geo-social media can thus be seen as a suitable 
data source to issue early warnings or potential triggers within the SEM process. With regard 
to RQ2, we can conclude that the spatial resolution of the official alerts differed heavily. CEMS 
or GDACS alerts were mostly very coarse, mainly referring to large bounding boxes, or did not 
exist at all, as in our British Columbia use case. While the social media-derived information also 
has some imprecision, its spatial resolution can theoretically be more specific than official 
alerts and, most importantly, sufficient for acquiring fitting imagery. The sufficient availability 
of Twitter data is the major limitation of our approach, since it is highly dependent on the 
presence of georeferenced Tweets in the respective region. This was particularly evident for 
the British Columbia use case, as there was hardly any Twitter activity in the sparsely 
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populated areas that were heavily affected by forest fires. We must therefore conclude that 
the social media-based methodology does not work equally well for different geographical 
regions (RQ3).

In future studies, the methodology presented in this paper should also be applied to other 
types of disasters triggered by natural hazards. Floods would be particularly suitable for this, 
as they often affect populated areas and are also typically longer-lasting events with a clear 
onset and progression. In this case, a more quantitative comparison with official alerts would 
also be more straightforward, since in many countries flood warnings are usually issued timely 
by national and international meteorological and hydrological organisations and services. 
Examples are the German Cross-state Flood Portal (https://www.hochwasserzentralen.de/en/ 
LHP) as well as the Early Warning Dissemination System (https://meteoalarm.org/en/live/ 
MeteoAlarm) that aggregates and accessibly provides awareness information from 38 
European national meteorological and hydrological services. In particular for countries with-
out sufficient flood warning infrastructure, the applicability of our approach should be 
evaluated.

Acknowledgements

We would like to thank Michael Nolde (German Aerospace Center) for providing Sentinel-3 derived 
burnt area data.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This project has received funding from the European Commission - European Union under 
HORIZON EUROPE (HORIZON Research and Innovation Actions) under grant agreement 
101093003 (HORIZON-CL4-2022-DATA-01-01). Views and opinions expressed are however those 
of the author(s) only and do not necessarily reflect those of the European Union - European 
Commission. Neither the European Commission nor the European Union can be held responsible 
for them.

Notes on contributors

Sebastian Schmidt is a PhD student and researcher in the Department of Geoinformatics – Z_GIS at 
the University of Salzburg. He holds a master’s degree in Geography and a bachelor’s degree in 
Romance philology from the University of Heidelberg. His research focuses on the analysis of geo- 
social media and corporate website data for environmental questions.

Monika Friedemann is a researcher at DLR’s German Remote Sensing Data Center (DFD) in the 
department “Geo-Risks and Civil Security”. She holds a diploma (equivalent to Master) in Media 
Informatics from the University of Munich (LMU). Her research and development activities focus on 
frontend design and development of remote-sensing-based environmental and crisis information 
systems, situation assessment and decision support.

David Hanny is a PhD student and researcher in the Geosocial Artificial Intelligence lab at the 
Interdisciplinary Transformation University Austria. He holds a master’s degree in Data Science from 

18 S. SCHMIDT ET AL.

https://www.hochwasserzentralen.de/en/LHP
https://www.hochwasserzentralen.de/en/LHP
https://meteoalarm.org/en/live/MeteoAlarm
https://meteoalarm.org/en/live/MeteoAlarm


the University of Salzburg and a BA in journalism from the FH Vienna. His current work focuses on 
the multimodal analysis of geo-referenced social sensing data.

Bernd Resch is a Professor and head of the Geosocial Artificial Intelligence lab at the Interdisciplinary 
Transformation University Austria, as well as a Visiting Scholar at Harvard University. His research 
interest revolves around understanding cities as complex systems through analysing a variety of 
digital data sources, focusing on developing machine learning algorithms to analyse human- 
generated data like social media posts and physiological measurements from wearable sensors.

Torsten Riedlinger is a senior scientist at DLR’s German Remote Sensing Data Center (DFD), with 
background in remote sensing, disaster management support, analysis of geo-risks, decision sup-
port and early warning. He holds a PhD in Applied Geoscience from the University of Würzburg in 
Germany, is deputy head of DFD’s department “Geo-risks and Civil security” and is leading 
a research team on the development of environmental and crisis information systems.

Martin Mühlbauer is a system engineer at the German Aerospace Center. His work focuses on 
warning systems and the analysis of heterogeneous data from the World Wide Web. He holds 
a diploma in geography from Ludwig Maximilian University, Munich, Germany.

ORCID

Sebastian Schmidt http://orcid.org/0000-0003-1912-9771
Monika Friedemann http://orcid.org/0000-0001-7383-1196
David Hanny http://orcid.org/0009-0004-8017-0786
Bernd Resch http://orcid.org/0000-0002-2233-6926
Torsten Riedlinger http://orcid.org/0000-0003-3836-614X
Martin Mühlbauer http://orcid.org/0000-0003-3849-1143

Data availability statement

The data that support the findings of this study are available from the corresponding author, S.S., 
upon reasonable request.

References

Adwaith, D., Abishake, A. K., Raghul, S. V., & Sivasankar, E. (2022). Enhancing multimodal disaster 
tweet classification using state-of-the-art deep learning networks. Multimedia Tools & 
Applications, 81(13), 18483–18501. https://doi.org/10.1007/s11042-022-12217-3  

Ahmad, K., Pogorelov, K., Riegler, M., Conci, N., & Halvorsen, P. (2019). Social media and satellites: 
Disaster event detection, linking and summarization. Multimedia Tools & Applications, 78(3), 
2837–2875. https://doi.org/10.1007/s11042-018-5982-9  

Ajmar, A., Annunziato, A., Boccardo, P., Giulio Tonolo, F., & Wania, A. (2019). Tsunami modeling and 
satellite-based emergency mapping: Workflow integration opportunities. Geosciences, 9(7), 314.  
https://doi.org/10.3390/geosciences9070314  

Anders, K., Winiwarter, L., Lindenbergh, R., Williams, J. G., Vos, S. E., & Höfle, B. (2020). 4D objects-by- 
change: Spatiotemporal segmentation of geomorphic surface change from LiDAR time series. 
ISPRS Journal of Photogrammetry & Remote Sensing, 159, 352–363. https://doi.org/10.1016/j. 
isprsjprs.2019.11.025  

Angermann, L. D., Nolde, M., Mühlbauer, M., Böck, M., Heinen, T., & Riedlinger, T. (2024). ZKI fire 
monitoring service of DLR. ISCRAM 2024. https://elib.dlr.de/205289/1/ISCRAM2024_Poster_DLR_ 
ZKI_Fire_Monitoring.pdf 

BIG EARTH DATA 19

https://doi.org/10.1007/s11042-022-12217-3
https://doi.org/10.1007/s11042-018-5982-9
https://doi.org/10.3390/geosciences9070314
https://doi.org/10.3390/geosciences9070314
https://doi.org/10.1016/j.isprsjprs.2019.11.025
https://doi.org/10.1016/j.isprsjprs.2019.11.025
https://elib.dlr.de/205289/1/ISCRAM2024_Poster_DLR_ZKI_Fire_Monitoring.pdf
https://elib.dlr.de/205289/1/ISCRAM2024_Poster_DLR_ZKI_Fire_Monitoring.pdf


Azlan, F. A., Ahmad, A., Yussof, S., & Ghapar, A. A. (2020). Analyzing algorithms to detect disaster 
events using social media. 2020 8th International Conference on Information Technology and 
Multimedia (ICIMU) (pp. 384–389). IEEE, Selangor, Malaysia.

Barbieri, F., Espinosa Anke, L., & Camacho-Collados, J. (2022). XLM-T: Multilingual language models 
in Twitter for sentiment analysis and beyond. Proceedings of the Thirteenth Language Resources 
and Evaluation Conference (pp. 258–266). European Language Resources Association, Marseille, 
France.

Birch, C. P., Oom, S. P., & Beecham, J. A. (2007). Rectangular and hexagonal grids used for observa-
tion, experiment and simulation in ecology. Ecological Modelling, 206(3–4), 347–359. https://doi. 
org/10.1016/j.ecolmodel.2007.03.041  

Bischke, B., Borth, D., Schulze, C., & Dengel, A. (2016). Contextual enrichment of remote-sensed 
events with social media streams. Proceedings of the 24th ACM international conference on 
Multimedia (pp. 1077–1081). ACM, Amsterdam The Netherlands.

Blomeier, E., Schmidt, S., & Resch, B. (2024). Drowning in the information flood: Machine-learning- 
based relevance classification of flood-related tweets for disaster management. Information, 15 
(3), 149. https://doi.org/10.3390/info15030149  

Boulton, C., Shotton, H., & Williams, H. (2021). Using social media to detect and locate wildfires. 
Proceedings of the International AAAI Conference on Web & Social Media, 10(2), 178–186. https:// 
doi.org/10.1609/icwsm.v10i2.14850  

Box, G. E. P. (2008). Time series analysis: Forecasting and control. Wiley series in probability and 
statistics (4th ed.). J. Wiley & Sons.

Cao, R., Tu, W., Yang, C., Li, Q., Liu, J., Zhu, J., Zhang, Q., Li, Q., & Qiu, G. (2020). Deep learning-based 
remote and social sensing data fusion for urban region function recognition. ISPRS Journal of 
Photogrammetry & Remote Sensing, 163, 82–97. https://doi.org/10.1016/j.isprsjprs.2020.02.014  

Cervone, G., Sava, E., Huang, Q., Schnebele, E., Harrison, J., & Waters, N. (2016). Using Twitter for 
tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study. 
International Journal of Remote Sensing, 37(1), 100–124. https://doi.org/10.1080/01431161.2015. 
1117684  

Chae, J., Thom, D., Bosch, H., Jang, Y., Maciejewski, R., Ebert, D. S., & Ertl, T. (2012). Spatiotemporal 
social media analytics for abnormal event detection and examination using seasonal-trend 
decomposition. 2012 IEEE Conference on Visual Analytics Science and Technology (VAST) (pp. 
143–152). IEEE, Seattle, WA, USA.

Cyril, C. P. D., Beulah, J. R., Subramani, N., Mohan, P., Harshavardhan, A., & Sivabalaselvamani, D. 
(2021). An automated learning model for sentiment analysis and data classification of twitter data 
using balanced CA-SVM. Concurrent Engineering, 29(4), 386–395. https://doi.org/10.1177/ 
1063293X211031485  

de Albuquerque, J. P., Herfort, B., Brenning, A., & Zipf, A. (2015). A geographic approach for 
combining social media and authoritative data towards identifying useful information for disaster 
management. International Journal of Geographical Information Science, 29(4), 667–689. Publisher: 
Taylor & Francis. https://doi.org/10.1080/13658816.2014.996567  

de Bruijn, J. A., de Moel, H., Jongman, B., de Ruiter, M. C., Wagemaker, J., & Aerts, J. C. (2019). A global 
database of historic and real-time flood events based on social media. Scientific Data, 6(1). https:// 
doi.org/10.1038/s41597-019-0326-9  

Edry, T., Maani, N., Sykora, M., Elayan, S., Hswen, Y., Wolf, M., Rinaldi, F., Galea, S., & Gruebner, O. 
(2021). Real-time geospatial surveillance of localized emotional stress responses to COVID-19: 
A proof of concept analysis. Health & Place, 70, 102598. https://doi.org/10.1016/j.healthplace. 
2021.102598  

European Commission (2023). Copernicus Emergency Management Service - mapping https:// 
emergency.copernicus.eu/mapping .

European Commission - Joint Research Centre. (2015). GHS-POP R2015A - GHS population grid, 
derived from GPW4, multitemporal (1975, 1990, 2000, 2015) https://data.jrc.ec.europa.eu/dataset/ 
jrc-ghsl-ghs_pop_gpw4_globe_r2015a .

GDACS. (2023a). Global disaster alert and coordination system https://www.gdacs.org .
GDACS. (2023b). Global disaster alert and coordination system - models - earthquakes.

20 S. SCHMIDT ET AL.

https://doi.org/10.1016/j.ecolmodel.2007.03.041
https://doi.org/10.1016/j.ecolmodel.2007.03.041
https://doi.org/10.3390/info15030149
https://doi.org/10.1609/icwsm.v10i2.14850
https://doi.org/10.1609/icwsm.v10i2.14850
https://doi.org/10.1016/j.isprsjprs.2020.02.014
https://doi.org/10.1080/01431161.2015.1117684
https://doi.org/10.1080/01431161.2015.1117684
https://doi.org/10.1177/1063293X211031485
https://doi.org/10.1177/1063293X211031485
https://doi.org/10.1080/13658816.2014.996567
https://doi.org/10.1038/s41597-019-0326-9
https://doi.org/10.1038/s41597-019-0326-9
https://doi.org/10.1016/j.healthplace.2021.102598
https://doi.org/10.1016/j.healthplace.2021.102598
https://emergency.copernicus.eu/mapping
https://emergency.copernicus.eu/mapping
https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_pop_gpw4_globe_r2015a
https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_pop_gpw4_globe_r2015a
https://www.gdacs.org


Guerrero, V. M., Cortés Toto, D., & Reyes Cervantes, H. J. (2018). Effect of autocorrelation when 
estimating the trend of a time series via penalized least squares with controlled smoothness. 
Statistical Methods & Applications, 27(1), 109–130. https://doi.org/10.1007/s10260-017-0389-8  

Hanny, D., Schmidt, S., & Resch, B. (2024). Active learning for identifying disaster-related tweets: 
A comparison with keyword filtering and generic fine-tuning. In K. Arai (Ed.), Intelligent systems 
and applications (Vol. 1066, pp. 126–142). Springer Nature Switzerland. Series Title: Lecture Notes 
in Networks and Systems.

Hasan, M., Orgun, M. A., & Schwitter, R. (2019). Real-time event detection from the Twitter data 
stream using the TwitterNews+ framework. Information Processing & Management, 56(3), 
1146–1165. https://doi.org/10.1016/j.ipm.2018.03.001  

Havas, C., & Resch, B. (2021). Portability of semantic and spatial–temporal machine learning 
methods to analyse social media for near-real-time disaster monitoring. Natural Hazards, 108 
(3), 2939–2969. https://doi.org/10.1007/s11069-021-04808-4  

Havas, C., Wendlinger, L., Stier, J., Julka, S., Krieger, V., Ferner, C., Petutschnig, A., Granitzer, M., 
Wegenkittl, S., & Resch, B. (2021). Spatio-temporal machine learning analysis of social media data 
and refugee movement statistics. ISPRS International Journal of Geo-Information, 10(8), 498.  
https://doi.org/10.3390/ijgi10080498  

Huang, X., Li, Z., Wang, C., & Ning, H. (2020). Identifying disaster related social media for rapid 
response: A visual-textual fused CNN architecture. International Journal of Digital Earth, 13(9), 
1017–1039. https://doi.org/10.1080/17538947.2019.1633425  

Huang, X., Wang, C., & Li, Z. (2018). A near real-time flood-mapping approach by integrating social 
media and post-event satellite imagery. Annals of GIS, 24(2), 113–123. https://doi.org/10.1080/ 
19475683.2018.1450787  

Karasov, O., Heremans, S., Külvik, M., Domnich, A., Burdun, I., Kull, A., Helm, A., & Uuemaa, E. (2022). 
Beyond land cover: How integrated remote sensing and social media data analysis facilitates 
assessment of cultural ecosystem services. Ecosystem Services, 53, 101391. https://doi.org/10. 
1016/j.ecoser.2021.101391  

Killick, R., Fearnhead, P., & Eckley, I. A. (2012). Optimal detection of changepoints with a linear 
computational cost. Journal of the American Statistical Association, 107(500), 1590–1598. arXiv: 
1101.1438 [q-bio, stat]. https://doi.org/10.1080/01621459.2012.737745  

Knopp, L., Wieland, M., Rättich, M., & Martinis, S. (2020). A deep learning approach for burned area 
segmentation with Sentinel-2 data. Remote Sensing, 12(15), 2422. https://doi.org/10.3390/ 
rs12152422  

Lever, J., & Arcucci, R. (2022). Sentimental wildfire: A social-physics machine learning model for 
wildfire nowcasting. Journal of Computational Social Science, 5(2), 1427–1465. https://doi.org/10. 
1007/s42001-022-00174-8  

Li, J., Wang, Y., & Li, W. (2022). MGMP: Multimodal graph message propagation network for event 
detection. In B. Þór Jónsson, C. Gurrin, M.-T. Tran, D.-T. Dang-Nguyen, A.-M.-C. Hu, B. Huynh Thi 
Thanh, & B. Huet (Eds.), MultiMedia modeling (Vol. 13141, pp. 141–153). Springer International 
Publishing. Series Title: Lecture Notes in Computer Science.

Lingua, F., Coops, N. C., & Griess, V. C. (2023). Assessing forest recreational potential from social 
media data and remote sensing technologies data. Ecological Indicators, 149, 110165. https://doi. 
org/10.1016/j.ecolind.2023.110165  

Madichetty, S., Muthukumarasamy, S., & Jayadev, P. (2021). Multi-modal classification of Twitter data 
during disasters for humanitarian response. Journal of Ambient Intelligence and Humanized 
Computing, 12(11), 10223–10237. https://doi.org/10.1007/s12652-020-02791-5  

Mühlbauer, M., Friedemann, M., Roll, J., Riedlinger, T., Henkel, F., Angermann, L., Böck, M., 
Kaminski, T., & Barginda, K. (2024). Improved satellite-based emergency mapping through auto-
mated triggering of processes. Proceedings of the 21st ISCRAM Conference -Münster, GermanyMay 
2024. Münster, Germany.

Nolde, M., Plank, S., & Riedlinger, T. (2020). An adaptive and extensible system for satellite-based, 
large scale burnt area monitoring in near-real time. Remote Sensing, 12(13), 2162. https://doi.org/ 
10.3390/rs12132162  

BIG EARTH DATA 21

https://doi.org/10.1007/s10260-017-0389-8
https://doi.org/10.1016/j.ipm.2018.03.001
https://doi.org/10.1007/s11069-021-04808-4
https://doi.org/10.3390/ijgi10080498
https://doi.org/10.3390/ijgi10080498
https://doi.org/10.1080/17538947.2019.1633425
https://doi.org/10.1080/19475683.2018.1450787
https://doi.org/10.1080/19475683.2018.1450787
https://doi.org/10.1016/j.ecoser.2021.101391
https://doi.org/10.1016/j.ecoser.2021.101391
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.3390/rs12152422
https://doi.org/10.3390/rs12152422
https://doi.org/10.1007/s42001-022-00174-8
https://doi.org/10.1007/s42001-022-00174-8
https://doi.org/10.1016/j.ecolind.2023.110165
https://doi.org/10.1016/j.ecolind.2023.110165
https://doi.org/10.1007/s12652-020-02791-5
https://doi.org/10.3390/rs12132162
https://doi.org/10.3390/rs12132162


OASIS. (2010). Common alerting protocol version 1.2. OASIS (Organization for the Advancement of 
Structured Information Standards). https://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2- 
os.html .

Olteanu, A., Castillo, C., Diaz, F., & Vieweg, S. (2014). CrisisLex: A lexicon for collecting and filtering 
microblogged communications in crises. Proceedings of the International AAAI Conference on Web 
& Social Media, 8(1), 376–385. https://doi.org/10.1609/icwsm.v8i1.14538  

Olteanu, A., Vieweg, S., & Castillo, C. (2015). What to expect when the unexpected happens: Social 
media communications across crises. Proceedings of the 18th ACM Conference on Computer 
Supported Cooperative Work & Social Computing, CSCW ‘15 (pp. 994–1009). Association for 
Computing Machinery, New York, NY, USA.

Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an 
application. Geographical Analysis, 27(4), 286–306. https://doi.org/10.1111/j.1538-4632.1995. 
tb00912.x  

Parimala, M., Swarna Priya, R. M., Praveen Kumar Reddy, M., Lal Chowdhary, C., Kumar Poluru, R., & 
Khan, S. (2021). Spatiotemporal-based sentiment analysis on tweets for risk assessment of event 
using deep learning approach. Software: Practice & Experience, 51(3), 550–570. https://doi.org/10. 
1002/spe.2851  

Paul, N. R., Sahoo, D., & Balabantaray, R. C. (2023). Classification of crisis-related data on Twitter using 
a deep learning-based framework. Multimedia Tools & Applications, 82(6), 8921–8941. https://doi. 
org/10.1007/s11042-022-12183-w  

Pennington, C. V., Bossu, R., Ofli, F., Imran, M., Qazi, U., Roch, J., & Banks, V. J. (2022). A near-real-time 
global landslide incident reporting tool demonstrator using social media and artificial 
intelligence. International Journal of Disaster Risk Reduction, 77, 103089. https://doi.org/10.1016/ 
j.ijdrr.2022.103089  

Pinto, J. C., Gonçalo Oliveira, H., Cardoso, A., & Silva, C. (2023). Generating wildfire heat maps with 
Twitter and BERT. In P. Quaresma, D. Camacho, H. Yin, T. Gonçalves, V. Julian, & 
A. J. Tallón-Ballesteros (Eds.), Intelligent Data Engineering and Automated Learning - IDEAL 2023 
(Vol. 14404, pp. 82–94). Springer.

Powers, C. J., Devaraj, A., Ashqeen, K., Dontula, A., Joshi, A., Shenoy, J., & Murthy, D. (2023). Using 
artificial intelligence to identify emergency messages on social media during a natural disaster: 
A deep learning approach. International Journal of Information Management Data Insights, 3(1), 
100164. https://doi.org/10.1016/j.jjimei.2023.100164  

Resch, B., Usländer, F., & Havas, C. (2018). Combining machine-learning topic models and spatio-
temporal analysis of social media data for disaster footprint and damage assessment. 
Cartography and Geographic Information Science, 45(4), 362–376. https://doi.org/10.1080/ 
15230406.2017.1356242  

Rezaei, Z., Eslami, B., Amini, M. A., & Eslami, M. (2023). Event detection in Twitter by deep learning 
classification and multi label clustering virtual backbone formation. Evolutionary Intelligence, 16 
(3), 833–847. https://doi.org/10.1007/s12065-021-00696-6  

Rosser, J. F., Leibovici, D. G., & Jackson, M. J. (2017). Rapid flood inundation mapping using social 
media, remote sensing and topographic data. Natural Hazards, 87(1), 103–120. https://doi.org/10. 
1007/s11069-017-2755-0  

Saeed, Z., Abbasi, R. A., Maqbool, O., Sadaf, A., Razzak, I., Daud, A., Aljohani, N. R., & Xu, G. (2019). 
What’s happening around the world? A survey and framework on event detection techniques on 
Twitter. Journal of Grid Computing, 17(2), 279–312. https://doi.org/10.1007/s10723-019-09482-2  

Schmidt, S., Zorenböhmer, C., Arifi, D., & Resch, B. (2023). Polarity-based sentiment analysis of 
georeferenced tweets related to the 2022 Twitter acquisition. Information, 14(2), 71. https://doi. 
org/10.3390/info14020071  

Serere, H. N., Kanilmaz, U. N., Ketineni, S., & Resch, B. (2023). A comparative study of geocoder 
performance on unstructured tweet locations. GI_Forum, 1, 110–117. https://doi.org/10.1553/ 
giscience2023_01_s110  

Shah, S. A., Yahia, S. B., McBride, K., Jamil, A., & Draheim, D. (2021). Twitter streaming data analytics 
for disaster alerts. 2021 2nd International Informatics and Software Engineering Conference (IISEC) 
(pp. 1–6). IEEE, Ankara, Turkey.

22 S. SCHMIDT ET AL.

https://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
https://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
https://doi.org/10.1609/icwsm.v8i1.14538
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1002/spe.2851
https://doi.org/10.1002/spe.2851
https://doi.org/10.1007/s11042-022-12183-w
https://doi.org/10.1007/s11042-022-12183-w
https://doi.org/10.1016/j.ijdrr.2022.103089
https://doi.org/10.1016/j.ijdrr.2022.103089
https://doi.org/10.1016/j.jjimei.2023.100164
https://doi.org/10.1080/15230406.2017.1356242
https://doi.org/10.1080/15230406.2017.1356242
https://doi.org/10.1007/s12065-021-00696-6
https://doi.org/10.1007/s11069-017-2755-0
https://doi.org/10.1007/s11069-017-2755-0
https://doi.org/10.1007/s10723-019-09482-2
https://doi.org/10.3390/info14020071
https://doi.org/10.3390/info14020071
https://doi.org/10.1553/giscience2023_01_s110
https://doi.org/10.1553/giscience2023_01_s110


Shao, Z., Sumari, N. S., Portnov, A., Ujoh, F., Musakwa, W., & Mandela, P. J. (2021). Urban sprawl and its 
impact on sustainable urban development: A combination of remote sensing and social media 
data. Geo-Spatial Information Science, 24(2), 241–255. https://doi.org/10.1080/10095020.2020. 
1787800  

Stollberg, B., & De Groeve, T. (2012). The use of social media within the global disaster alert and 
coordination system (GDACS). Proceedings of the 21st International Conference on World Wide Web 
(pp. 703–706). ACM, Lyon France.

Uber. (2023). H3: A hexagonal hierarchical geospatial indexing system https://github.com/uber/h3 .
Valsamis, E. M., Husband, H., & Chan, G. K.-W. (2019). Segmented linear regression modelling of 

time-series of binary variables in healthcare. Computational & Mathematical Methods in Medicine, 
2019, 1–7. https://doi.org/10.1155/2019/3478598  

Vaz, A. S., Gonçalves, J. F., Pereira, P., Santarém, F., Vicente, J. R., & Honrado, J. P. (2019). Earth 
observation and social media: Evaluating the spatiotemporal contribution of non-native trees to 
cultural ecosystem services. Remote Sensing of Environment, 230, 111193. https://doi.org/10.1016/ 
j.rse.2019.05.012  

Voigt, S., Giulio-Tonolo, F., Lyons, J., Kučera, J., Jones, B., Schneiderhan, T., Platzeck, G., Kaku, K., 
Hazarika, M. K., Czaran, L., Li, S., Pedersen, W., James, G. K., Proy, C., Muthike, D. M., Bequignon, J., & 
Guha-Sapir, D. (2016). Global trends in satellite-based emergency mapping. Science (New York, 
NY), 353(6296), 247–252. https://doi.org/10.1126/science.aad8728  

Wang, K., Lam, N. S. N., Zou, L., & Mihunov, V. (2021). Twitter use in hurricane Isaac and its 
implications for disaster resilience. ISPRS International Journal of Geo-Information, 10(3), 116.  
https://doi.org/10.3390/ijgi10030116  

Wang, Z., Ye, X., & Tsou, M.-H. (2016). Spatial, temporal, and content analysis of Twitter for wildfire 
hazards. Natural Hazards, 83(1), 523–540. https://doi.org/10.1007/s11069-016-2329-6  

Wania, A., Joubert-Boitat, I., Dottori, F., Kalas, M., & Salamon, P. (2021). Increasing timeliness of 
satellite-based flood mapping using early warning systems in the copernicus emergency man-
agement service. Remote Sensing, 13(11), 2114. Number: 2114. https://doi.org/10.3390/ 
rs13112114  

Yang, T., Xie, J., Li, G., Zhang, L., Mou, N., Wang, H., Zhang, X., & Wang, X. (2022). Extracting 
disaster-related location information through social media to assist remote sensing for disaster 
analysis: The case of the flood disaster in the Yangtze River Basin in China in 2020. Remote 
Sensing, 14(5), 1199. https://doi.org/10.3390/rs14051199  

You, Y., Zhang, L., Tao, P., Liu, S., & Chen, L. (2022). Spatiotemporal transformer neural network for 
time-series forecasting. Entropy, 24(11), 1651. https://doi.org/10.3390/e24111651  

Zhong, W., Mei, X., Niu, F., Fan, X., Ou, S., & Zhong, S. (2023). Fusing social media, remote sensing, 
and fire dynamics to track wildland-urban interface fire. Remote Sensing, 15(15), 3842. https://doi. 
org/10.3390/rs15153842  

Zhou, X., & Chen, L. (2014). Event detection over Twitter social media streams. The VLDB Journal, 23 
(3), 381–400. https://doi.org/10.1007/s00778-013-0320-3  

Zohar, M., Genossar, B., Avny, R., Tessler, N., & Gal, A. (2023). Spatiotemporal analysis in high 
resolution of tweets associated with the November 2016 wildfire in Haifa (Israel). International 
Journal of Disaster Risk Reduction, 92, 103720. https://doi.org/10.1016/j.ijdrr.2023.103720

BIG EARTH DATA 23

https://doi.org/10.1080/10095020.2020.1787800
https://doi.org/10.1080/10095020.2020.1787800
https://github.com/uber/h3
https://doi.org/10.1155/2019/3478598
https://doi.org/10.1016/j.rse.2019.05.012
https://doi.org/10.1016/j.rse.2019.05.012
https://doi.org/10.1126/science.aad8728
https://doi.org/10.3390/ijgi10030116
https://doi.org/10.3390/ijgi10030116
https://doi.org/10.1007/s11069-016-2329-6
https://doi.org/10.3390/rs13112114
https://doi.org/10.3390/rs13112114
https://doi.org/10.3390/rs14051199
https://doi.org/10.3390/e24111651
https://doi.org/10.3390/rs15153842
https://doi.org/10.3390/rs15153842
https://doi.org/10.1007/s00778-013-0320-3
https://doi.org/10.1016/j.ijdrr.2023.103720

	Abstract
	1. Introduction
	2. Related works
	3. Methodology
	3.1. Use cases
	3.1.1. 2023 Chile forest fires
	3.1.2. 2023 British Columbia forest fires

	3.2. Data
	3.3. Disaster-relatedness classification
	3.4. Event detection
	3.5. Evaluation

	4. Results
	4.1. 2023 Chile forest fires
	4.2. 2023 British Columbia forest fires

	5. Discussion
	5.1. Discussion of results
	5.2. Discussion of methodology

	6. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data availability statement
	References

