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Abstract—The growing complexity of digital assemblies presents
significant challenges, particularly in understanding their char-
acteristics and interdependencies. Traditional approaches, which
focus largely on geometric properties, fall short in capturing
the functional dependencies between components. This research
introduces a novel approach using semantic enrichment of CAD
components and Graph Neural Networks (GNNs) to classify me-
chanical parts and analyze their interconnections. By leveraging
open-source gearbox designs which are based on native CAD
data in addition to STEP data, the methodology showcases the
ability of graph-based structures to account for both geometric
and functional relationships, providing a more comprehensive
digital understanding of assemblies.

I. INTRODUCTION

The increasing complexity of digital assemblies poses
a considerable challenge for engineers and designers,
particularly with regard to analyzing the propagation of errors
in assemblies. In order to support engineers and designers in
their work with digital tools, a digital understanding of the
components and their connection to each other is necessary
[1]. A precise and efficient classification of the components is
crucial in order to understand the interactions between them
and identify potential weak points. It is particularly important
not only to capture the geometric properties of a component
but also to understand its semantic meaning and function.

A natural candidate for a data structure which can model
objects and their interdependencies is a graph. Many objects
within a system might appear similar in isolation but
reveal distinct characteristics when their relationships with
neighboring objects are considered. This interconnectedness
reflects the way these objects function as part of a larger,
complex system. Graphs enable us to capture and process these
relationships, making them highly suitable for representing
and analyzing CAD constructions. Through graph structures,
the inherent relationships and dependencies within these
complex assemblies can be effectively preserved and further
utilized for enhanced analysis.

Therefore, we propose a novel approach to CAD part
classification which is based on node classification of
assembly graphs using Graph Neural Networks. We use
open-source available gearbox designs to develop and test our
methodologies. Gearbox assemblies are particularly suitable
because many components have to fulfill technical functions

(e.g. power transmission or sealing) but also have high
classification requirements as some parts are similar in their
structure and only differ in their properties (e.g. sealing ring
& washer).

In our approach we operate on native CAD files as they
encompass a larger variety of information than the Standard
for Exchange of Product Data (STEP). Although native CAD
data is more complex to handle, as it is not standardised
across different CAD applications, it offers significantly more
information about components and their properties.

Our main contributions are summarized as follows:
• We developed a software tool to extract information from

native CAD data and enhance it by geometric information
from STEP data.

• We introduced a novel framework for classification of
mechanical parts, namely each part is embedded in an
assembly graph and classified by nested GNNs.

II. RELATED WORK

First, we provide an overview of the broad field of CAD
classification and 3D object retrieval, in particular we highlight
methods which operate on assembly structures. We give a
short introduction to deep learning methods, specifically Graph
Neural Networks (GNNs), and finally turn to the field of native
data extraction.

A. 3D Object Retrieval

A key factor for efficient product design is design and
knowledge reuse. Most companies possess large data bases
of CAD models, however to find the appropriate CAD model
for a particular application, effective retrieval algorithms are
required. Rather than keywords they should take as input a 3D
object and retrieve (partially) similar 3D objects [2].

Any of the proposed algorithms operate in two steps: first,
the CAD model is represented by a simpler data structure, usu-
ally a feature vector or attributed graph, then two objects are
compared by assessing a similarity metric on their respective
representations.

For one there exist feature-extraction techniques which
were investigated by the CAD community starting from 1980
with the objective to automatically recognize the presence
of features, i.e. some shape pattern with significance, in



CAD models. These techniques take as input the boundary
representation1 (B-Rep) of a CAD product. One famous
graph-based approach is to represent the B-Rep with the help
of an attributed adjacency graph (AAG) [4] where nodes
represent faces which are connected by an arc if the faces
are adjacent. The arc has the label 0 or resp. 1 denoting
concavity or resp. convexity of the angle between adjacent
faces. Features are then extracted as subgraphs given by some
predefined template. For an extensive survey see [5].

On the other hand, there exist shape-based techniques which
became popular around the 2000’s triggered by new devel-
opments in computer vision and computer graphics. These
techniques usually work on polygonal mesh models. For a
comprehensive overview of shape-based methods we refer to
[2].

B. CAD Assembly Model Retrieval

In recent years attention has shifted from part to assembly
retrieval. Assemblies are much richer in their structure which
gives need for more sophisticated algorithms which can extract
both local and global features.

Lupinetti et al. [6] consider the context of a component
to improve classification accuracy. Their approach is based
on the Enriched Assembly Model (EAM) introduced in [7]
which consists of four layers. The statistics layer captures
basic attributes like the number of subassemblies and fasten-
ers. Structure represents the hierarchical arrangement of the
assembly while the interface layer details part relationships,
including contacts and joints. Shape categorizes the form of
the assembly and its parts. These layers are used according to
specific retrieval objectives [8].
In [9] Chen et al. extend assembly descriptions by incor-
porating degrees of freedom and geometric connections but
manual intervention is required for complex kinematic pairs.
Park and Oh [10] propose an automatic method to identify
revolute and prismatic joints though it is limited to simple
geometries. Swain et al. [11] suggest an extended structure
to integrate product and process information for joint types,
but this method is highly algorithmically intensive. Kim et al.
[12] use ontology-based methods to represent assembly joints
which require additional manual input [8].

C. Deep Learning in CAD Classification

1) Previous Methods: There are various deep learning
approaches for classifying parts in CAD models which dif-
fer in terms of the methods and data structures used [13].
Convolution-based approaches, in particular convolutional
neural networks, are often used to process 3D data such as
meshes or voxel representations [14], [15]. These networks
use convolutional operations to extract local geometric features

1A solid can be represented by segmenting its boundary into a finite
collection of objects, called faces. This idea is iterated; faces are represented
by a collection of edges and edges by their vertices. The B-Rep comprises
these ’boundary’ objects including their adjacency relations. See e.g. [3].

of the parts such as point coordinates, normals and curva-
ture. Graph Neural Networks (GNNs), on the other hand,
are designed to process irregular structures such as the B-
Rep of CAD models [16]. The features extracted in GNNs
often include geometric properties like face area, edge length,
curvature and adjacency relations. These networks aggregate
information from neighboring nodes allowing them to capture
both local geometry and the global topology of the parts.

2) Graph Attention Networks: Graph Attention Networks
(GATs) [17] extend Graph Convolutional Networks (GCNs)
by introducing an attention mechanism that adaptively weighs
neighboring nodes during graph convolutions. Unlike GCNs,
which assign uniform weights, GATs compute attention scores
to focus on the most relevant neighbors, improving the quality
of learned representations. These scores are learned during
training.

GATs are widely used for node classification and can
also handle graph-level classification by employing global
pooling methods [18]. Additionally, GATs can process edge
features, enabling richer structural representations, and their
local computations make them scalable and robust to varying
graph structures [19].

D. Extraction of Information from Native CAD Data

Native CAD data is high level data which, in addition to the
B-Rep, contains machining and processing information like
tolerances, materials and product constraints.

Most classification methods are based on neutral CAD data,
e.g. STEP and STL. To the best of our knowledge native CAD
data has thus far only been employed in the classification of
sketches and 2D-drawing files as in [20].

Native data extraction is more prominent in research dealing
with the exchange of data between different CAD software.
Here it is important that no change or loss of information
occurs during translation. One approach similar to ours is to
record macros during the design process with the objective
that the design intent matches the interpretation results of the
log by implemented translators for several CAD systems [21].

III. OUR APPROACH

In the following we explain how we model the assembly
graph and classify its nodes. As previously mentioned we
solely focus on gear assemblies. Figure 1 provides an overview
of all intermediate steps needed to pass from a native product
model to an assembly graph with classified nodes.

A. Assembly Graph

The assembly graph we construct is node and edge at-
tributed. Node attributes encode individual part information
like geometry and part attributes while edge attributes declare
the types of relations this edge represents. Edges here display
the connection of two components A and B whose measured
minimum distance is below a threshold value of 0.01mm.
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Fig. 1. The proposed Method. a) For each mechanical part we work with the .step and .catproduct file b) We extract the B-Rep from the .step file and
represent it as a graph. With the help of a GAT the graph is transformed into a feature vector. c) Extract part attributes from .catproduct file. d) The part
attributes and B-Rep are concatenated and serve as node attributes in the assembly graph. e) The nodes of the assembly graph are classified with another
GAT which is connected to the first GAT. f) After classification we obtain a graph representation of the assembly depicting its (now known) components and
relations among components

1) Edge Attributes: Edge attributes are represented by a
4-dimensional feature vector with binary feature coding. It
contains four relations that originate from product constraints
- coincidence, offset, contact and angle - which can take the
value 1 for true and the value 0 for false. There exists one more
constraint, fix, but since this references only one part this is
added as a node attribute. Product constraints are meaningful
because they encode the (indirect) degrees of freedom of each
part.

Figure 2 illustrates the extraction of minimum distances
and product constraints from a native CAD model. Note that
product constraints have to be extracted from native product
files, STEP files do not contain this type of information.

2) Node Attributes: The node attributes provide informa-
tion about the individual parts. In general, there are three
types of data provided for mechanical parts in a CAD model:
product structure, geometrical information and part attributes
(see [22]). We ignore the product structure in that we always
access the lowest level of every structure i.e. a mechanical part
which has no further subcomponents. For each part we extract
a list of attributes from the native product model containing
its weight, volume, area, center of gravity, principal moments,
principal axes, material and bounding box. On the other hand,
we use geometric data provided by the B-Rep which we extract
from the STEP file. To be precise, we extract for each solid
the faces and edges it is composed of and save them in a
graph. Details will be given in the next section. To use the
B-Rep graphs as node attributes they have to be transformed
into vectors. This will be done by another ’inner’ GNN which
is combined with the outer GNN.

B. B-Rep Graph

To capture the geometry of mechanical parts we use a
graph structure similar to that of the attributed adjacency graph
(AAG). Namely, faces are represented by nodes and edges by
arcs. Two nodes are connected by an arc if the corresponding

faces share an edge. But in contrast to the AAG we define
attributes on both edges and nodes.

1) Intrinsic Boundary Description: One should be aware
that the B-Rep and thus the inferred graph is not unique
and depends on the modeling process. To obtain a unique
representation, called Intrinsic Boundary Description, one has
to use the concept of maximal faces and edges as introduced
in [23] and [24]. Maximal faces were first studied in [3]
as so-called c-faces. We apply to each part the method
ShapeUpgrade UnifySameDomain provided by Opencascade
to obtain maximal faces and edges. For larger amount of data
this method is not suitable because it is not very robust.

2) Edge Attributes: The edge attributes contain three types
of information: the normalized length of the curve, if the curve
is closed or not and its curvature at N uniformly sampled
points. Curvature is translation and rotation invariant but not
scaling invariant. Hence, we scale each curve such that the
maximal side length lmax of its bounding box is equal to 1.

3) Node Attributes: The node attributes are structured sim-
ilarly. Let (u, v) 7→ S(u, v) be the geometric surface of face
F . Again, we compute its normalized area and check if S
is closed in the u or v direction. Next, we cover the u, v
coordinate plane by a grid of N ×N points and compute the
shape index sp ∈ [−1, 1] [25] for each point p = (ui, vi).

The shape index is closely related to curvature, it is given
by the formula:

s =
2

π
arctan

(
κmin + κmax

κmin − κmax

)
where κmin and κmax are the maximal and minimal curvature
exhibited at a point p on the surface. Here we set 0

0 = 0 and
arctan a

0 = limε→0 arctan
a
ε = sign(a)π2 . The shape index is

obviously scaling invariant.
Finally, we define G(p) = sp if p also lies inside the domain

of F - this might not be the case if some part has been cut
out or trimmed - else we set G(p) = 100. Then, G is flattened
and concatenated with the other node attributes.
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Fig. 2. Extraction of Edge Attributes. a) We work with the .catproduct file of the assembly. b) Compute all minimal distances and extract all product
constraints. c) Connect parts where the minimal distance is below a certain threshold. Add edge attributes representing the product constraints. red: minimal
distance ≤ 0.01mm, blue: coincidence, green: contact, orange: offset.

C. Classification Methods

The classification process is divided into three approaches to
better assess the framework we have developed. Each approach
utilizes a single-layer Graph Attention Network following the
principles of supervised learning.
First, node classification is performed on a simplified version
of the assembly graph, which we call CATIA graph, using
only information extracted from CATIA2. This graph has the
same edge attributes as the assembly graph, but its nodes
contain only part attributes and no B-Rep graphs. To enhance
the network’s performance and ensure comparability across
different gearbox designs, node features are normalized using
standard scaling. Since the constructions are fixed graphs it
is not feasible to balance the dataset as this would require
arbitrary removal or addition of nodes.
Second, graph classification is applied to the B-Rep graphs. In
this approach, the entire graphs are classified using a single-
layer Graph Attention Network along with global pooling.
Additionally, the data set was not balanced in order to facilitate
a better comparison with other methods.
Third, node classification is applied to the assembly graph,
employing a nested Graph Neural Network architecture (see
figure 1). The graph is organized into inner and outer compo-
nents with both layers utilizing a single-layer Graph Attention
Network. The outer graph is represented using information
from CATIA where each node includes not only its parameters
but also a trainable vector derived from the inner GAT applied
to the B-Rep graphs.

IV. DATA EXTRACTION

We work with two different file formats: STEP and .cat-
product. The main software application built and used in our
approach works on native .catproduct files of gear assemblies,
solely the B-Rep Graph is extracted from STEP files. In
general STEP files can be converted to .catproduct files,
however they would not contain product constraints. On the
other hand, it is a complicated endeavour to extract B-Rep
graphs from a native CAD model while STEP files can be
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handled and manipulated easily through the library pythonocc
(7.7.0) [26] which is well adapted to this type of problem.

Since the automated extraction of data from .catproduct files
is not very common, we describe the developed software tool
in more detail.

A. Requirements concerning products and parts

We shortly list the requirements that assemblies need to
fulfill on product and part level so that the software application
works.

• Every part within the product has to have an individual
part name.

• Methodically using constraints concerning part classes is
important as there is no associated industry standard.

• Subproducts within the rootproduct need to be defined as
’flexible’ so that one can reference the underlying parts
when using constraints.

• Every part has to have a standard material assigned to it
on the level of the partdocument.

• Parts must only consist of one main body.

B. Extraction of Data from the native CAD file

1) General Method: CATIA distributes an in-built interface
that allows to execute scripts written in CatScript and VBScript
(macros). This leads to a range of predefined commands stated
in the CATIA Documentary which in our case can be used
to retrieve data from the native CAD model of a product.
Furthermore, we do semantic enrichment on part and product
level with functions that access or create data which is not
per default stored but could be retrieved by e.g. manually
doing measurements. We automated these measurements and
the resulting functionalities shall be explained further individ-
ually. To handle these cases and access the macro-controlled
interface externally we created a software tool which uses the
.Net Framework and the CATIA COM API.

2) Different functionalities based on generated output: In
the following we outline which type of data is extracted and
categorized based on the output.
a) General part parameters: These conclude the part index,
center of gravity, the inertia matrix, material, mass, surface
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& volume which can all be retrieved as numerical values
explicitly from the part using commands from the CATIA
users documentation. b) Product constraints: Each constraint
is retrieved as a string that contains the name of the constraint
and its references which are not mechanical parts but e.g. the
specific surface that was used during construction. To find
the referenced part we need to check for the name within
that string which is why every part should have an individual
name. c) Minimal distances between parts: This functionality
is one of two which is not based on a given command but an
automatic execution of the measurement tool in CATIA. Every
component is iteratively paired with every other component
which leads to n(n − 1)/2 distances with n the number of
mechanical parts within the product. d) Bounding Boxes: The
bounding boxes can be used to retrieve the general dimensions
of each component. This second automated process consists
in loading a PowerCopy into the active document which mea-
sures the maximal length of the component in each direction.

V. EXPERIMENTS

A. The Dataset

The training and testing of the classification task involves
seven gearbox assemblies consisting of simple spur gear mech-
anisms with components from the following classes: gear,
inner ring, outer ring, roller, shaft and a manually added
housing as a fixed base part which every part is related to.
Since these assemblies are adapted to real-world applications
the distribution of components within the gearboxes is unbal-
anced, with a high frequency of rollers. The objective is to
train the model on four gearbox assemblies and subsequently
classify three completely unknown gearbox assemblies. The
dataset includes parameters derived from CATIA as well as the
B-Rep extracted from STEP. Table I provides an overview of
the edges and nodes for both datasets. It can be observed that,
on average, the boundary representations have more nodes and
edges compared to the CATIA graphs and also offer more node
and edge features.

TABLE I
DATASETS

Name Graphs Average
Nodes

Average
Edges

Node
Features

Edge
Features

CATIA graph 7 49.71 162.29 31 4
B-Rep graph 348 57.80 399.28 103 12

B. Results

The classification was conducted in Python (3.11.5) using
the PyTorch Geometric library (2.5.3) [18] which is specifi-
cally designed for Graph Neural Networks. The networks were
trained on the basis of two gearbox assemblies over varying
numbers of epochs with a gradually reduced learning rate.
To evaluate the performance, classification accuracy, balanced
classification accuracy, balanced accuracy, and the macro F1-
score were used. Balanced accuracy and the macro F1-score
are useful for imbalanced datasets where class distributions
are uneven. Balanced accuracy calculates the accuracy for

each class individually and then averages the results, ensuring
that less frequent classes are equally considered [27]. The
macro F1-score provides a balance between precision and
recall across all classes, giving both common and rare classes
fair weight in the evaluation [28]. These metrics help prevent
overly optimistic results caused by dominant class distribu-
tions.

TABLE II
CLASSIFICATION RESULTS

Name Accuracy balanced Accuracy macro F1-Score
CATIA graph 0.829 0.672 0.644
B-Rep graph 0.899 0.792 0.718
Assembly graph 0.705 0.446 0.431

Table II summarizes the classification performance of the
three evaluated approaches: CATIA, B-Rep and their combi-
nation; the assembly graph. The B-Rep method demonstrates
the strongest results with an accuracy of 0.899 and a macro F1-
score of 0.792. In comparison, the CATIA approach achieves
an accuracy of 0.829 while the combined method shows even
lower performance with an accuracy of 0.705 and a macro
F1-score of 0.446. These findings indicate that the B-Rep
technique is the most effective for this classification task.

VI. CONCLUSION

In conclusion, the results show that while the B-Rep
method performs well, the other approaches struggle with
the classification. This is mainly due to the strong class
imbalance and the small size of the dataset, as using only
seven gear assemblies is not enough. Because of that the
model has difficulty identifying the subtle differences between
classes that look similar. Many components in gear systems
have similar shapes, especially ring-like or circular shaped
forms, making it hard to distinguish between them without
considering their context or neighboring parts.

To get better results it is important to expand the dataset, as
having more examples helps the model to better differentiate
between classes. Testing different deep learning methods can
also help find the most effective classifiers. Additionally,
using different sets of features or adding new ones, like
degrees of freedom, could improve the accuracy of the
classification.

The representation of assemblies as graphs not only facilitates
classification but also opens up various applications, including
rule-based simulation and error propagation analysis on the
basis of class information, further underscoring the potential
of this approach.
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