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Abstract

The reconstruction of detailed 3D point clouds of urban buildings from single-view

images remains challenging due to limitations in existing methods, which often focus

on rooftops while neglecting walls and the ground. The lack of comprehensive data-

sets containing complete 3D point clouds and the difficulty in obtaining accurate

camera pose information from single-view images further complicate the process.

To address these challenges, we propose a novel approach that reconstructs detailed

3D point clouds of urban buildings, capturing the full structure, including rooftops,

walls, and the ground, for a more comprehensive representation. Our method lever-

ages a generative artificial intelligence diffusion model guided by edge-aware features,

such as binary masks and Sobel edge maps, to progressively refine geometric details.

These features enable the model to better capture architectural contours, improving

the accuracy and precision of the 3D reconstruction.

A key contribution of our work is the creation of a custom dataset to address the

scarcity of comprehensive 3D data. This dataset includes complete 3D point clouds

and camera pose information, predicted directly from single-view images using our

methodology. By incorporating these predicted camera parameters, the dataset en-

sures accurate alignment of features onto the 3D point cloud, providing a robust

foundation for model training and evaluation. The results demonstrate that our

method outperforms existing techniques, achieving highly accurate and detailed 3D

reconstructions of urban buildings, with generalizability proven on another processed

data from single images of Tallin City, Estonia.

Keywords: Point Cloud, Camera Pose, Building Reconstruction, Digital Ortho-

photo, Single-View Geometry, Diffusion Models.
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General Introduction

Accurate 3D building models are increasingly crucial for applications in fields like

navigation, urban planning, and the creation of 3D city maps [1]. Tradition-

ally, techniques such as Light Detection and Ranging (LiDAR) [2] and multi-view

stereo imagery [3] have been used to develop these models. LiDAR, which employs

aerial platforms equipped with laser scanners, generates highly detailed 3D point

coordinates of terrain and structures. Multi-view reconstruction, on the other hand,

captures multiple images from various angles to achieve a complete perspective of

building structures.

While these techniques are foundational in the field, there is growing interest in de-

veloping new methods that offer improved efficiency and accessibility. This shift is

evident in the literature, where researchers are increasingly focusing on innovative

approaches to address the rising demand for urban data and high-quality modeling.

Among these, monocular 3D building reconstruction, which creates models from

single images, is rapidly gaining traction as a promising alternative [4, 5]. This novel

approach, relying on single-view images, offers several compelling advantages over

traditional techniques. For one, it significantly reduces the need for expensive equip-

ment and complex processes, making it more cost-effective and widely accessible [6].

Moreover, monocular methods streamline workflows by eliminating the requirement

for multiple images or specialized platforms like those used in LiDAR, making them

more practical for a wider range of applications.

The motivation behind this method stems from the observation that humans can

infer depth and perceive the 3D structure of objects using monocular cues [7] and

prior knowledge. While machines do not naturally possess this ability, advancements
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General Introduction

in deep learning have made it possible for algorithms to mimic human-like perception,

enabling the creation of detailed urban models from a single image.

Nevertheless, even with monocular reconstruction, challenges remain, particularly

in improving edge-aware reconstruction. This is about refining how accurately the

model captures the edges of objects, which plays a crucial role in producing 3D

models that are both more precise and lifelike.

This report dives into the challenging field of 3D building reconstruction, highlighting

an innovative approach that uses aerial images taken from a single viewpoint to create

more detailed and complete models.

The outline of this report is as follows:

1. Chapter 1: We define the problem and objectives of 3D reconstruction from

single-view images, discuss the challenges involved, and present our project

goals. We also review previous research, from classical methods to generative

models, and explain the key concepts behind our methodology and dataset

creation.

2. Chapter 2: We detail the dataset preparation process, the tools used, and

the steps involved in creating it. We also outline our research pipeline, from

feature extraction to the generative diffusion model that produces the 3D point

cloud, highlighting the transition from 2D to 3D.

3. Chapter 3: We cover the implementation of our methodology, including hard-

ware and software details. We define the evaluation metrics and compare our

approach with other models, offering both qualitative and quantitative insights

into its performance.

2



Chapter 1

Introduction and Foundations

Introduction

This chapter sets the stage for our project by presenting its scope and the specific

problem we aim to address. We outline the project’s goals and propose a solution

informed by the challenges identified. To provide context, we include a literature

review that begins with an overview of 3D reconstruction techniques and narrows

its focus to methods specific to building reconstruction, exploring both traditional

and modern advancements. Additionally, we introduce and explain key concepts

and technical elements critical to our methodology, emphasizing how they align with

and support the research objectives. This foundation paves the way for the detailed

contributions presented later in the report.

1.1 Scope

This work entitled "3D Urban Areas Reconstruction from High Resolution 2D Im-

ages" is carried out within the framework of the Graduation Internship presented

in order to obtain the National Engineering Diploma of the Higher School of Com-

munication of Tunis for the academic year 2023/2024. The internship was hosted

in collaboration between German Aerospace Center (DLR)[8] and Digital Research

Center of Sfax (CRNS)[9] and supported by the German Academic Exchange Service

(DAAD)[10].

3



Introduction and Foundations

1.2 Problem Definition

LiDAR uses scanners that send out pulses of light and measure how long it takes

for the light to bounce back. This process helps create detailed 3D point data of

the terrain or objects. However, this method is not only costly due to the expense

of specialized equipment (sensors) but also because of the aerial platforms required

(drones, helicopters, or airplanes), which add additional costs for fuel, maintenance,

and skilled operators. Moreover, LiDAR often produces incomplete 3D models of

buildings (according to [11]). A single scan typically captures only the roof and some

wall structures, leaving other important features underrepresented or missing.

Similarly, multi-view reconstruction is a method of creating a 3D model by taking

several pictures of an object or scene from different angles. When these pictures are

combined, they provide enough information to recreate the object’s shape. Satellite-

based image capture, commonly used in this approach, is subject to delays due to

fixed orbits of satellites [12]. As a result, obtaining updated images of a location can

take days or weeks, during which significant changes (such as construction or natural

disasters) could occur, leading to data gaps. Furthermore, high-resolution satellites,

which are essential for accurate reconstructions, tend to have longer revisit times,

further limiting the availability of up-to-date, high-quality imagery.

Even when satellite images are acquired successfully, another significant challenge

arises: the management and storage of large volumes of data [13]. For an accurate

reconstruction of a single building, multiple high-resolution images (typically at least

two) are required, which increases storage demands and complicates data handling.

On the other hand, single-view 3D reconstruction stands out as a highly advantage-

ous method, particularly due to its low cost and ease of use. The fact that it only

requires one image instead of multiple images or complex sensors inherently makes it

more affordable compared to the old methods. However, monocular 3D reconstruc-

tion still faces its own set of limitations. Many of these methods focus exclusively

on generating point clouds of rooftops from a single image, resulting in models that

4



Introduction and Foundations

are incomplete and lack essential structural details [14]. These approaches often fail

to capture the full complexity of the building, overlooking critical features such as

walls and other architectural elements. Furthermore, we identified a significant gap

in the availability of suitable datasets for our method. Specifically, most existing

datasets [15] lack two critical components: point clouds of buildings and accurate

camera poses. Since many machine learning-based reconstruction methods rely on

point clouds for detailed 3D modeling, the absence of these data elements limits their

applicability. Furthermore, accurate camera poses, which include the position and

orientation of the camera in relation to the building, are crucial for creating an ac-

curate 3D model. These poses help us figure out how to translate the pixels in a 2D

image back into their correct 3D locations in space, ensuring that each pixel matches

the right spot in the real world. Without this information, it would be difficult to ac-

curately reconstruct the building, as we wouldn’t know how to correctly position the

parts of the image in 3D space. The lack of such data in available datasets presents

a notable challenge for training robust models capable of generating accurate and

complete 3D structures.

1.3 Project Goals

The issues identified in the previous section guide us in defining clear objectives for

this project. Our primary goal is to address the challenges of 3D building recon-

struction by generating detailed 3D models, including key structural elements such

as roof outlines (the visible shape or boundary of a building’s roof). These models

will represent the entire building, including the roof, walls, and ground, all derived

from top-down, single-view images showing only the roof, with no view of the facade,

specifically digital orthophotos which are aerial images corrected to ensure accurate

distances and scale for precise measurements. But we’re not stopping there, another

important objective is to develop a dataset of point clouds for various buildings, each

paired with the camera pose (the position and orientation of the camera in space),

to overcome the issues of limited datasets.

5



Introduction and Foundations

1.4 Literature Review on Single-View 3D Recon-
struction

In the field of monocular 3D reconstruction, the literature reveals a variety of tech-

niques used to address the problem, spanning from classical methods to learning-

based approaches and, more recently, generative models. This progression resembles

a timeline: with the introduction of deep learning, the focus shifted towards deep

learning-based 3D reconstruction methods. More recently, the advent of generative

AI has caused a shift in research focus once again, with many studies now exploring

this new direction.

1.4.1 Classical Methods

The task of reconstructing 3D shapes from single-view images has been a primary

focus in computer vision research for over two decades. Early methods relied on

monocular cues, similar to how human vision interprets depth to infer 3D struc-

ture. Techniques included shading [16] (using gradients of reflected light intensity to

deduce shape), texture [17] (analyzing surface patterns and variations), and silhou-

ettes [18] (using object outlines to approximate form), each contributing to initial

advancements in approximating 3D shapes from a single viewpoint. Unfortunately,

these methods have very limited generalizability due to their reliance on predefined

cues. Small changes in lighting, texture, or object orientation can drastically impact

the performance and accuracy of the reconstruction.

When it comes to building reconstruction, early methods focused on identifying ba-

sic features like roof lines and segments. These features were then pieced together

to form a complete roof structure [19, 20]. In addition to these geometric details,

researchers also turned to shadow analysis to improve the accuracy of the reconstruc-

tion. By studying the shadows cast by buildings [21], they could estimate heights

and better understand how different structures relate to one another. However, these

methods often relied on simplified models, such as rectangular or square shapes,

which limited their effectiveness for more complex buildings. Additionally, since the

6
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accuracy of these approaches depended on precise sunlight positioning, changes in

lighting could lead to errors, making the methods less reliable in real-world condi-

tions. These limitations led researchers to explore learning-based methods, which

aim to automatically learn robust features from large datasets.

1.4.2 Learning-based Methods

With the advent of machine learning and deep learning, classical methods for 3D re-

construction have been replaced by more advanced learning-based approaches, such

as the widely used encoder-decoder [22, 23] frameworks. In an encoder-decoder ar-

chitecture, the encoder is responsible for extracting high-level 2D features from input

images, typically through convolutional layers [24] that capture spatial hierarchies of

visual information. These extracted features are then passed to the decoder, which

interprets and transforms them into 3D representations, such as volumetric grids

or point clouds. The decoder’s role is to reconstruct a 3D object by mapping the

learned 2D features to a higher-dimensional 3D space, allowing for the generation of

more complex and accurate 3D shapes. Recently, deep learning methods have been

introduced to estimate building heights from single 2D images. These techniques

also combine the building’s height estimation with footprint extraction from images

taken at off-nadir angles.

Recent advancements in building roof reconstruction from single-view images have

leveraged the GraphX-Conv [25] architecture, as introduced in the sat2pc [14] method,

to deform point clouds, followed by a refinement network for further detail enhance-

ment. However, while these learning-based techniques are effective for reconstructing

rooftops, they are often limited in their ability to capture finer details of the build-

ing’s structure. This is a significant limitation, as it restricts the accuracy of the full

3D model.

7
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1.4.3 Generative AI Methods

Generative AI techniques for 3D reconstruction generally fall into three categories:

Variational Autoencoders (VAEs) [26], Generative Adversarial Networks (GANs)

[27], and Diffusion Models [28]. VAEs are designed to simplify complex data by

compressing it into a lower dimensional space, which helps preserve the important

details while making it easier to work with. GANs, on the other hand, consist of

two networks: one creates new data, while the other evaluates how realistic it is. It’s

like a friendly competition between the two, pushing each to improve and resulting

in more convincing outcomes. Diffusion models work differently by adding noise to

a dataset and then gradually removing it, refining the data bit by bit to recover its

original form.

In 3D reconstruction, some researchers [29] have found that combining VAEs and

GANs in a hybrid approach works well by leveraging the strengths of both methods.

For instance, they use a VAE to simplify 3D point cloud data, making it easier to

handle by compressing it into a more compact form. Then, this compressed data

is passed on to a GAN, which does the hard work of turning it back into detailed

3D shapes. However, due to the training complexity and high computational cost of

this approach, many methods are now shifting focus towards diffusion models, which

are rapidly gaining popularity in the research field. As a result, our approach will

primarily rely on diffusion models for more precise and efficient 3D reconstruction.

When we look at approaches for building reconstruction using diffusion models, we

observe significant challenges in producing accurate 3D models. For example, in

BuildDiff [30], two conditional diffusion models are used, one to generate a coarse

representation (a simplified version) and the other to create a finer representation

from general view images. Despite this, this method struggles with capturing the

detailed complexities of buildings.

As a result, during our literature review, we focus on methods originally developed

for objects and explore how these can be adapted to remote sensing datasets, refining

them for more effective use in building reconstruction.

8



Introduction and Foundations

This leads us to discuss the reference methods we are focusing on, namely Projection-

Conditioned Point Cloud Diffusion (PC2)[31] and Consistent Conditioning in Diffu-

sion for Single-Image 3D Reconstruction (CCD-3DR) [32], which were primarily

designed for object data. These methods have demonstrated promising results in

3D reconstruction. However, they face some key limitations, such as their heavy

dependence on accurate camera poses for reconstruction. Obtaining precise camera

poses from aerial images can be challenging, and since these methods were not ori-

ginally designed or trained for aerial data, they often produce incomplete models,

missing important structural details like sharp edges and fine geometries.

In our approach, we aim to extend these two baseline methods to remote sens-

ing tasks. Specifically, we will adapt the feature projection technique (discussed in

section 2.4.2) used in PC2 and integrate the diffusion model of CCD-3DR, which is

based on Centred Denoising Probabilistic Models (CDPM) (detailed in section 1.5.2).

While both baseline methods were trained on object datasets featuring items such

as cars, planes, chairs, and teddy bears, our method will focus on aerial imagery and

remote sensing applications. By developing and refining a dataset tailored to this

domain, we aim to enable these models to generate more accurate and comprehens-

ive 3D building reconstructions. We will elaborate on these adaptations and their

implications in the key concepts section.

1.5 Key Concepts

As outlined in the general proposed solution, we will create a custom dataset and

design a specific model. However, before diving into the development process, there

are key concepts and tools we need to highlight. Therefore, we will first introduce

the essential concepts required for preparing the dataset, followed by the concepts

necessary for our methodology.

9
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1.5.1 Core Data Concepts

Digital Orthophoto

A digital orthophoto [33] is an aerial or satellite image that has been adjusted to

ensure the scale is consistent throughout. This process, called "orthorectification",

corrects the image for distortions, making it a true, accurate representation of the

Earth’s surface where measurements of distances and areas can be made accurately.

As shown in the fig. 1.1, the difference between an uncorrected aerial image and an

orthophoto is clear. The uncorrected aerial image, which is essentially a perspective

Figure 1.1: A comparison between a perspective image and a digital orthophoto [34]

image (meaning it shows objects in a way that their size and position change de-

pending on their distance from the camera, with parallel lines converging and closer

objects appearing larger), cannot accurately show the true dimensions of objects.

For example, both the building facade and the tree trunk may appear to have dif-

ferent dimensions, which is incorrect. However, in the digital orthophoto, the image

is corrected as if projected from far away, making the rays parallel, so we can see

true proportions and measurements. While there are specialized tools and software

for this correction process, we won’t dive into the details here, as we assume all the

images we’re working with are already digital orthophotos.

10
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Point-Cloud

A point cloud is a collection of data points in 3D space, where each point is defined

by (x, y, z, c)). The (x, y, z) coordinates specify the point’s position, while c includes

extra details like color, intensity, surface normals, or other features which we’ll dive

into later. Since our goal is to create 3D models, we’re focusing on point clouds

because they’re much easier to work with computationally compared to other 3D

formats like meshes. This means all our models need to be tailored specifically to

handle point clouds effectively.

Point Cloud Rasterization

Rasterization of point clouds is the process of transforming 3D data, such as a point

cloud, into a 2D image that can be displayed on a screen. In other words, it involves

converting objects from a 3D scene into pixels on a 2D image. Each point in the

point cloud has 3D coordinates (x, y, z), and these points must be projected onto

the image plane based on the camera’s perspective.

To perform this projection, the camera’s extrinsic parameters are used to map the

3D coordinates to 2D pixel locations. After the points are projected, depth sorting

is performed to ensure that the closest points to the camera are rendered first, in

front of the farther points. This step prevents visual artifacts where distant points

may obscure closer ones, ensuring an accurate representation of the scene.

Voxelization

Handling billions of points in a point cloud can be incredibly challenging and time-

consuming. This is where voxelization comes in to make things more manageable.

Voxelization works by converting the point cloud into a grid of tiny 3D cubes, called

voxels (like in fig. 1.2), grouping nearby points into these cubes. It’s similar to how

pixels work in 2D images, pixels represent small parts of a picture, while voxels

represent small volumes in 3D space. This process simplifies the data, making it

11
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easier to process while still preserving the overall shape and structure of the 3D

model.

Figure 1.2: Voxel grid representation of point clouds, showcasing visible cubes [35].

1.5.2 Core Methodological Concepts

U-Net

U-Net [36], or "U network," is named for its characteristic U-shaped architecture, as

shown in the fig. 1.3.

Figure 1.3: U-Net Architecture [36]

This architecture is built on two main components: an encoder and a decoder. The

12
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encoder is responsible for capturing contextual information from the input image,

reducing its spatial resolution in the process. This downsampling helps the model

focus on identifying essential features, which we call feature maps, by ignoring small,

less important details.

Meanwhile, the decoder works to upsample these feature maps to their original res-

olution, reconstructing the spatial details to generate a high-resolution output. A

key aspect of the U-Net design is the use of skip connections between the encoder

and decoder, which allow the decoder to directly access high-resolution features from

the encoder. This helps the decoder better locate and refine features, resulting in a

more precise final output.

Diffusion Models

A diffusion model [28] is a type of generative model capable of producing high-quality

data. Its core idea is straightforward: start with a dataset sample, gradually add

random Gaussian noise to corrupt the data until it becomes pure noise, and then train

the model to reverse this noise, effectively generating new samples. This process is

divided into two key stages: the forward process, where noise is progressively added,

and the reverse process, where noise is removed step by step to recover or generate

the data.

There are various diffusion-based models, each defining the forward and reverse pro-

cesses in its own way. To understand these differences, we will explore two mod-

els, Denoising Diffusion Probabilistic Models (DDPM) [28] and Centred Denoising

Probabilistic Models (CDPM) [32] and examine how they approach these processes,

including their mathematical formulations.

• Forward Process (DDPM):

Involves the gradual addition of Gaussian noise to clean data x0, transforming

it into a noisy version xt at each time step t, where t ∈ {1, 2, . . . , T}, with T

denoting the total number of diffusion steps. As t progresses, the data becomes

13
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Figure 1.4: Entire forward diffusion process with 200 time steps.

increasingly noisy, ultimately reaching xT , a fully noisy state resembling a

sample from a Gaussian distribution, as presented in fig. 1.4 where T = 200.

This is represented by the following transition:

q(xt|xt−1) = N (xt;
√

αtxt−1, (1− αt)I3N), (1.1)

where xt is the noisy data at time t, αt is a parameter controlling the noise

schedule, and I3N is the identity matrix of size 3N , where:

– N : the number of points in the point cloud (which is 10000 points in our

case),

– Each point has 3 dimensions, typically represented as (x, y, z).

The full forward process can be condensed as:

xt =
√

ᾱtx0 +
√

1− ᾱtϵ, ϵ ∼ N (0, I3N), (1.2)

where ᾱt = ∏t
s=1 αs, and ϵ represents the Gaussian noise added to the data. In

this equation, N (0, I3N) denotes a Gaussian distribution with mean 0 and cov-

ariance matrix I3N . This process ultimately transforms the clean data x0 into a

fully noisy version xT , which resembles a sample from a Gaussian distribution.

• Reverse Process (DDPM): Aims to reconstruct the clean data by removing

the noise, step by step, starting from the noisy data xT as shown in fig. 1.5.

The reverse process is modeled as:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(t)) (1.3)
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where

µθ(xt, t) = 1
√

αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

(1.4)

is the predicted mean at time step t, with ϵθ(xt, t) representing the noise pre-

dicted by the neural network, and βt = 1−αt denoting the noise removal rate.

When we remove noise, we don’t remove all of the predicted noise, we only

remove part of it. This is because the process needs to keep some randomness

to ensure the results are diverse and follow the correct data distribution. Re-

moving only part of the noise helps prevent the model from producing overly

similar or deterministic outputs.

Figure 1.5: The steps of the reverse process start with the input noisy data. This
data is passed through the diffusion model to predict the noise. Some of the predicted
noise is subtracted, and the resulting image is used as the new input for the next
step in the process.

This process works by gradually removing noise at each step to recover the

original data, x0, from its noisy version, xT . However, when dealing with point

clouds, each point is treated separately, without considering how it relates to

the other points in space. Because of this, there’s no way to ensure that the
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center of the point cloud stays in place as the noise is removed. This results in

an issue known as center bias in DDPM.

• CDPM:

In CDPM, the aim is to fix the center bias that happens during the reverse

process in DDPM. In traditional DDPM, the center of the point cloud can

move around as the process progresses, which can make 3D reconstructions

less accurate. To solve this, CDPM ensures that the denoised point cloud

stays centered (zero-mean) at every step, preventing the center from drifting

and improving the overall accuracy, as shown in fig. 1.6.

Figure 1.6: Visualizing the differences between DDPM and CDPM (adapted from
[32]).

In practice, CDPM ensures that both the added noise during the forward pro-

cess and the predicted noise during the reverse process are centered at each

step by applying a centralizing operation that adjusts the noise by subtracting

its mean, effectively centering it around zero, given by ϵ = ϵ− ϵ̄ and ϵ̂ = ϵ̂− ¯̂ϵ;

similarly, during inference, the point cloud xt−1 is centered as xt−1 = xt−1−x̄t−1.

This centering mechanism ensures that the denoised point cloud remains aligned

with its original center throughout the reverse process, improving reconstruc-

tion quality.
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In summary, while the forward process can generally be defined using mathem-

atical formulas, the reverse process requires a neural network model. In most

cases, a U-Net architecture is used for this purpose. The U-Net is typically

trained to predict the noise added to the image at each step of the process. Re-

searchers favor U-Net because its architecture effectively captures both global

context and local details, making it well-suited for tasks like denoising. How-

ever, most U-Nets are designed to work with 2D images as input, predicting

the noise directly on these 2D data structures. What we need, instead, is a

U-Net tailored for point cloud data, where the input consists of 3D points

rather than 2D pixels. This naturally leads us to discuss PVCNN (Point-Voxel

Convolutional Neural Network), which adapts the principles of convolutional

networks to efficiently process and predict noise in 3D point clouds.

Point-Voxel CNN (PVCNN)

Since we’ll be working with diffusion models and point clouds, we need a model

capable of predicting the noise added to point clouds. While a 3D U-Net might

seem like a natural choice, researchers found that it requires approximately 10 GB

of GPU memory even for small inputs, making it impractical for training larger

models. To address this limitation, researchers developed an alternative approach:

the Point-Voxel CNN (PVCNN) [37].

This model processes a point cloud using two parallel branches: a point-based branch

and a voxel-based branch, as demonstrated in fig. 1.7. The voxel-based branch begins

by applying voxelization to transform the input point cloud into voxel grids. Once

in this format, 3D convolutions are performed on the voxel grids, which is compu-

tationally faster compared to operating directly on individual points. In parallel,

the point-based branch processes the raw point cloud directly using a multi-layer

perceptron (MLP), a type of neural network composed of fully connected layers de-

signed to learn patterns and relationships in the data. Finally, the outputs from the

3D convolutions and the MLP are fused, combining the strengths of both approaches

to effectively capture the global and local features of the point cloud.
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Figure 1.7: PVCNN architecture [37] showcasing two parallel processes, one at the
top and the other at the bottom.

Vision Transformer (ViT)

To extract image features from a single input image, we employ the Vision Trans-

former (ViT) [38] as our feature extractor. The Vision Transformer, originally intro-

duced as a transformer model for computer vision tasks, builds on the transformative

success of attention mechanisms in processing text. In natural language processing,

transformers enable models to understand relationships between words in a sentence.

Similarly, ViT applies this concept to images by identifying relationships between

different parts of an image. The core idea behind ViT fig. 1.8 is to divide an image

into a series of smaller patches, much like splitting a large picture into smaller tiles.

Each patch is then mapped to a vector representation using a linear transformation.

To ensure that the model retains information about the original arrangement of these

patches, positional encoding is added to each vector. This combination of features is

then fed into transformer encoders, which utilize attention mechanisms to learn how

patches relate to one another, enabling the model to understand the overall image

context.

The architecture of ViT is elegant in its simplicity. By cutting the image into patches

and processing them as sequences (akin to words in a sentence), the transformer can

create a series of vector embeddings representing different parts of the image. In

addition, ViT includes a "classification token" (or global embedding), which serves
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Figure 1.8: Architecture of Vision Transformer [38]

as a holistic representation of the entire image. This global embedding can be used

directly for downstream tasks such as classification, detection, or other applications.

In summary, ViT transforms an image into a sequence of feature-rich vectors, en-

abling a powerful and flexible approach to computer vision tasks.

Conclusion

In conclusion, this chapter lays the groundwork for a deeper understanding of our

project. We began by outlining the broader context, including the academic back-

ground, before focusing on the specific problem and the key challenges that have

guided our research. We also reviewed the literature on 3D reconstruction, covering

a progression from traditional methods to learning-based approaches, and finally to

generative models for objects and buildings. Additionally, we introduced key con-

cepts such as diffusion models and Point-Voxel CNN, which will play a pivotal role

in the subsequent chapters.
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Chapter 2

Dataset and Methodological Proced-

ures

Introduction

This chapter focuses on the design of our proposed solution and the process of creat-

ing its key components. We begin by detailing the generation of our custom dataset,

which forms the foundation for training, as no existing dataset directly meets our

requirements. From there, we provide an overview of our approach to the Single-

View Reconstruction problem, presenting the pipeline’s structure and delving into

the design and functionality of its individual components. This comprehensive ex-

ploration highlights how our solution was developed and implemented.

2.1 Dataset

The initial dataset, created by [39] in their work, is based on aerial images and

uses a method that encodes roof topology through graph structures. It reconstructs

entire buildings from single images by adding facade planes along the roof outline

and a base plane at the bottom, resulting in complete 3D meshes. The roofs in this

dataset are clear, well-maintained, and uniform, making it an excellent ground truth

for reconstruction tasks (an example of the dataset can be seen in fig. 2.1).

To use this dataset for specific needs, components such as binary masks, point clouds
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(the target of our reconstruction task), and camera parameters can be extracted, as

these are essential for our pipeline.

Figure 2.1: Example of the initial dataset [39]: the top row features the RGB image,
while the subsequent rows display the mesh files corresponding to the building in the
RGB image.

2.1.1 Point Cloud

MeshLab

MeshLab [40] is an open-source software designed for processing 3D meshes (a col-

lection of vertices, edges, and faces that define the shape of a 3D object or surface)

is often not used directly in 3D reconstruction because it requires dense, precise sur-

face data, which can be difficult to obtain without detailed scanning or modeling.

MeshLab makes it easy to edit, clean, and render 3D models. It offers a wide range

Figure 2.2: Visualization of an example mesh-to-point cloud transformation.

of tools for working with triangular meshes, point clouds, and volumetric data. In
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our work, we used this software with a custom script that leverages its tools, partic-

ularly the Poisson Disk Sampling method, to convert a 3D mesh into a point cloud

(fig. 2.2).

Poisson Disk Sampling method

A mesh is made up of vertices, edges, and faces that define the geometry of a surface.

Since this geometry is already well-defined, we have a clear guide for where points

can be placed.

Figure 2.3: Comparison between random sampling and Poisson disk sampling, high-
lighting the issues to avoid in random sampling.

To create a point cloud from the mesh, we sample points from its surface. The

key question is: what sampling technique should we use? Ideally, we want a

method that ensures the points are evenly distributed across the surface, avoiding

clusters or large gaps (see fig. 2.3).

This is exactly what Poisson Disk Sampling [41] achieves, providing a uniform and

well-spaced distribution of points that effectively covers the entire mesh.

this method is simple. It begins with the triangular faces of the mesh and defines

a minimum distance, r, which determines the required spacing between points. The

first point is placed randomly within the region. For each subsequent point, a can-

didate point is generated within a "ring" between distances r and 2r from the current
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point, with a random angle for its placement (see fig. 2.4). The candidate point is

Figure 2.4: Step-by-step Process of Poisson Disk Sampling.

then checked to ensure that it is at least r away from all previously accepted points.

If it satisfies this distance requirement, the point is considered accepted and added

to the list of accepted points. This ensures that the points are evenly spaced and

prevents clustering or large gaps. The process continues until no more valid can-

didate points can be placed, resulting in a uniform distribution of points across the

mesh.

2.1.2 Binary Mask

It’s important to highlight the role of binary masks in our pipeline. Binary masks

are essential for two key reasons. First, they contribute as conditioned features to

the model, a topic that will be discussed in detail in section 2.4.2. Second, and most

critically, they are necessary for extracting the camera parameters of the buildings,

which will be covered in section 2.2.2.

When generating a binary mask, we explored several approaches. Initially, we tested

state-of-the-art models like Segment Anything Model (SAM) [42] and Mask R-CNN

[43], which are well-known for segmentation tasks, to segment buildings and generate

building masks. As shown in the figure, we evaluated the results from both methods.
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We found that SAM, for instance, was not ideal for our needs (see fig. 2.5). It

tended to miss parts of buildings due to occlusion from trees, and it sometimes

incorrectly segmented a single building into multiple disconnected parts. Based on

these observations, we decided to discard SAM. Next, we trained our own Mask

Figure 2.5: State-of-the-art methods for building segmentation, highlighting their
challenges and limitations.

R-CNN model after annotating around 700 images for training. This improved the

model’s ability to detect entire building roofs, even when occluded (see also fig. 2.5).

However, there were still occasional issues, such as missing parts of buildings or the

segmentation lines not being perfectly aligned, sometimes cutting inside the building.

Ultimately, we concluded that Mask R-CNN also wasn’t ideal for our task. We

then shifted to our proposed method, which uses roof vertices and faces for a more

accurate and robust solution. Our method involves using the vertex files and face

files. The vertex files store the image coordinates of the roof’s corner points (see

fig. 2.6), while the face files define the sequences of these vertex indices that outline

the roof segments. Using this information, we generate a binary mask for each roof,

clearly marking the building boundaries and distinguishing the structures from the
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Figure 2.6: Visualization and explanation of how to group the faces together and
assign a black value to create a binary mask

surrounding area. This approach ensures precise and well-defined segmentation of

roofs in the dataset.

2.1.3 Sobel Edge Maps

As will be discussed later in section 2.4.2, Sobel edge maps are an essential part of

our process, and thus, we need to generate them using the Sobel operator.

The Sobel operator [44] is used for edge detection by calculating the gradient of

image intensity in both horizontal and vertical directions. It uses two matrices, Kx

and Ky, corresponding to each direction.

The horizontal Sobel kernel Kx is defined as:

Kx =


−1 0 1

−2 0 2

−1 0 1


The vertical Sobel kernel Ky is defined as:
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Ky =


−1 −2 −1

0 0 0

1 2 1


To obtain the final edge-detected image, we calculate the gradient magnitude G by

combining the horizontal and vertical gradients Gx and Gy as follows:

G =
√

G2
x + G2

y (2.1)

Alternatively, a simplified version of the magnitude can be calculated by:

G ≈ |Gx|+ |Gy| (2.2)

This results in an image that highlights the edges based on the strength of intensity

changes in both directions.

The challenge here is that applying the Sobel filter to the entire image would result

in extra edges from the background, which are not relevant to our needs. To address

this, we first applied a binary mask (see fig. 2.7) to isolate the building and remove

the background. With the background eliminated, we then used the Sobel operator

to detect intensity changes in both horizontal and vertical directions, creating an

edge map focused solely on the building’s edges.

Figure 2.7: Step-by-step process to create a Sobel edge map, excluding background
edges.

!△ Important: Several edge detection methods, including Sobel [44], Canny [45],

26



Dataset and Methodological Procedures

and Laplacian of Gaussian (LoG) [46], were considered for our task of accurately

detecting roof outlines. As shown in fig. 2.8, we evaluated these methods visually

and ultimately chose Sobel for several reasons. The Canny edge detector requires

parameter tuning (threshold selection) for each image, which is time-consuming and

can lead to inconsistencies across datasets. Additionally, Canny can produce edge

discontinuities, making it less reliable for detecting continuous roof outlines. On the

other hand, the Laplacian of Gaussian (LoG) method tends to overemphasize fine

details and amplify noise, capturing textural features of the roof but often missing

the clear structural outlines. In contrast, Sobel provided consistent and reliable edge

detection without the need for extensive tuning, making it the most suitable choice

for our application.

Figure 2.8: Comparison of Sobel, Canny (with thresholds 100, 200 and 300, 500),
and Laplacian of Gaussian (LoG) for detecting roof outlines. Sobel proved to be the
most consistent, while Canny required threshold tuning, and LoG emphasized fine
details but missed the structural outlines.

2.2 Rasterization and Camera Parameters

In order to fit our pipeline and project the features, which will be covered in sec-

tion 2.4.2, we need to generate the camera parameters. Getting these parameters

from a single image can be tricky, as most methods rely on multiple images to estim-
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ate them. However, we will explain how we can extract camera parameters from just

one image. Before diving into that, we first need to discuss the Powell algorithm,

which is essential for optimizing these parameters in our approach.

2.2.1 Powell Algorithm

The Powell algorithm [47] is a method for finding the lowest point of a function

without needing to know its derivative, which can be helpful when the function is

complex or doesn’t have a clear gradient. Unlike methods that rely on gradients to

guide the search, Powell’s approach takes a different route. It works by exploring

multiple directions one by one, testing different step sizes along each direction to

find the minimum. It’s a clever way to optimize a function without needing detailed

slope information, making it ideal for situations where derivatives aren’t available or

too difficult to compute.

Figure 2.9: Visualization of the Powell algorithm with an example point and the
steps taken to reach the optimal point.

Powell’s algorithm works in a series of steps (fig. 2.9). First, it picks a few directions

to explore, starting randomly. Then, it checks each direction to figure out how far

to move in order to get closer to the minimum. To do this, it tries different step

sizes and picks the one that reduces the function’s value the most. After finding
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the best step for each direction, it updates its position by moving along those steps.

Next, Powell creates a new direction based on the difference between the current

position and the last one, allowing it to explore more and find better paths toward

the minimum. This whole process repeats over and over, getting closer to the optimal

solution until it converges.

2.2.2 Estimating the Camera Pose

As we need to accurately determine the camera’s pose, which involves finding the

translation vector and rotation matrix (extrinsic parameters). To do this, We suggest

using the Powell optimization method to adjust the translation vector, with the aim

of ensuring that the rasterized image of the 3D point cloud aligns perfectly with the

ground truth mask. This alignment is important because it allows us to determine

the camera’s position relative to the 3D scene accurately. The camera’s role is to

project the 3D point cloud into a 2D plane, and the ground truth mask represents

the observed regions of the scene from the camera’s perspective. When the rasterized

point cloud and the mask align, it confirms that the projection parameters correctly

replicate the real-world setup, effectively solving for the camera’s spatial position

(check fig. 2.10).

Since the 3D models are consistently oriented relative to the input images, there is

no need to adjust the rotation matrix, it can simply be set to zero. The translation

vector is the critical variable that defines the camera’s placement within the 3D

space.

We propose a method, described in algorithm 1, to adjust the camera’s translation

parameters (tx, ty, tz) and align the rasterized image of the 3D point cloud with the

ground truth binary mask. The goal is to minimize the misalignment between the

bounding box of the building in the rasterized image and its corresponding bounding

box in the mask. To achieve this, we use a cost function that measures the difference

between these two bounding boxes.

The process starts by centering the building’s region in the binary mask along the
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Figure 2.10: Visualization of camera pose estimation using the binary mask as a
reference, rasterizing the point cloud until it aligns with the mask, and combining
the images to match perfectly on top of each other.

x- and y-axes. This step is crucial for optimizing the depth (z-coordinate), as it

ensures that depth adjustments only affect the size of the bounding box, not its

position. Without centering, shifts in the x- or y-axes could be mistaken for depth

errors. On the other hand, when optimizing the horizontal (x) and vertical (y)

translations, centering isn’t needed because those parameters directly control the

building’s position.

We chose Powell’s method for this optimization because it’s well-suited for problems

like this one. The method is designed to handle non-linear and non-differentiable cost

functions, such as our bounding box alignment task. Instead of relying on gradients,

Powell’s method uses line searches to find the best solution, making it a practical

and effective choice for this pixel-based optimization problem. The sequential op-

timization strategy involves:

1. Optimize the z-coordinate (depth).

2. Fix z, then optimize the x-coordinate (horizontal translation).
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Algorithm 1 Optimization of Camera Translation Parameters
1: Input: Point Cloud P, Ground Truth Mask Mgt, Initial Camera Translation Parameters

T0 = (tx0, ty0, tz0)
2: Output: Optimized Camera Translation Parameters T∗ = (t∗

x, t∗
y, t∗

z)
3: Initialize camera translation parameters T← T0
4: while not converged do
5: Rasterize point cloud P using current camera translation parameters T and fixed rotation

parameters R = 0 to generate a rasterized image Mr

6: Compute bounding boxes for the ground truth and rasterized images:
7: bboxgt ← BoundingBox(Mgt)
8: bboxr ← BoundingBox(Mr)
9: Step 1: Optimize tz (depth)

10: Define the cost function for depth optimization:

11: costz ←

√√√√(xgt
min − xr

min)2 + (xgt
max − xr

max)2+
(ygt

min − yr
min)2 + (ygt

max − yr
max)2

12: Optimize tz using Powell’s method to minimize costz

13: Step 2: Optimize tx (horizontal translation)
14: Define the cost function for horizontal translation optimization:
15: costx ←

√
(xgt

min − xr
min)2 + (xgt

max − xr
max)2

16: Fix tz and optimize tx using Powell’s method to minimize costx

17: Step 3: Optimize ty (vertical translation)
18: Define the cost function for vertical translation optimization:
19: costy ←

√
(ygt

min − yr
min)2 + (ygt

max − yr
max)2

20: Fix tz and tx, and optimize ty using Powell’s method to minimize costy

21: Return optimized camera translation parameters T∗ = (t∗
x, t∗

y, t∗
z)

3. Fix both z and x, then optimize the y-coordinate (vertical translation).

This step-by-step approach ensures accurate alignment between the rasterized image

of the 3D point cloud and the 2D ground truth mask.

After obtaining the optimized camera translation parameters, we check the Intersec-

tion over Union (IoU) between the rasterized image generated with these parameters

and the ground truth mask. If the IoU exceeds 93%, we consider it a valid input for

further processing. This ensures that only well-aligned configurations are utilized.

2.3 Summary of Our Generated Dataset

In summary, we have created a dataset, as illustrated in fig. 2.11. Each entry in-

cludes a single-view RGB image paired with a complete mask, even when there are

occlusions. Additionally, the dataset includes the associated Sobel filter image, a
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Figure 2.11: Example of the dataset used in our study.

point cloud, and a JSON file containing the camera parameters, such as the x, y,

and z coordinates for each image. This dataset will be used as the training data for

our pipeline.

2.4 Methodology

Now that the dataset is ready, we can dive into the details of how we built the 3D

reconstruction system. To provide better clarity, we will begin with an overview of

the overall pipeline and then break it down into its individual components.

2.4.1 Overall Pipeline

Before diving into the details of each part of our method, let us first take a closer

look at the overall architecture of the model to set the stage for the discussion ahead.

Our approach focuses on reconstructing an entire building from a single digital or-

thophoto. However, we go a step further by aiming to enhance the reconstruction

process to capture finer building details, particularly along the edges, for more pre-
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cise and detailed results. In essence, the process begins with an input image that
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Figure 2.12: The architecture of our method is designed to reconstruct an entire
building from a single aerial nadir view image by enhancing edges and capturing finer
building details. In Block (a), features are extracted from the input image, including
edge details derived from the Vision Transformer (ViT) and Sobel operator, which
act as conditioning inputs for the diffusion model. Block (b) represents the reverse
diffusion process, where Gaussian noise is progressively refined into a 3D point cloud,
guided by the features from Block (a), to reconstruct the building. The connection
between the two blocks involves projecting the 2D edge features onto the 3D point
cloud, enhancing the reconstruction quality.

is conditioned to enable the reconstruction of the building using a diffusion model.

The method is built around three key components:

• Conditioning Features (block (a) of the figure 2.12): This component

extracts features from the input image that act as the conditioning elements

for the diffusion model. These features are combined and prepared as inputs

for the next stage.

• Generating Process (block (b) of the figure 2.12): Representing the

reverse process of the diffusion model, this block starts with Gaussian noise

and progressively refines a 3D point cloud to reconstruct the building. The

refinement is guided by the features generated in block (a).

• Edge-Enhanced Projection Conditioning: Serving as the bridge between

blocks (a) and (b), this component explains how 2D features can be effectively
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projected onto 3D point clouds, which are inherently sparse and lack explicit

connectivity between points. This component is referred to as "edge-enhanced"

because, in Block (a), we extract edge features that are specifically considered

during the projection process to improve the reconstruction quality.

By understanding this overall architecture, we can better appreciate how each part

contributes to the goal of detailed and accurate building reconstruction.

2.4.2 Components Details

Conditioning Features

When analyzing an aerial image of a single building, background elements like parked

cars or trees can often appear, adding depth and complexity to the image, as shown in

fig. 2.13, you can see the unnecessary depth maps generated by these elements, which

we aim to remove. To ensure the model focuses exclusively on the building, we use

a binary building mask as an additional input. This mask is combined with the

image features extracted using the Vision Transformer (ViT) by concatenating

the mask values with the ViT features. These combined features are then projected

onto the point cloud using the estimated camera pose.

Beyond the binary building mask, roof edges play a vital role in reducing ambiguities

during the reconstruction process. By providing clear structural boundaries, roof

edges help define the building’s silhouette, improving the accuracy and completeness

of the reconstruction. This is particularly important for capturing the entire building

geometry, where precise roof edge representation significantly impacts the overall

quality of the model.

To further enhance edge clarity, we incorporate Sobel-filtered images alongside

the binary mask and ViT-extracted features fig. 2.14. The Sobel filter detects sharp

intensity changes, highlighting key gradients that outline the roof’s perimeter. By

emphasizing these transitions, this approach makes the model more adept at captur-
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Figure 2.13: Visualizing the unnecessary depth maps that could be learned by our
model.

ing the building’s structure, minimizing confusion from surrounding elements, and

improving the reconstruction’s overall accuracy.

Generating Process

In block (b), we present our diffusion model, which operates through the reverse

diffusion process. fig. 2.15 illustrates this reverse process, which is central to the

model’s operation. The process begins with Gaussian noise as the input, generated

after the forward diffusion process. In the forward process, we start with the ground

truth data and iteratively add noise at each time step until we reach the initial

timestamp, resulting in a noisy sample. This noisy sample is denoted as xT , and it

serves as the starting point for the reverse process. The reverse diffusion process aims

to iteratively sample xt−1 from the reverse distribution, moving from xT towards the

target distribution q(x0), which represents the clean, denoised data. The model Sθ

predicts the offset for each point in the point cloud at time step t. Specifically, it

predicts how much each point’s noisy position xt should be adjusted to reach its

ideal clean state at time step t− 1. Thus, at each iteration, the noisy point cloud xt
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Figure 2.14: Visualization of the first block of our conditioning features.

is updated based on the model’s prediction, and we sample xt−1, gradually refining

the point cloud until it converges to the target distribution.

During this reverse process, we minimize the L2 loss between the actual noise and

the predicted noise at each time step. Mathematically, the L2 loss is expressed as:

L2 = Eϵ

[
∥ϵ− Sθ(xt, t)∥2

2

]
, (5)

where:

• θ: These are the parameters of the model.

• ϵ: This represents the true noise that was added to the image during the

forward diffusion process. The model tries to predict this noise during the

reverse process.
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Figure 2.15: Reverse diffusion model visualization of our method.

• xt: This is the noisy image at time step t.

• t: This is the discrete time step in the diffusion process.

• Eϵ: This denotes the expectation over the distribution of the true noise ϵ

• ∥·∥2
2: This represents the squared Euclidean norm, which computes the squared

difference between the true noise ϵ and the predicted noise Sθ(xt, t).

where ϵ represents the actual noise added during the forward process, and Sθ(xt, t)

is the model’s prediction of the noise at time step t. The goal is to reduce the

discrepancy between the actual noise ϵ and the predicted noise, allowing the model

to effectively denoise the input through the reverse process.

The model used for this process is PVCNN (as described in section 1.5.2). To ensure

accurate reconstruction of the point cloud, we apply CDPM, which directs the model

to focus on faithfully reconstructing the point cloud’s structure rather than simply

locating its center. This approach enhances the overall quality of the output.

A critical aspect of our methodology is projection conditioning. During each iteration

of the reverse process, we project the image features, enabling the transformation of

2D information into a 3D representation. This projection process will be explained

in greater detail in the next component.

37



Dataset and Methodological Procedures

Edge-Enhanced Projection Conditioning

Here, we reach the most interesting aspect of our model: projection conditioning.

This is where we need to discuss the concept of projection and explore how 2D

information can be interpreted in 3D space.

In the context of conditioning PC2[31] proposed a method that involves projecting

image features onto partially denoised 3D points during each step of the diffusion

process. This is possible because, as discussed in section 1.5.1, the point cloud is

represented not only by 3D coordinates (x, y, z) but also by an additional com-

ponent c (x, y, z, c), where c represents the image feature. Thus, we extend the

traditional 3D point representation to include image features, enabling us to project

the relevant image information onto the 3D points during the diffusion process.

Figure 2.16: Visualization of the projection process, starting with adding features to
a noisy point cloud and progressively refining it until it forms a well-organized point
cloud with RGB values.

The process is simple: we start with partially denoised 3D points, xt, and transform

them into 2D pixel coordinates based on the camera’s perspective, defined by the

rotation matrix R and the translation vector T . This transformation projects the

3D points onto the image plane, aligning them with the image’s features. Mathem-

atically, this can be expressed as:

38



Dataset and Methodological Procedures

pi = Π(R · xt,i + T ),

where pi represents the 2D pixel coordinates corresponding to the 3D point xt,i, and

Π(·) is the rasterization function that performs the projection.

From the rasterized image, the visible points V ⊆ {pi} are identified. For each visible

pixel pi ∈ V , the image feature F (I, pi), which represents the feature at pixel pi in

the image I, is assigned to the corresponding 3D point xt,i. This process ensures

that the features from the visible pixels are accurately associated with the 3D points

based on their visibility and mapping through the rasterization (check fig. 2.16). The

assignment is defined as:

f(xt,i) = F (I, pi) for pi ∈ V.

In our work, this rasterization-based approach is adapted to project image features

onto partially denoised 3D points.

Conclusion

In conclusion, We highlighted the key stages of our methodology, focusing on the

processes that ensure accurate and effective 3D reconstructions. We began by de-

tailing the estimation of accurate camera poses, a critical component of our pipeline,

achieved through optimization techniques using the Powell algorithm. This iterat-

ive refinement aligned the camera poses with the scene’s geometry, enhancing the

system’s overall accuracy. We then discussed the extraction of essential features,

the projection of 2D features into 3D points to establish a spatial representation,

and the use of diffusion models to generate the desired point cloud, ensuring precise

and realistic 3D reconstructions. In the following chapter, we will present a series of

experiments designed to evaluate the effectiveness and accuracy of the methodology

outlined in this chapter.
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Chapter 3

Experimental Procedure and Obser-

vations

Introduction

In this chapter, we will provide a comprehensive overview of our experimental setup,

detailing the steps involved in developing our pipeline. We will also present both

qualitative and quantitative results to assess the performance of our model. The

evaluation will be carried out using our custom dataset, as well as a separate test

dataset, which we will define and describe. Through these results, we aim to demon-

strate the effectiveness of our approach in various contexts and highlight its strengths

and limitations.

3.1 Implementation Details

To implement the previous chapter, a robust overall environment is essential, and

we must define the technical details of the training implementation.

3.1.1 Hardware and Software Environment

Hardware

To carry out this project, we had access to several powerful GPU configurations

available locally. For model training, we used a Titan RTX GPU (a graphics pro-
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cessing unit designed for high-performance computing) with 24GB of VRAM (Video

Random Access Memory, or in other words, GPU memory), running the training

process for 24 hours. For inference, we utilized a GeForce RTX 2080 Ti GPU, which

has 12GB of VRAM.

Software

• Programming Language: Python was chosen as the primary programming

language for this project due to its widespread use and reputation as the most

accessible language for deep learning. Additionally, most deep learning frame-

works are built on Python, making it an ideal choice for this work.

• Frameworks : For this project, we relied on two powerful frameworks:

– PyTorch [48]: This open-source deep learning framework, developed by

Facebook AI Research, was the foundation of our work. It’s versatile, easy

to use, and perfect for building and training machine learning models. The

supportive community and resources around PyTorch made troubleshoot-

ing and experimenting much smoother.

– PyTorch3D [49]: Built on top of PyTorch, this library is designed for 3D

deep learning tasks. I mainly used it for point rasterization, which was a

crucial step in processing and visualizing our 3D data. It simplified a lot

of the complexities that come with handling 3D information.

3.1.2 Training Parameters

We trained the diffusion model using a batch size of 8 for a total of 100,000 steps,

utilizing 80% of the data for training and 20% for validation. All experiments were

conducted on a single GPU to maintain consistent performance.

For dataset preparation, we first optimized the camera parameters. The input images

were resized to 224× 224 before applying algorithm 1. To detect edges, we used the

Sobel operator, a simple yet effective method that emphasizes key structural details
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of buildings. This operator applies two 3×3 convolution kernels to estimate gradients

in the x- and y-directions, producing edge maps that are crucial for accurate 3D

reconstruction.

The point cloud data for each model consisted of 100,000 points, which provided a

high level of detail in the reconstructed structures. To ensure uniformity across

the dataset, all point clouds were normalized to fit within a unit sphere. This

normalization step allowed algorithm 1 to be applied consistently across all buildings

without requiring manual adjustment of the initial camera translation parameters

(tx0, ty0, and tz0) for each building. However, this approach did result in the loss of

the buildings’ actual height values.

For Inference: After normalization, the optimized camera parameters (t∗
x, t∗

y,

and t∗
z) generally fell within the range of 0 to 1. To simplify inference, we used

default camera parameters set to tx = 0, ty = 0, and tz = 1, which simulated a

top-down view along the Z-axis. This strategy eliminated the need to specify

precise camera parameters for individual buildings, making the reconstruction

process more straightforward and scalable.

3.1.3 Optimizer

Optimization was handled by the AdamW optimizer [50], a technique used to

improve the training of machine learning models by preventing them from becom-

ing too complex or overfitting to the training data. One way it does this is by

penalizing large weights through a method called weight decay. Weight decay

essentially adds a penalty for large weights, helping the model avoid putting too

much importance on any single parameter.

What sets AdamW apart from the standard Adam optimizer is how it handles this

weight decay. In traditional Adam, weight decay is mixed in with the gradient up-

date, which can sometimes cause issues with the learning process. AdamW, however,

separates the weight decay from the gradient update. This allows the model to learn
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more effectively and makes the training process more stable and efficient. As a result,

AdamW often helps the model perform better when tested on new, unseen data.

The update rule for AdamW looks like this:

θt+1 = θt − η

(
m̂t√
v̂t + ϵ

)
− ηλθt (3.1)

Where:

• θt represents the model’s weights (the parameters it learns),

• η is the learning rate (how much we adjust the weights),

• m̂t and v̂t are estimates of the gradient and its squared value,

• ϵ is a small constant to avoid errors during calculations,

• λ is the weight decay factor that controls how strongly the penalty is applied

to the weights.

3.1.4 Learning Rate

At the start of training, the model’s weights are typically random, which can cause

the optimizer to make erratic or inconsistent updates. To mitigate this, we apply a

learning rate warmup with a cosine scheduler. This means that instead of starting

with a large learning rate, we begin with a small value and gradually increase it over

time. This gradual increase allows the optimizer to make smaller, more controlled

updates during the early stages of training, helping to avoid instability. After ap-

proximately 2000 steps, the learning rate starts to decrease, signaling the transition

to smaller, more precise updates to help the model converge effectively and stabilize

its training as shown in fig. 3.1.
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Figure 3.1: Visualization of the learning rate with a cosine schedule and warmup,
up to 2000 steps.

3.1.5 Loss Function

For the loss function, we used the standard approach for diffusion models, which

is the Mean Squared Error (MSE). This calculates the difference between the

actual noise added to the data and the noise predicted by the model, then measures

the average of the squared differences. The MSE loss function is defined as:

LMSE = 1
N

N∑
i=1

(ϵ̂i − ϵi)2 (3.2)

where:

• ϵ̂i is the predicted noise for the i-th sample.

• ϵi is the actual noise added to the data for the i-th sample.

• N is the total number of samples.
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3.2 Quantitative Results

To assess whether our method is performing well, we need quantitative or numerical

results that form the basis of our conclusions. These results will be evaluated using

specific metrics, which we will define and present along with their exact values.

3.2.1 Our Evaluation Metrics

We evaluate point cloud reconstructions using Chamfer Distance and F-Score@0.001.

Chamfer Distance

Chamfer Distance (CD) measures how similar two point clouds are by calculating

the average distance between their points. It works by finding the closest ground

truth point for each point in the predicted point cloud, and vice versa, then averaging

these minimum distances. This provides an overall score of how well the predicted

point cloud aligns with the ground truth point cloud.

The Chamfer Distance is defined as:

CD(P1, P2) = 1
|P1|

∑
p1∈P1

min
p2∈P2

∥p1 − p2∥2
2 + 1
|P2|

∑
p2∈P2

min
p1∈P1

∥p2 − p1∥2
2 (3.3)

where:

• P1 is the set of points in the predicted point cloud.

• P2 is the set of points in the ground truth point cloud.

• p1 and p2 are individual points in the respective point clouds.

• ∥p1 − p2∥2
2 is the squared Euclidean distance between two points p1 and p2.

However, CD’s sensitivity to outliers (as demonstrated in fig. 3.2) can skew the

average distance, leading to potentially misleading assessments of reconstruction

quality. Therefore, while CD is a valuable metric for evaluating point cloud accuracy,

it is beneficial to use additional metrics for a more comprehensive analysis.
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F-Score

In addition to Chamfer Distance, we also use the F-Score (proposed by [51]) to

evaluate the quality of the point cloud prediction (as it’s more robust to outliers

fig. 3.2). The F-Score measures how well the predicted points match the ground

truth points, but it only considers a point correctly predicted if it lies within a certain

distance threshold from its nearest match. For our point clouds, which contain 10,000

points normalized between 0 and 1, we set this threshold to 0.001. This means that

a point is considered correctly predicted only if it is within 0.1% of the distance to

its closest ground truth point. This small threshold allows us to detect even subtle

differences, providing a more precise evaluation of the model’s reconstruction quality.

The F-Score is calculated using two key measures: Precision and Recall. Precision is

the proportion of predicted points that are close enough to ground truth points, and

Recall is the proportion of ground truth points that are close enough to predicted

points.

The formula for the F-Score is as follows:

Precision =
∑

d1<thr 1
len(d1)

(3.4)

Recall =
∑

d2<thr 1
len(d2)

(3.5)

F-Score = 2× Precision× Recall
Precision + Recall + ϵ

(3.6)

Where:

• d1 represents the distances between the predicted points and their closest

ground truth points,
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• d2 represents the distances between the ground truth points and their closest

predicted points,

• thr is the threshold value (0.001),

• ϵ is a small value added to avoid division by zero.

!△ Important: F-Score@0.001 (or 0.01) refers to the F-score metric calculated

using a threshold of 0.001 (or 0.01).

This method provides a balanced evaluation of how well the predicted and ground

truth point clouds align, considering both how many predicted points are correctly

located (precision) and how many ground truth points are successfully matched

(recall).

Figure 3.2: Visualization of how Chamfer distance is sensitive to outliers in a 3D
object. The outliers are highlighted, and when comparing metrics across different 3D
models, the Chamfer distance value changes, while the F-score remains consistent
despite the presence of various outliers [51].

3.2.2 Comparison

In table 3.1, we highlight the performance of our method compared to baseline

approaches, focusing on achieving the best average across key metrics. Our method

delivers notable improvements over the baseline models. Specifically, it achieves a

21.87% higher F-Score than the PC2 method and a 4.83% improvement over the

CCD-3DR model. For Chamfer Distance (CD), our approach outperforms PC2 by
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10.44% and CCD-3DR by 3.40%. These results underscore the effectiveness of our

method in generating point cloud reconstructions that are both more accurate and

reliable.

Table 3.1: Quantitative results for different methods are presented under Cham-
fer Distance (CD, reported as ×10−3) and F-Score@0.001, demonstrating that our
method outperforms the others.

Method F-Score@0.001 ↑ CD (×10−3) ↓
PC2 0.535 3.172
CCD-3DR 0.622 2.941
Ours 0.652 2.841

Note: Due to the probabilistic nature of the models, each prediction can yield

different results. To address this, we generated seven separate predictions for

each model and selected the best outcome from them for evaluation.

3.3 Qualitative Results

The best way to assess the performance of our edge-aware reconstruction is by visu-

ally comparing the results with those from other methods.

3.3.1 Comparison

Figure 3.3 shows a visual comparison of the PC2 [31], CCD-3DR [32], and our model,

with point clouds displayed from both a top-down view and an additional angle to

give a fuller perspective. Figure 3.4 showcases the visual outcomes of our approach,

demonstrating its ability to reconstruct 3D models with intricate structural details.

Unlike conventional methods that focus on a single viewpoint, our approach gener-

ates fully realized buildings from multiple angles, revealing well-reconstructed walls

and roofs. This results in a more thorough and lifelike representation of the structure.

The color mapping, which represents height variations along the Z-axis, is especially

important as it helps us visualize and compare the predicted heights against the
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(a) Input Image (b) PC2 (c) CCD-3DR (d) Ours (e) GT

Figure 3.3: A qualitative comparison from both a top-down and an alternative view-
point, showcasing our model alongside baseline models. The comparison begins with
(3.3a), which shows the single aerial input image, followed by (3.3b) illustrating the
reconstruction using PC2 , and (3.3c) showing the reconstruction with CCD-3DR.
Next, (3.3d) highlights the reconstruction generated by our method, and (3.3e) shows
the ground truth. This comparison clearly demonstrates the strengths of our ap-
proach in accurately capturing the roof’s shape. From the top view, it’s evident that
our method produces a point cloud with a color distribution that closely matches the
ground truth. On the other hand, PC2 tends to underestimate the roof height and
misses several sections, while CCD-3DR provides incomplete roof reconstructions
with important details missing. These shortcomings become even more noticeable
when viewed from different perspectives, highlighting the structural and edge issues
that our method successfully addresses.

actual ground truth. This color coding makes it easier to assess how each model per-

forms. When we compare our approach with the others, it’s clear that our method

captures more intricate details, especially around roof edges, which have a big im-

pact on the overall structure of the building. Additionally, our method provides more

precise elevation values, giving us a better and more accurate representation of com-

plex surfaces. Even though the point clouds are normalized, the visual differences in
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(a) Single Input Image (b) View 1 (c) View 2

Figure 3.4: The qualitative results of two newly reconstructed views (3.4b) and
(3.4c), generated by from a single input aerial image (3.4a), showcase the strength of
our approach. These results highlight our solution’s ability to accurately reconstruct
the full point cloud of the entire building.

elevation representation between the models become much clearer, making it easier

to see the advantages of our approach.

3.4 Generalization

We evaluated our method using a dataset from Tallinn City, Estonia [52]. The data-

set consists of digital orthophotos with a 20 cm Ground Sampling Distance (GSD)

and 3D building meshes from the Building3D dataset [15]. The Building3D dataset

provides detailed 3D models for each building. The orthophotos in this dataset are

of lower spatial resolution compared to our training data, which presents additional

challenges, such as higher levels of occlusion and more intense shadows that can

obscure parts of the buildings. To address these challenges, we processed the digital
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orthophotos through our pipeline using the default top-view camera parameters for

inference. The results, comparing our method with CCD-3DR, are presented in

Table 3.2. The variation in metrics when comparing the test dataset arises from the

Table 3.2: Quantitative results for CCD-3DR and our method, showcasing how our
method outperforms the baseline model on Tallinn city dataset different from the
training data .

Method F-Score@0.001 ↑ CD (×10−3) ↓
CCD-3DR 0.324 11.669
Ours 0.334 10.164

fact that the Building3D test dataset includes more detailed roof structures and a

variety of roof types that our model has not been trained on previously.

Qualitatively speaking, our goal was to evaluate the generalization of our method

by comparing it to the ground truth. After observing the results, particularly in

Figure 3.5: Showcasing the difference between our method’s prediction and the
ground truth from two different views: top view and side view, for the same in-
put image from Tallinn City, Estonia.

fig. 3.5, we can confidently affirm that our method demonstrates strong generalization

capabilities, effectively handling new and unseen data from the Tallin City dataset.
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Conclusion

To conclude, we presented our hardware and software setup, detailing the specific

concepts and techniques used. We also introduced the metrics employed and high-

lighted key differences in these metrics. Using these metrics, we conducted a quant-

itative comparison with our baseline models, demonstrating that our model out-

performs them. Additionally, we showcased qualitative results to further validate

our model’s superior performance. Finally, we conducted a generalizability study to

assess whether our method could be applied effectively to a different dataset.
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General Conclusion

In our research journey, we achieved a groundbreaking milestone: reconstructing

complete 3D building models from a single-view digital orthophoto, an accomplish-

ment that, to our knowledge, has not been previously realized. This innovative work

has been submitted to the esteemed Geospatial Week Conference 2025 in Dubai and

is currently under review. Our efforts began with an in-depth examination of the

broader research landscape, identifying the complexities of the problem and the key

challenges that propelled this project forward. We explored the academic framework

surrounding our internship, analyzed the contributions of our host organizations,

and reviewed existing studies to understand previous attempts at solving similar

challenges. Two foundational papers, PC2 and CCD-3DR , served as a basis for our

approach, upon which we introduced critical innovations to advance the field. A

significant initial step was creating essential datasets, including estimating camera

parameters for aerial images using optimization algorithms. Building on this founda-

tion, we developed a comprehensive methodology designed to address the limitations

of existing techniques. Our method emphasized refining 3D point cloud generation

with advanced feature extraction, integrating edge maps and additional character-

istics to improve accuracy and detail capture. By seamlessly aligning these features

with the generated point clouds, we achieved a precise reconstruction process that

outperformed baseline models. Extensive experiments validated the effectiveness

of our approach, showing significant improvements both quantitatively and qualit-

atively. As we reflect on this journey, we recognize the challenges overcome, the

insights gained, and the meaningful contributions made, all of which set the stage

for future advancements in 3D reconstruction technologies.
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General Conclusion

Despite the progress made, significant advancements in 3D building reconstruction

are still on the horizon. Our research has laid the groundwork for these developments,

identifying key areas for further refinement. This includes the reintegration of height

information lost during point cloud normalization, which will enhance model accur-

acy. We are also exploring methods for camera-free reconstruction, enabling the

generation of 3D models without relying on specific camera parameters. Another

crucial development is the ability to reconstruct multiple buildings from a single im-

age, moving beyond the current single-building approach. The addition of realistic

textures for roofs, walls, and ground surfaces aims to create more detailed and life-

like models. Finally, by capturing finer architectural details like doors and windows,

we seek to make point clouds richer and more precise. Collectively, these advance-

ments promise to improve the accuracy, flexibility, and real-world applicability of 3D

reconstruction techniques.
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