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I. INTRODUCTION 

Future autonomous systems, in maritime applications and 

otherwise, will contain Artificial Intelligence (AI) 

components as a main driver for autonomy. This 

development not only promises increased convenience and 

efficiency, but also substantial safety advantages. In part, this 

is because AI may replace the human element in high-risk 

settings and allows for the delegation of tasks – thereby 

eliminating human error, deliberate malpractice, and 

enabling faster response times in case of accidents. However, 

truly autonomous AI also introduces a variety of 

characteristic risks. To address these concerns, the concept of 

Meaningful Human Control (MHC) has been introduced. 

However, reintroducing the human element to a highly 

autonomous AI system limits its potential. If due to special 

ethical concerns or safety engineering reasons the human 

operator needs to be involved in AI decision making, human 

oversight and human control in a meaningful way are 

indispensable. But if a truly autonomous AI system is 

evidentially compliant to safety requirements, must the 

human operator necessarily be reintroduced to guarantee 

ethical AI use? What are the applications where MHC needs 

to be considered even when full autonomy is technologically 

achievable? 

 

II. THE BENEFITS OF AUTOMATION 

Development in the field of Artificial Intelligence (AI) has 

brought significant benefits in terms of speed, accuracy, and 

reliability. This allows for a more efficient accomplishment 

of tasks and the delegation of more and more tasks from 

human operators to AI agents, promising to liberate humans 

from menial work and increase societal well-being [1,2]. 

Moreover, AI also holds the potential to significantly increase 

safety for humans in a number of high-risk contexts. From a 

safety engineering perspective, AI provides extensive 

possibilities to mitigate or even eliminate risks. Algorithms 

that identify or assess (undiscovered) risks are already in 

place in several domains, e.g. healthcare [3], finance [4], and 

predictive maintenance [5]. Furthermore, in unexpected 

accident scenarios, AI-based systems may be able to react 

faster and more accurately, thereby lowering situational risk. 

Even more benefits are expected when human operators can 

be replaced entirely by advanced AI agents, and therefore, are 

removed from any contextual risk altogether. This kind of AI 

deployment is particularly useful for safety engineering 

because it removes the human element both in terms of being 

the source of, but also subject to harm. In extreme operational 

environments, such as the high seas and under water, the 

removal of human operators is especially desirable. 

Sophisticated machine autonomy promises the complete 

delegation of tasks to AI agents that can develop the skills 

required to handle these tasks in unknown environments 

without significant human input [6]. At present, AI systems 

that strive for such levels of autonomy within their domains 

include self-driving cars [7], manned and unmanned aircraft 

[8], industrial robots [9], and Lethal Autonomous Weapons 

Systems (LAWS) [10]. 

Further developments in the field of AI and the design of 

more advanced AI systems not only hold the prospect of the 

delegation of more tasks in general, but also of more complex 

tasks in particular. And while current products and 

demonstrators still need to rely on the human operator as a 

safeguard, the operational performance of AI is likely to 

surpass human performance at some point in the future. With 

increased technological maturity, especially regarding 

robustness, explainability, as well as safety engineering, the 

instrumental value of AI as a tool, able to replace human 

operators and to provide enormous potential in terms of 

safety and efficiency, can be found in virtually all settings 

where the use of autonomous systems is deemed viable.  

In the transportation sector, the case of self-driving cars 

serves as a good example of one of the main domains in 

which the use of AI is headed towards replacing the human 

element. The final level of driving automation according to 

the Society of Automotive Engineers – level five “full driving 

automation” – calls for sustained and unconditional 

performance of the driving task by the automated driving 

system [7]. Next to a range of related socio-economic benefits 

and increased convenience for users, completely autonomous 

traffic also provides the potential for a substantial increase in 

safety [11]. Future systems are expected to reduce the number 

of accidents by eliminating human error and deliberate 

malpractice. Additionally, in cases where accidents do still 

occur, AI will be far more capable to take swift action – e.g. 

to instantaneously steer out of harm’s way in unexpected 

situations where there is little time to react. The delegation to 

AI presents a particularly promising prospect in this domain, 

as traffic poses significant risk to road users [12, 13]. 

Considering the transport sector as a whole, an AI takeover 

of personal and public transport could reduce the amount of 

risk passengers are exposed to. In the case of transportation 

of cargo, it might even remove human involvement, and thus 

human exposure to risk, completely.  

While the use of autonomous AI provides significant 

potential to eliminate risk caused by humans, and mitigate 

safety risks that arise in unexpected situations, AI agents, in 



turn, introduce their own risks. A considerable body of 

literature addresses the issues that revolve around the 

technical means employed to harness AI’s benefits and the 

deployment of autonomous agents – including the occurrence 

of Black Boxes [14], the possibility of Responsibility Gaps 

[15], and a host of issues concerning algorithmic decision 

making [16]. More importantly, the prospect of replacing 

humans with autonomous AI agents comes with a catch. 

Making use of AI agents that find their own creative solutions 

to unexpected problems and that are able to operate 

independently in unknown environments entails the inability 

to fully predict their behavior and accepting the possibility of 

undesired outputs. Simply put, valuing AI's autonomy 

necessitates facing the risk of that autonomy [17]. 

These risks concerning the use of AI are neither novel in the 

discussion on the governance of AI nor are they unique to the 

use cases of risk management mentioned above. However, 

they are of particular relevance in this regard, as the 

introduction of new risks goes against the endeavor of 

minimizing them. More importantly, the types of risk that the 

use of AI introduces are unlike those that are managed with 

the help of AI. Whereas safety related risk is expected to be 

managed more effectively with increased robustness and 

precision of AI systems, this does not apply to non-technical 

risk caused by their employment. For example, in the 

frequently discussed use case of LAWS, various stakeholders 

have endorsed the paramount importance of responsibility 

and dignity [18-22]. In this case, the deployment of truly 

autonomous AI agents that are susceptible to gaps in 

responsibility is not feasible, regardless of how safe and 

effective they may be from a technical point of view. 

The issues at hand, especially the risk of autonomous AI 

agents, are not properly addressed by simply improving AI 

systems deployed in the context of risk management, if these 

improvements do not also manage the non-technical risk that 

they themselves cause. Hence, in contexts where aspects 

pertaining to these risks of AI play a key role, the use of 

autonomous AI might not be viable, and thus, prevent 

sophisticated AI systems from successful implementation. 

Unsurprisingly, addressing these challenges of AI has 

become a pressing subject in the debate on AI governance, 

especially with regard to the above-mentioned aspects such 

as fairness, explainability, and responsibility [23, 24]  

 

III. THE CALL FOR MEANINGFUL HUMAN 

CONTROL 

One of the most prominent approaches to manage some of the 

characteristic risks of AI is the concept of Meaningful Human 

Control (MHC). Originating in the discussion on LAWS and 

the concern of delegating the use of force and decisions over 

life and death to machines [25-29], MHC has since become a 

popular instrument to manage various risks that the 

implementation of AI systems has introduced. The concept 

has spread to other domains like automated or autonomous 

driving systems [30, 31] and automated decision-making 

systems [32, 33]. Yet, despite its apparently ubiquitous 

endorsement, there is no agreement on what exactly 

constitutes MHC [34]. Furthermore, discussions on the 

subject frequently fail to clearly specify the purpose of 

implementing MHC – i.e. whether it shall increase safety, 

ensure responsibility or serve a completely different purpose 

[35]. 

Nonetheless, it should be stressed that MHC has one very 

specific advantage: it is the only answer to the problem of 

responsibility gaps that has been developed so far. MHC 

closes responsibility gaps by keeping a human operator close 

enough to the individual decisions made by an AI system that 

they can genuinely be held responsible for the harms caused 

by such a system. 

MHC is not the only conceptual tool that has been explored 

in the context of AI ethics. For example, the most influential 

AI ethics and governance document of the recent past, the 

Ethics Guidelines for Trustworthy AI by the European 

Commission [36] does not use the terminology of 

"meaningful human control" at all, and instead opts to engage 

with the matter in terms of "human agency and oversight" 

(pp. 15-16). In this context, three methods of oversight are 

specifically described: Human-in-the-loop (HITL), human-

on-the-loop (HOTL) and human-in-command (HIC). These 

approaches to human oversight can be distinguished by the 

degree of direct control that a human exerts over individual 

decisions: whereas with HITL, a human has the capacity to 

intervene in every individual decision cycle of the AI, with 

HOTL, human input is limited to intervention during the 

design cycle and monitoring roles. HIC can be viewed as the 

minimum that is potentially compatible with the ethical AI 

use, as the degree of human input in this governance method 

is limited to decisions of when and how to use AI systems. 

What differentiates MHC from mere human oversight is the 

degree of immediacy with which a human is involved in 

individual decisions made by the AI system. As perhaps the 

most important upside of MHC is supposed to be the 

avoidance of responsibility gaps, it is necessary that a human 

operator is involved in all ethically weighty decisions made 

by the AI system. Therefore, with these methods of oversight, 

as direct human control decreases, so does meaningful human 

control: HITL exhibits the highest compatibility with the 

concept, since, by definition, a human is able to intervene in 

every decision cycle when a HITL approach is employed. The 

HOTL approach is still compatible with MHC, as human 

monitoring of AI performance may be sufficient to ensure 

ethical adequacy and responsible use in less ethically 

sensitive contexts. The HIC method should be viewed as 

incompatible with MHC, since following this approach 

individual decisions made by AI agents after deployment do 

not fall under the control of humans at all. 

From a safety engineering perspective, these methods of 

oversight have the advantage of interfacing well with the 

different AI decision making- and risk-levels as, for example, 

currently discussed in aviation [8] – from assistance to human 

(Level 1a & b) over human AI teaming (Level 2a Cooperation 

& 2b Collaboration) to autonomous AI (Level 3a & b). HITL 

should be expected to be deployed in levels 1 and 2, HOTL 

in levels 2 and 3, and HIC in level 3. 

 



IV.  BARRIERS TO MEANINGFUL HUMAN 

CONTROL 

The main advantage of MCH is its promise to ensure that 

responsibility is preserved in high automation contexts. 

However, there are number of conceptual and material 

barriers to its implementation. For human control to count as 

meaningful, two requirements must be met: First, the human 

operator needs to be significantly involved in the decision-

making process and second, the human operator needs the 

necessary expertise evaluate the decisions of the AI system 

in an informed way. These two requirements stand in 

conceptual tension with the benefits of automation outlined 

above, as they necessitate a re-introduction of the human 

element into an otherwise highly autonomous system. In any 

scenario in which the removal of the human operators is an 

advantage in itself (for reasons of safety, efficiency or 

otherwise), MHC loses applicability. 

Direct involvement in every decision cycle, such as when 

HITL is applied as the method of human oversight, does not 

guarantee by itself meaningful human control. The problems 

of rubber stamping and automation bias illustrate why that 

might be the case. Rubber stamping refers to a human 

operator accepting an AI decision without the ability to 

properly assess it. In the case of rubber stamping, a human 

operator is nominally in control of the AI system, authorizing 

or validating AI decisions before they are executed. However, 

due to a lack of expertise on part of the operator or other 

contravening factors such as time pressure, the presence of 

the human operator does not actually result in improvements 

in the problem areas where MHC is supposed to be a solution. 

For example, while a human operator can in principle act as 

a nexus of responsibility when a fully autonomous AI system 

cannot, this is not the case for obviously unqualified operators 

or those that feel pressured to quickly authorize AI decision 

in order to not undermine the performance of the system. The 

process can be appealing to a person pressing a button every 

time they see a light turn on. If the light signifies an ethically 

weighty decision made by an AI, the human operator 

authorizing it by pressing the button obviously does nothing 

to improve the adequacy of an AI-enhanced system in terms 

of the relevant ethical dimensions and does not make the 

operator meaningfully responsible for any resultant harm. 

However, non-meaningful control can also occur in contexts 

where the human operator is, in theory, able to properly 

validate the decision of an AI agent. In these cases, the 

problem of automation bias can potentially undermine 

meaningful human control. Automation bias occurs when the 

judgement of an expert operator is undermined by giving 

undue weight to the output of an automated (in this case, AI) 

system. It is a documented phenomenon that humans tend to 

put increased weight on data provided by automated systems 

even when trusting them goes against their own, best 

judgement [37, 38]. The ALTAI addresses this problem with 

the requirement that AI systems should not undermine human 

agency. Rather, it must be ensured that AI systems enhance 

human decision-making abilities. Automation bias as a 

general phenomenon is a barrier to this aim, since it occurs 

on a subconscious level. However, the existence of the 

phenomenon shows that implementing MHC is not trivial 

even in cases where even expert human operators, who are 

not subject to contravening situational pressures are 

confronted with highly pre-refined judgements of AI agents. 

Ensuring significant involvement in the decision-making 

process is not trivial in many contexts in which high 

automation is desirable, either. In the maritime domain, 

communication with autonomous ships is significantly 

limited by the low bandwidth available at sea. Due to the high 

rate of absorption of electromagnetic waves in water radio-

based communications are generally not feasible in the 

underwater environment. Alternative methods of 

communications come with downsides that make the 

implementation of MHC difficult, such as the limited range 

of wired communications or the significant latency inherent 

to acoustic communications. This means that a significant 

barrier to fast, reliable, long-range communication exists in 

one of the prime use-cases of AI in the maritime field, 

(partially-)autonomous underwater vehicles (AUVs) [39]. 

The more constrained communication between the operator 

and AI system becomes, the larger the material barrier to the 

implementation of an MHC paradigm grows: A human 

operator cannot be expected to be able to intervene in or 

supervise every decision cycle of the AI system when there 

is not reliable means of communication between the two 

parties. 

All these issues become even more problematic when a 

mismatch between the method of oversight and the desired 

degree of autonomy of the AI system occurs, such as when a 

human-in-the-loop approach is applied to an otherwise fully 

autonomous system. At first glance, a more extensive degree 

of human involvement appears to be desirable in this context, 

since the loss of human involvement in the decision-making 

process is the source of the types of issues that MHC is 

supposed to address (responsibility gaps, ethical inadequacy, 

etc.). However, we can observe that this kind of approach will 

either limit the performance of the system as a whole to 

ensure meaningful control, or undermine the meaningfulness 

of the control exerted by the human operator in order to 

maintain performance.  

The idea of MHC comes full circle with the reintroduction of 

expert operators as controllers of AI systems. Whereas 

humans were originally excluded from specific tasks to reap 

the benefits of highly autonomous AI systems, the 

reintroduction of the human operator leads the whole process 

back to its beginning. The starting point is marked by a task 

that is being executed without assistance of AI. In order to 

achieve the benefits of increased automation – better 

performance in terms of speed, accuracy or safety and the 

automation of more complex tasks – the involvement of AI 

reaches a level where the human being is increasingly 

excluded from the task. Various problems follow from this 

exclusion of the human operator, both ethical and practical. 

One of the answers prospective to this development is MHC, 

where the reintroduction of the human operator is the 

essential aspect. But with the key aspect being human control, 

MHC is conceptually incompatible with the highest levels of 

AI autonomy. The reasons to deploy highly autonomous AI 

systems are simply in too much tension with the idea of a 

human operator being meaningfully involved in all relevant 

decisions made by that AI.  



This is not the case at lower levels of autonomy. Human 

operators are already a necessary element in decision support 

systems and human-AI teaming set ups. These two 

approaches differ from the case described above, in which a 

human operator acts as a vetoing agent to an otherwise 

autonomous decision-making AI. Instead, the human 

operator is assumed to be in charge of decision-making ab 

initio, with the purpose of the AI agent being to either 

enhance their capabilities (support systems) or to take over 

ethically non-critical parts of the overall operation (human-

AI teaming). 

 

V. THE LIMITS OF MEANINGFUL HUMAN 

CONTROL 

If we accept that meaningful human control is not a viable 

solution to problems relating to responsibility and ethical 

concerns that arise in the context of highly autonomous AI 

systems, that raises the question: What is the use of MHC? 

The answer might be that MHC gives us insight regarding the 

appropriate method of human oversight in use contexts with 

different levels of ethical relevance. If, for example, 

guaranteeing ethical standards and avoiding responsibility 

gaps is non-negotiable in the context of autonomous weapons 

systems, and MHC is the only way to meet this goal, then we 

can conclude that the use of fully autonomous AI weapons is 

unwarranted, and that at most we should be considering 

decision support systems or human-AI teaming approaches in 

this context. 

Of course, not all domains are characterized by such high 

degrees of ethical sensitivity. It is not a conceptual necessity 

that MHC is a requirement for all use cases of AI. For 

example, if a sufficient level of safety can be clearly 

demonstrated for highly autonomous vehicles in contexts 

such as self-driving cars (level 5 automation) or aviation 

(level 3 EASA guidelines), it becomes difficult to articulate 

what further ethical barrier to the use of such systems would 

still remain. The Ethics Guidelines for Trustworthy AI [36] 

note: "Oversight mechanisms can be required in varying 

degrees to support other safety and control measures, 

depending on the AI system’s application area and potential 

risk. All other things being equal, the less oversight a human 

can exercise over an AI system, the more extensive testing 

and stricter governance is required" (p. 16). If the area of 

application is not subject to special ethical concerns and risk 

is demonstrably low, governing mechanisms other than MHC 

can take over. This illustrates an upside to the Trustworthy 

AI approach of the ALTAI guidelines, since it is compatible 

with MHC in contexts where direct control is necessary, but 

provides mechanisms to ensure ethical AI development and 

use in contexts incompatible with MHC, as well. 

 

VI.  CONCLUSION 

Meaningful human control is a valuable concept in AI ethics 

that helps us understand which type of human oversight 

mechanism is necessary for different use cases for AI 

systems. It is the only oversight mechanism developed so far 

that can truly be said to deal with the problem of 

responsibility gaps. However, the approach is conceptually 

incompatible with highly autonomous AI systems, as it is 

impossible to both realize the strict control required for a 

human operator to truly be responsible for the decisions of 

the AI system and maintain the benefits that highly 

autonomous AI provides in terms of speed, accuracy and 

safety. Domains in which communication between an AI 

system and human operator are harder to realize, such as the 

underwater domain in the maritime context, suffer from 

additional material barriers that could further complicate the 

implementation of MHC. The existence of certain domains 

that naturally resist an MHC approach should be recognized 

as a limiting factor for the feasibility of MHC as a general 

approach to AI ethics. 

In some domains, where the problem of responsibility gaps is 

of elevated importance, this implies that the use of highly 

autonomous AI systems is unjustifiable on ethical grounds. 

In these contexts, alternative approaches such as AI decision 

support and human-AI teaming should be pursued instead. 

However, in less ethically demanding contexts, one may find 

other human oversight paradigms that do not preclude the use 

of highly autonomous systems, if a sufficient level of safety 

can be demonstrated. 
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