GOOD PRACTICES FOR
RESEARCH SOFTWARE
DEVELOPMENT

Workshop about Good Practices for Research Software Development,
Hamburg, 19.02.2024

Tobias Schlauch <Tobias.Schlauch@DLR.de>
Institute for Software Technology

German Aerospace Center (DLR)
http://www.dlIr.de/sc

LHIFIS

Good Practices for Research Software Development ‘#7
Why Should | Care? DLR

° I | N\
It is for you! For me-
 To easily come back to your code 6 months later Sometimes even
after 1 week';)

« To enhance trust in your code and results produced with it

« To enhance chance to reuse (parts of) your code

* |t helps others!
« To get a better understanding of what you did
« To easier collaborate on your code

 To reproduce results based on your code

Good Practices for Research Software Development
Help to Enhance Reproducibility! DLR

Python versions

Python minor version 2.7 (July 3, 2010) 3.4 (March 16, 2014) M 3.5 (September 13, 2015)
W 3.6 (December 23, 2016) M 3.7 (June 27, 2018) “ L]
M 3.8 (October 14, 2019) 3.9 (October 5, 2020) M unk (Unknown) e re I S t e

; - m analysis code and
;e iI how should | run
Programming language 2 - —_ i t? 7

Figure 9. Programming languages of the notebooks. “Unknown” means the lan- o . o o o j
guage kernel used was not indicated in a standard fashion. » ® 2° 2

Year of last commit to the GitHub repository

Programming language M Python M Unknown M R M Matlab Groovy M Julia Figure 11. Python notebooks by minor Python version by year of last commit to the
w Sala sos gash GitHub repository containing the notebook. In the legend, the sunset dates for each

8000 version are given.

7000

6000

Number of notebooks

Year of first commit to the GitHub repository
2000

Number of notebooks

2012 2014 2016 2018 2022 3000
lculated thi
- - ’? 7 in the notebooks per year. This analysis includes only programming languages with
S a I S I CS more than 7 notebooks. In 2023, we observed only 21 Python notebooks, and no 0— — m
L] B

other programming languages had more than 7 notebooks. S = -

Source: Sheeba Samuel, Daniel Mietchen,
“Computational reproducibility of Jupyter
1@1 notebooks from biomedical publications”,
e e https://doi.org/10.48550/arXiv.2308.07333,

languages, as detailed in Table 1: while some (n0tab]y Matlab and Figure 12. Python notebooks by major Python version by year of first commit to the L | cense d un d er. C C - BY‘4 . 0
Julia) showed marked increases (albeit at low absolute numbers rel- notebook’s GitHub repository.

Figure 10. Relative proportion of the most frequent programming languages used 1000

5000
Python majorversion ® 3 ® 2 M u
4000 6000
3000 - -
5000
2000
4 = —_ 4000 1
1000 —
OW have e =il I [

N -
2010 2020

|

I

https://doi.org/10.48550/arXiv.2308.07333
https://creativecommons.org/licenses/by/4.0/

Good Practices for Research Software Development ‘#7
What Recommendations EXxist? DLR

Model Policy on Sustainable Software at the Helmholtz Centers

DLR Software Engineering Guidelines

Materials of the workshop Foundations of Research Software Publication

Your research domain, journal specific, ... recommendations?

»There are many recommendations available! But how do | know exactly
whatto do ...?

https://os.helmholtz.de/en/open-research-software/model-policy/
https://os.helmholtz.de/en/open-research-software/model-policy/
https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-research-software-publication

OVERVIEW ABOUT TYPICAL
GOOD PRACTICES

Example: Astronaut Analysis

« Astronauts Analysis is a data publication
consisting of:

 Data set

« Analysis script written in Python
using pandas and matplotlib

* Result plots

e Scenario:

* | created it on my own as part of my job.
* | want to publish it with my research paper.

| want to make its reuse as easy as possible and
make it available under an open source license.

i DLR

Total time humans have spend in space

50000 - —— accumulated_time_in_days

40000 -

30000 -

tin days

20000 -

10000 -

Number of astronauts

Dead vs. Alive astronauts

25 -

Age

|
100

https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-research-software-publication/astronaut-analysis/-/tree/0-original-source
https://pandas.pydata.org/
https://matplotlib.org/

Recommendations from the Workshop A#y
“Foundations of Research Software Publication” DLR

« Step 1: Put your code under version control

« Step 2: Make sure that your code is in a sharable state

« Step 3: Add essential documentation

» Step 4: Add a license /j\ ~N
Essential aspects
« Step 5: Make your code citable which you should

try to already
address for
\“internal” software!)

« Step 6: Release your code

Step 1: Put Your Code Under Version Control

Where Should | Store My Code? DLR
‘Minimum: Use a local Git)

repository + backup

Recommended: Use a code
- collaboration platform)

Ignore temporary Python files and only allow plot files in the results folder 589619f8 | [
Schlauch, Tobias authored 1 year ago

E # HIFIS Foundations of Research Software Publication » @ Astronaut Analysis > Repasitory

. = T i1 l-put-into-git v | astronaut-analysis / + v History Find file Web IDE & v
Name Last commit Last update
)
[3 results Move plot files into a separate folder 1 year ago
combined_histogram.png female_ humans_in_space.png
] @ ¢ .gitignore Ignore temporary Python files and only... 1 year ago
L)

& r

ol time humans have spend n space astronautsjson Add initial version 1 year ago
/ - P -
/ e & main.py Add initial version 1 year ago
/

Step 1: Put Your Code Under Version Control ‘#7
What Belongs in the Repository? DLR

Everything to make a usable version of your code such as:
« Source code, documentation, build scripts, test cases, configuration files, input data, ...

Avoid adding generated files such as:
* Third-party libraries, generated binaries, ...

How to handle large (data) files?

« Avalilable could be git-Ifs, git-annex, Datalad or your research data management
publication repository

Please note:

 Details depend on the “product” that you manage in the Git repository

 .gitignore files helps you to control what goes into your repository. See also
https://qitignore.io/ for templates.

https://git-lfs.github.com/
https://git-annex.branchable.com/
http://handbook.datalad.org/en/latest/intro/executive_summary.html
https://gitignore.io/

Step 1: Put Your Code Under Version Control ‘#7
Key Points DLR

Version control helps you to keep track of changes and is the basis for
collaboration with others.

Make sure to add all relevant files (or link them properly) to the source code
repository.

.gitignore files helps you to specify things that you do not want to share.

Know your version control system properly.

Step 2: Make Sure That Your Code Is in a Sharable State ‘#7
General Hints DLR

* Make sure others can run your code:

* No dependencies on internal resources (servers, storage, licensed software, ...)
* No absolute paths

» Clearly state dependencies + provide required build / installation scripts (e.g.: pip-tools,
poetry) => crucial aspect of reproducibility

* Organize files in a suitable directory structure (e.g.: Python Application
Layouts, Good Data Practices)

* Do not share sensitive data such as passwords, user accounts, SSH keys,
Internal IP addresses, etc. (e.g.: gitleaks)

 Orientate on standards of your domain / community

https://pypi.org/project/pip-tools/
https://python-poetry.org/
https://realpython.com/python-application-layouts/
https://datadryad.org/stash/best_practices
https://github.com/gitleaks/gitleaks

Step 2: Make Sure That Your Code Is in a Sharable State ‘#7
Improve Your Code Style and Structure DLR

e Strive for understandable code:

* Apply a code style — consistency is more important than convenience (e.g.: PEP8)
Use a consistent and light code layout

Structure your code in suitable "building blocks" such as functions

Use specific and appropriate names for all artifacts

Provide sufficient level of code comments

* Read code of others for inspiration

* Try to do pair programming and reviews (even if it is with your rubber duck)

https://www.python.org/dev/peps/pep-0008/
https://en.wikipedia.org/wiki/Rubber_duck_debugging

Step 2: Make Sure That Your Code Is in a Sharable State ‘#7
Think About Testing and Automation DLR

« Small tests are done easily but already show effect:

« Code linters and checkers help to find poor code snippets and help to enforce coding
styles (e.g.: flake8, black)

« Automated tests work as an executable documentation (e.g.: pytest)

 Tests offer a good starting point for your automation efforts!

https://flake8.pycqa.org/
https://github.com/ambv/black
https://docs.pytest.org/

Step 2: Make Sure That Your Code Is in a Sharable State

Example After Step 2

1
=] astronaut-analysis py £3 |

from datetime import date

import pandas as pd
import matplotlib.pyplot as plt

_ASTRONAUT DATA FILE = "

i #

Data preparation functions

i #

def | pare dat t (df) :
df = rename_columns (df)
df = df.set_index("ast r t id")
Set pandas dtypes for columns with date or time
df = df.dropna(subset=["1 r I "1)
df["t I e"] = df["tir "].astype (int)
df["tir "] = pd.to_timedelta(df["t
df["birthdate"] = pd.to datetime (df[" thdate"])

df ["dat f death"] = pd.to_datetime(df["d

df.sort_values ("l ", inplace=True)

Calculate extra columns from the original data
df["t "] = df["t "]l.astype ("
aLf" "] = df["dat f death"].apply(is_alive)
df ["age"] = df[" te"].apply(calculate_age)
df ["di tl "] = df.apply(died with_age, axis=l)

return df

def Fhiidns solaEme (3 :

”]l

w1y

unit="m"

« Applied PEPS8 code
style

* Cleaned up the code

« Added basic testing

DLR

and more ©
J

Step 2: Make Sure That Your Code Is in a Sharable State ‘#7
Key Points DLR

« Make sure that others can (re-)use your code
* Do not store secrets in your code repository
« Strive for understandable code

o Start introducing basic test automation

Step 3: Add Documentation

Astronaut Analysis

Total time humans have spend in space Tetal time female humans have spend In space Total time male humans have spend in space

accuPnlated_vres in_fays —— accurnlated_Teve_in_days o — accurmulated_Trve,_in_fays
e

The repositary is organized as follows:

® data: Contains the astronauts data set retrieved from Wikidata
* code: Contains the astronaut analysis script
* results: Contains the resulting analysis plots

Astronaut Data

The data set has been generated using the following SPARQL query [1] (retrieval date: 2018-10-25).

® Run the SPARQL query
* Download the resulting data formatted as JSON
* Replace the file data/astronauts.json

* Run the analysis script
Astronaut Analysis Script
The script requires Python == 3.8 and uses the libraries pandas as well as matplotlib.

The script has been successfully tested on Windows 10 and Linux with Python 3.8.

You can also analyze a recent version of the astronaut data by replacing the data set and re-running the analysis script:

This analysis is based on publicly available astronauts data from Wikidata. In this context, we investigated aspects such as time humans spent in space as well as the age distribution of the astronauts.

Age distribution; Dead vs, Alive astronauts Dead vs. Alive astronauts

Typical Structure:

Software name
Purpose
Install

Usage
Contributing
Citation Hint
License

DLR

Step 3: Add Documentation ‘#7
General Hints DLR

 Mind your target groups:
« Typical perspectives: Users, contributors
« Users: Installation / usage instructions, tutorials, support channels, ...
« Contributors: Contribution guidelines, technical overview, ...

 Think about adding typical documentation files such as:

 README (project front page), CONTRIBUTING (contributions guidelines),
CODE OF CONDUCT (communication rules), LICENSE (license information),
CHANGELOG (major changes), CITATION (citation metadata)

* Please note:
« Markdown or another markup language is quite often used to write documentation

« Usually, you will need additional documentation, for example, in a docs directory
(e.g.: Sphinx, MkDocs)

https://commonmark.org/help/
https://www.sphinx-doc.org/
https://www.mkdocs.org/

Step 3: Add Documentation ‘#7
Key Points DLR

* Provide documentation for relevant target groups

 Add a README file as a minimum documentation to your source code
repository

Astronaut Analysis Release 1.0.0

ﬂAstronautAnalysis@ Qv || trsar | 1] ¥rFork | 1

-0- 13 Commits # 10 Branches P 1Tag [148 KiB Project Storage /4 1Release

The repository contains the example code used in this workshop. Rel eaS e
; : 1.0.0 ked
DOI | 10.5281/zenodo.10001813 [Latest Release 1.0.0 . . m ar e
Add changelog and reference it o 8aB5544e | [a.S G i t tag i n

Tobias Schlauch authored 2 years ago

License the repository

. . main v astronaut-analysis | | + ~ History Find file Edit ~ m
information (|| , _ W,

A README 58 LICENSE [&) CHANGELOG ¥ CI/CD configuration [Add CONTRIBUTING @ Add Kubernetes cluster :

for code, data, Gomtgremegaions o e

r es u I tS Name Last commit Last update

ro e rI B LICENSES Add license and copyright information 2 years ago

p p y . Bl code Add license and copyright information 2 years ago

an n Otate d VI a B3 data Add license and copyright information 2 years ago

R E U S E Baresults Add license and copyright information 2 years ago
N

/

¢ .gitignore Add license and copyright information 2 years ago
& gitlab-ci.yml Add license and copyright information 2 years ago
ms CHANGELOG.md Add changelog and reference it 2 years ago

B3 LICENSE.md Add license and copyright infermation 2 years ago

https://reuse.software/

Astronaut Analysis Release 1.0.0 (cont.)
DLR

DOI 10.5281/zenodo.10001813 m

Published March 17, 2021 | Version 2021-03-17 [& Open |
cff-version: 1.2.0
title: Astronaut Analysis .
message: >- Astronaut Analysis
If you use this dataset, please cite 1t using the
metadata Stoffers, Martin' {); Schlauch, Tobias'

from this file.
type: dataset
authors:
- given-names: Martin
family-names: Stoffers
- given-names: Tobias
family-names: Schlauch
identifiers:
- type: doi
value: 10.5281/zencdo.10001813

Show affiliations

This analysis is based on publicly available astronauts data from Wikidata. In this context, we investigated aspects
such as time humans spent in space as well as the age distribution of the astronauts.

Please note that this data publication is used as an example to teach researchers how to make research code ready
for citation in a scientific publication.

Files

astronaut-analysis-v1-2021-03-17 zip v

[astronaut-analysis-v1-2021-03-

\ 17.zip

Citable Release: ot e 2021

» Citation metadata in o -
Citation File Format o ewencens. s

o DOI Vla. ZenOdO [LICENSE.md 544 Bytes

\ / m LICENSES

https://citation-file-format.github.io/
https://zenodo.org/

There Are Many Recommendations Available! ‘#7
But How Do | Know Exactly What to Do ...? DLR

« Recommendations are typically made under certain assumptions. l.e., they
leave out details and might not fit for your case directly ... ®

 Establishing detailed good practices on a research group level could help:

« Similar tasks and projects make it easier to agree on relevant practices and details

« Use generic recommendations as a starting point and leave out irrelevant aspects / add
required details as needed

« “Executable” templates can help to get everyone better started:

 Relevant tools: Cookiecutter, Cruft

« Example: HCDC / Software Templates / Python Package - GitLab (helmholtz.cloud)

https://github.com/cookiecutter/cookiecutter
https://cruft.github.io/cruft/
https://codebase.helmholtz.cloud/hcdc/software-templates/python-package-template

SUMMARY

Summary ‘#7
DLR

* Good practices for research software development are important:
« Help you and others to work on code and have trust in results produced with it

« Enhance chances for research to be reproducible

* EXisting recommendations are made under certain assumptions and
need to be tailored to the right context:

 EXisting guidelines might be too generic

* Presented recommendations might be in some aspects too detailed or (currently) not
relevant for your specific case

 Research group could be the right level to establish effective good
practice!

Thank yo

A, .

<A

o, =,

ul!

https://creativecommons.org/licenses/by/3.0/

Copyright and License Information ‘#7
DLR

All content is © German Aerospace Center and licensed under CC-BY-4.0 with the following exceptions:

* DLR logo, slide layout, © German Aerospace Center. All rights reserved.

* HIFIS logo, © HIFIS, CC-BY-4.0.

* Philae landing on comet 67 P/Churyumov-Gerasimenko, slide 24, © German Aerospace Center. CC-BY-3.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/3.0/

