
Workshop about Good Practices for Research Software Development,

Hamburg, 19.02.2024

Tobias Schlauch <Tobias.Schlauch@DLR.de>

Institute for Software Technology

German Aerospace Center (DLR)

http://www.dlr.de/sc

GOOD PRACTICES FOR
RESEARCH SOFTWARE
DEVELOPMENT

Good Practices for Research Software Development
Why Should I Care?

• It is for you!

• To easily come back to your code 6 months later

• To enhance trust in your code and results produced with it

• To enhance chance to reuse (parts of) your code

• It helps others!

• To get a better understanding of what you did

• To easier collaborate on your code

• To reproduce results based on your code

For me:

Sometimes even

after 1 week ;)

Good Practices for Research Software Development
Help to Enhance Reproducibility!

“Where is the

analysis code and

how should I run

it?”

“How have they

calculated this

statistics?”
Source: Sheeba Samuel, Daniel Mietchen,

“Computational reproducibility of Jupyter

notebooks from biomedical publications”,

https://doi.org/10.48550/arXiv.2308.07333,

Licensed under: CC-BY-4.0

https://doi.org/10.48550/arXiv.2308.07333
https://creativecommons.org/licenses/by/4.0/

Good Practices for Research Software Development
What Recommendations Exist?

• Model Policy on Sustainable Software at the Helmholtz Centers

• DLR Software Engineering Guidelines

• Materials of the workshop Foundations of Research Software Publication

• Your research domain, journal specific, … recommendations?

➢There are many recommendations available! But how do I know exactly

what to do …?

https://os.helmholtz.de/en/open-research-software/model-policy/
https://os.helmholtz.de/en/open-research-software/model-policy/
https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-research-software-publication

OVERVIEW ABOUT TYPICAL
GOOD PRACTICES

Example: Astronaut Analysis

• Astronauts Analysis is a data publication

consisting of:

• Data set

• Analysis script written in Python

using pandas and matplotlib

• Result plots

• Scenario:

• I created it on my own as part of my job.

• I want to publish it with my research paper.

• I want to make its reuse as easy as possible and

make it available under an open source license.

https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-research-software-publication/astronaut-analysis/-/tree/0-original-source
https://pandas.pydata.org/
https://matplotlib.org/

• Step 1: Put your code under version control

• Step 2: Make sure that your code is in a sharable state

• Step 3: Add essential documentation

• Step 4: Add a license

• Step 5: Make your code citable

• Step 6: Release your code

Recommendations from the Workshop
“Foundations of Research Software Publication”

Essential aspects

which you should

try to already

address for

“internal” software!

Step 1: Put Your Code Under Version Control
Where Should I Store My Code?

Minimum: Use a local Git

repository + backup

Recommended: Use a code

collaboration platform

Step 1: Put Your Code Under Version Control
What Belongs in the Repository?

• Everything to make a usable version of your code such as:

• Source code, documentation, build scripts, test cases, configuration files, input data, …

• Avoid adding generated files such as:

• Third-party libraries, generated binaries, ...

• How to handle large (data) files?

• Available could be git-lfs, git-annex, Datalad or your research data management

publication repository

• Please note:

• Details depend on the “product” that you manage in the Git repository

• .gitignore files helps you to control what goes into your repository. See also

https://gitignore.io/ for templates.

https://git-lfs.github.com/
https://git-annex.branchable.com/
http://handbook.datalad.org/en/latest/intro/executive_summary.html
https://gitignore.io/

Step 1: Put Your Code Under Version Control
Key Points

• Version control helps you to keep track of changes and is the basis for

collaboration with others.

• Make sure to add all relevant files (or link them properly) to the source code

repository.

• .gitignore files helps you to specify things that you do not want to share.

• Know your version control system properly.

Step 2: Make Sure That Your Code Is in a Sharable State
General Hints

• Make sure others can run your code:

• No dependencies on internal resources (servers, storage, licensed software, ...)

• No absolute paths

• Clearly state dependencies + provide required build / installation scripts (e.g.: pip-tools,

poetry) => crucial aspect of reproducibility

• Organize files in a suitable directory structure (e.g.: Python Application

Layouts, Good Data Practices)

• Do not share sensitive data such as passwords, user accounts, SSH keys,

internal IP addresses, etc. (e.g.: gitleaks)

• Orientate on standards of your domain / community

https://pypi.org/project/pip-tools/
https://python-poetry.org/
https://realpython.com/python-application-layouts/
https://datadryad.org/stash/best_practices
https://github.com/gitleaks/gitleaks

Step 2: Make Sure That Your Code Is in a Sharable State
Improve Your Code Style and Structure

• Strive for understandable code:

• Apply a code style – consistency is more important than convenience (e.g.: PEP8)

• Use a consistent and light code layout

• Structure your code in suitable "building blocks" such as functions

• Use specific and appropriate names for all artifacts

• Provide sufficient level of code comments

• Read code of others for inspiration

• Try to do pair programming and reviews (even if it is with your rubber duck)

https://www.python.org/dev/peps/pep-0008/
https://en.wikipedia.org/wiki/Rubber_duck_debugging

Step 2: Make Sure That Your Code Is in a Sharable State
Think About Testing and Automation

• Small tests are done easily but already show effect:

• Code linters and checkers help to find poor code snippets and help to enforce coding

styles (e.g.: flake8, black)

• Automated tests work as an executable documentation (e.g.: pytest)

• Tests offer a good starting point for your automation efforts!

https://flake8.pycqa.org/
https://github.com/ambv/black
https://docs.pytest.org/

Step 2: Make Sure That Your Code Is in a Sharable State
Example After Step 2

• Applied PEP8 code

style

• Cleaned up the code

• Added basic testing

and more ☺

Step 2: Make Sure That Your Code Is in a Sharable State
Key Points

• Make sure that others can (re-)use your code

• Do not store secrets in your code repository

• Strive for understandable code

• Start introducing basic test automation

Step 3: Add Documentation

Typical Structure:

• Software name

• Purpose

• Install

• Usage

• Contributing

• Citation Hint

• License

Step 3: Add Documentation
General Hints

• Mind your target groups:

• Typical perspectives: Users, contributors

• Users: Installation / usage instructions, tutorials, support channels, …

• Contributors: Contribution guidelines, technical overview, …

• Think about adding typical documentation files such as:

• README (project front page), CONTRIBUTING (contributions guidelines),

CODE_OF_CONDUCT (communication rules), LICENSE (license information),

CHANGELOG (major changes), CITATION (citation metadata)

• Please note:

• Markdown or another markup language is quite often used to write documentation

• Usually, you will need additional documentation, for example, in a docs directory

(e.g.: Sphinx, MkDocs)

https://commonmark.org/help/
https://www.sphinx-doc.org/
https://www.mkdocs.org/

Step 3: Add Documentation
Key Points

• Provide documentation for relevant target groups

• Add a README file as a minimum documentation to your source code

repository

Astronaut Analysis Release 1.0.0

License

information

for code, data,

results

properly

annotated via

REUSE

Release

1.0.0 marked

as Git tag in

the repository

https://reuse.software/

Astronaut Analysis Release 1.0.0 (cont.)

Citable Release:

• Citation metadata in

Citation File Format

• DOI via Zenodo

https://citation-file-format.github.io/
https://zenodo.org/

There Are Many Recommendations Available!
But How Do I Know Exactly What to Do …?

• Recommendations are typically made under certain assumptions. I.e., they

leave out details and might not fit for your case directly … 

• Establishing detailed good practices on a research group level could help:

• Similar tasks and projects make it easier to agree on relevant practices and details

• Use generic recommendations as a starting point and leave out irrelevant aspects / add

required details as needed

• “Executable” templates can help to get everyone better started:

• Relevant tools: Cookiecutter, Cruft

• Example: HCDC / Software Templates / Python Package · GitLab (helmholtz.cloud)

https://github.com/cookiecutter/cookiecutter
https://cruft.github.io/cruft/
https://codebase.helmholtz.cloud/hcdc/software-templates/python-package-template

SUMMARY

Summary

• Good practices for research software development are important:

• Help you and others to work on code and have trust in results produced with it

• Enhance chances for research to be reproducible

• Existing recommendations are made under certain assumptions and

need to be tailored to the right context:

• Existing guidelines might be too generic

• Presented recommendations might be in some aspects too detailed or (currently) not

relevant for your specific case

• Research group could be the right level to establish effective good

practice!

A new feature has been added

to the application!

Source: DLR, Philae landing on comet 67

P/Churyumov-Gerasimenko, CC BY 3.0

Thank you!

What are your Questions?

Email: Tobias.Schlauch@dlr.de

Mastodon: https://norden.social/@schlauch

HIFIS Mattermost: @schlauch

https://creativecommons.org/licenses/by/3.0/

Copyright and License Information

All content is © German Aerospace Center and licensed under CC-BY-4.0 with the following exceptions:

• DLR logo, slide layout, © German Aerospace Center. All rights reserved.

• HIFIS logo, © HIFIS, CC-BY-4.0.

• Philae landing on comet 67 P/Churyumov-Gerasimenko, slide 24, © German Aerospace Center. CC-BY-3.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/3.0/

