ALGORITHM FOR DETECTING AIRBORNE OBJECTS WITH A THERMAL INFRARED CAMERA TO ENSURE A SAFE OPERATION OF LASER-OPTICAL GROUND STATIONS

Nils Bartels, Felicitas Niebler, Tristan Meyer, Wolfgang Riede, Thomas Dekorsy

German Aerospace Center (DLR), Institute of Technical Physics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

Meeting of the ILRS Networks and Engineering Standing Committee (NESC), January 23rd, 2025

Nils Bartels, DLR, January 23rd, 2025

ALGORITHM FOR DETECTING AIRBORNE OBJECTS WITH A THERMAL INFRARED CAMERA TO ENSURE A SAFE OPERATION OF LASER-OPTICAL GROUND STATIONS DLR

Lasers in public airspace

Satellite/space debris laser ranging

Source: DLR

Laser communication

For fun/advertisement...

Laser momentum transfer

(Atmospheric) LIDAR Nils Bartels, January 23rd, 2025

Laser safety at miniSLR[®]

4				
V	DLR			

Laser parameters miniSLR [®]		
Wavelength	1064 nm	
Pulse energy	85 µJ	
Pulse duration	500 ps	
Pulse repetition rate	50 kHz	
Beam divergence	50 µrad	
Beam diameter (transmitter exit)	5 cm	

1 = laser transmitter window, 2 = Germanium window of the thermal infrared camera, 3 = laser warning lamp, 4 = emergency stop button (4), and physical laser safety barriers (5).

Laser safety at miniSLR[®]

Key task: Reliable detection of aircraft from thermal infrared images.

Dataset

Table 3.Number of Images and TargetedClassification of Different Categories in the GeneratedDataset

Category	Number of Images	Target Classification	
Critical aircraft	359	Unsafe	
Non-critical aircraft	434	Unsafe	
Clouds	146	Safe	
Birds	143	Unsafe	
Antenna	35	Safe	
Clear sky	158	Safe	
Interesting images	9	Unsafe	
Total	1284	-	

Python software with GUI for testing of algorithms

7

Simple comparison of different algorithms and parameters...

Results

Different algorithms tested:

- Laplacian filter with edge detection
- Canny edge detection
- Background subtraction with median filtered image (\rightarrow best algorithm)

Object detection in grayscale images based on covariance features

> Ints Mednieks Institute of Electronics and Computer Science, 14 Dzerbenes Street, LV1010 Riga, Latvia, e-mail: mednieks@edi.lv

Idea came from an article dealing with the detection of artificial objects in processed food via X-ray imaging.

Quelle: https://doi.org/10.1109/ICSES.2008.4673393

11	7	4	5	3	3	2	2
38	22	10	7	4	3	3	2
73	60	29	13	7	5	3	2
69	69	52	29	12	7	4	3
62	66	66	59	27	11	7	3
66	60	60	66	62	25	8	4
58	54	56	62	74	42	13	6
49	49	51	54	58	50	25	9

Original image

min

4

7

10

11

22

29

38

60

73

max

Median image

Quelle: https://neubias.github.io/training-resources/median_filter/index.html

Median filter for noise reduction

Original image

Image after 5x5 median filtering

Median filter for background subtraction

Aircraft (& noise)

Original image

Proposed algorithm

Optimization of parameters

Threshold optimization:

Fig. 4. Fraction of correct classifications as a function ("safe" or "unsafe") of the optimized parameter k for the different image categories.

Classification with optimized threshold:

Fig. 5. Results of classification accuracy (safe/unsafe) for the proposed image processing algorithm with k = 12.

Speed

 Image analysis takes ~7ms on a standard PC

Limitations of this work

- No helicopters, hot air balloons, gliders in dataset
 → detection is likely but untested
- No detection of objects "behind" clouds
- Detection only works in front of a sky background
- Algorithm only tested at one place (Stuttgart/Germany)

Further reading

6336 Vol. 63, No. 24 / 20 August 2024 / Applied Optics

applied optics

Research Article

https://doi.org/10.1364/AO.529222

Algorithm for detecting airborne objects with a thermal infrared camera to ensure a safe operation of laser-optical ground stations

JAKOB STEURER,¹ NILS BARTELS,^{1,*} ^(D) DANIEL HAMPF,² FELICITAS NIEBLER,¹ TRISTAN MEYER,¹ WOLFGANG RIEDE,¹ AND THOMAS DEKORSY¹ ^(D)

¹German Aerospace Center (DLR), Institute of Technical Physics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany ²DiGOS Potsdam GmbH, Telegrafenberg 1, 14473 Potsdam, Germany *nils.bartels@dlr.de

Received 6 May 2024; revised 25 July 2024; accepted 26 July 2024; posted 26 July 2024; published 13 August 2024

- Article contains source code (Python) and link to repository with raw images (classified dataset)
- Anyone is free to use the algorithm, feedback or suggestions are appreciated