

Procedures for DataQC within the EnMAP and DESIS Ground Segments

M. Bachmann, K. Alonso, E. Carmona, D. Cerra, R. de los Reyes, B. Gerasch, M. Habermeyer, H. Krawczyk, M. Langheinrich, R. Müller, G. Palubinskas, M. Pato, M. Schneider, P. Schwind, T. Storch, <u>V. Ziel</u>

DLR–EOC, German Aerospace Center, Earth Observation Center

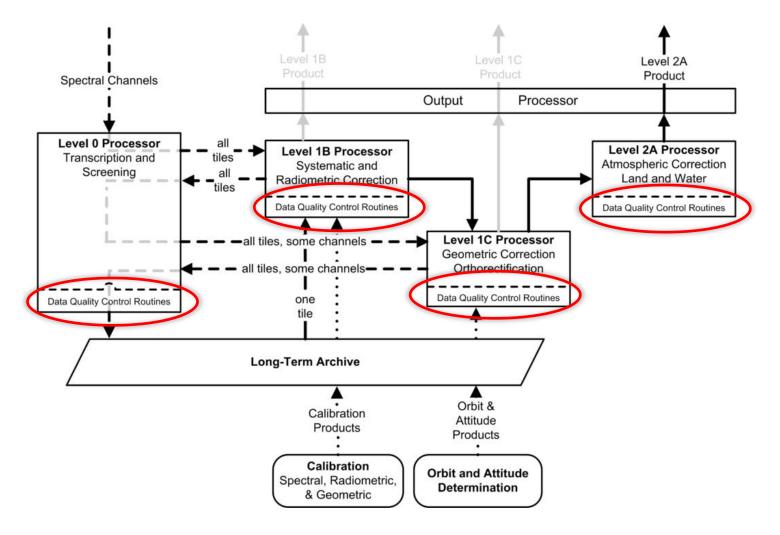
Spaceborne EO imaging spectrometer missions

Target lifetime Satellite	2018-2023	2020-2025	
Satellite	2010 2025	2020-2025	
batellite	455 t, 109.0×97.9×27.5 m ³	1 t, 3.1×2.0×1.7 m ³	
(mass, dimension, usage)	(multi-purpose)	(single-purpose)	
Orbit	not Sun-synchronous, various,	Sun-synchronous, 11:00,	
(type, local time at equator, inclination, height,	51.6°, 320 km to 430 km,	98.0°, 653 km,	
repeat cycle)	no repeat cycle	398 revolutions in 27 days	
Coverage	55° N to 52° S	74° N to 74° S	
Revisit frequency	3 to 5 days (average)	\leq 4 days, \leq 27 days (±5° tilting)	
Mission Instrument	ISS/MUSES DESIS	EnMAP HSI (2 instruments)	
Off-nadir tilting	-45° (backboard) to $+5^{\circ}$ (starboard),	-30° to +30°,	
(across-track, along-track)	-40° to +40° (by MUSES and DESIS)	0° (by EnMAP)	
Spectral range	420 nm to 1000 nm	420 nm to 2450 nm	
Spectral (res., acc.)	2.55 nm, na	6.5 nm, 0.5 nm (VNIR),	
		10.0 nm, 1.0 nm (SWIR)	
Radiometry (res., acc.)	13 bits, na	14 bits, 5%	
Spatial (res., swath)	30 m, 30 km (@ 400 km)	30 m, 30 km	
SNR (signal-to-noise)	205 (no bin.) / 406 (4 bin.) @ 550 nm	500 @ 495 nm, 150 @ 2200 nm	
Instrument mass	93 kg	350 kg	
Capacity (km, storage)	2360 km per day, 225 GBit	5000 km per day, 512 GBit	
Mission Instrument	ISS/MUSES DESIS	EnMAP HSI (2 instruments)	
Space agency	Teledyne, USA & DLR, Germany	DLR, Germany	
		(Science Segment: GFZ et al.)	
Space segment	Teledyne	OHB System AG	
	VNIR Instrument by DLR	VNIR Camera by DLR	
		 Support Calibrations by DLR 	
Ground segment	Teledyne	DLR (EOC, GSOC)	
	Processing, Archiving, Processors, and Calibration by DLR	Project Management	
		Command and Control	
		 User Interf., Data Reception, Processing, and Archiving 	
		 Processors and Calibration 	

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Spaceborne EO imaging spectrometer missions

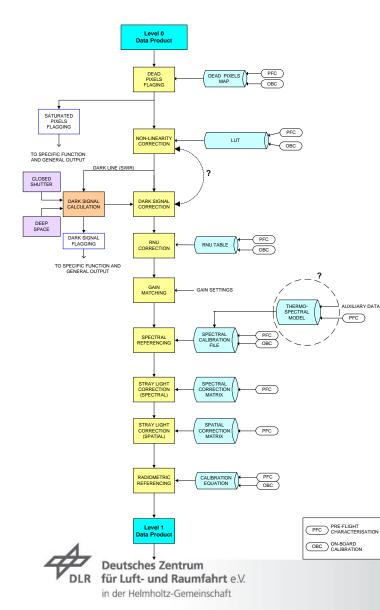
Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft



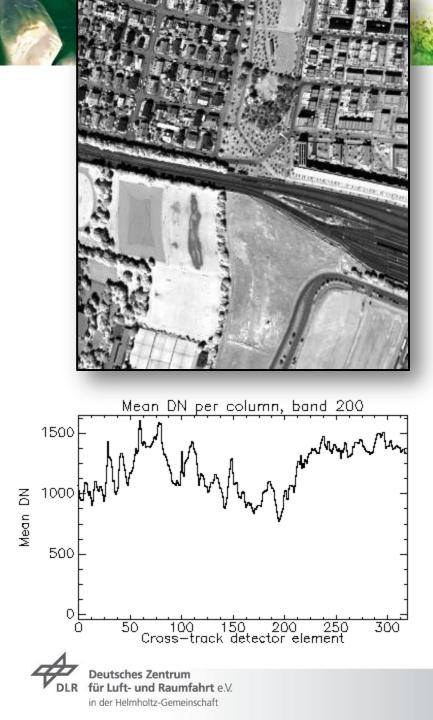
Part 1: Data Quality Control within Pre-Processing Chains

Overview - Processing Chain (EnMAP)

EnMAP & DESIS – Data Quality Indicators


→ Radiometric properties (L0 / L1B)

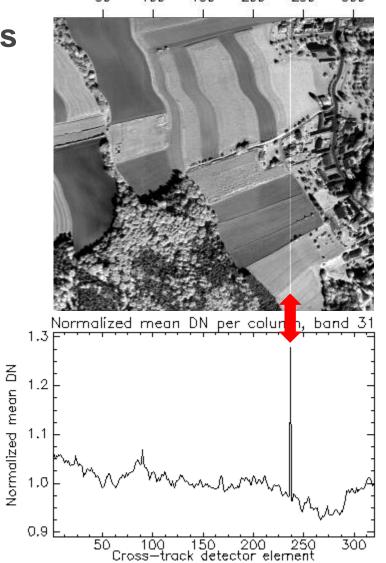
- → Artifacts related to radiometric calibration (striping, banding)
- → Artifacts related to dual gain
- Spectral properties (L0 / L1B / L2A)
 - → Spectral smile
- Datatake / image properties (L0 / L1B)
 - → Saturation (cross-talk, blooming)
 - → Other artifacts / suspicious pixel / repetitive pattern
 - ✓ Error messages in virtual channel, sensor & processor log files
- Environmental conditions during acquisition (L1C / L2A)
 - → Sun elevation
 - ✓ Percentage of cloud, haze, cirrus and cloud shadow
 - → Average scene visibility / AOT / WaterVapour
 - Problems in atm. correction (e.g., # DDV pixels, meaningful aerosol type, ...)
 - → Artifacts related to terrain correction / DEM



EnMAP Level L0/L1B Processing – detailed steps

- ► Bad (dead & suspicious) pixel flaging
- Saturated pixel flagging (incl. blooming)
- Non-linearity correction
- Dark signal correction
- RNU correction
- Gain matching (VNIR)
- Spectral referencing
- Spectral / spatial straylight correction
- Radiometric referencing
- ► QL generation
- Cloud-haze and land-water masks generation
 L1C / L2A
- Geometric correction (incl. keystone correction)
- Atmospheric correction (incl. smile correction)

Operational QC within pre-processing chains

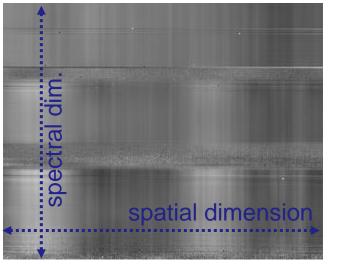

→ Radiometry

 Artifacts related to radiometric calibration (striping, banding) mager

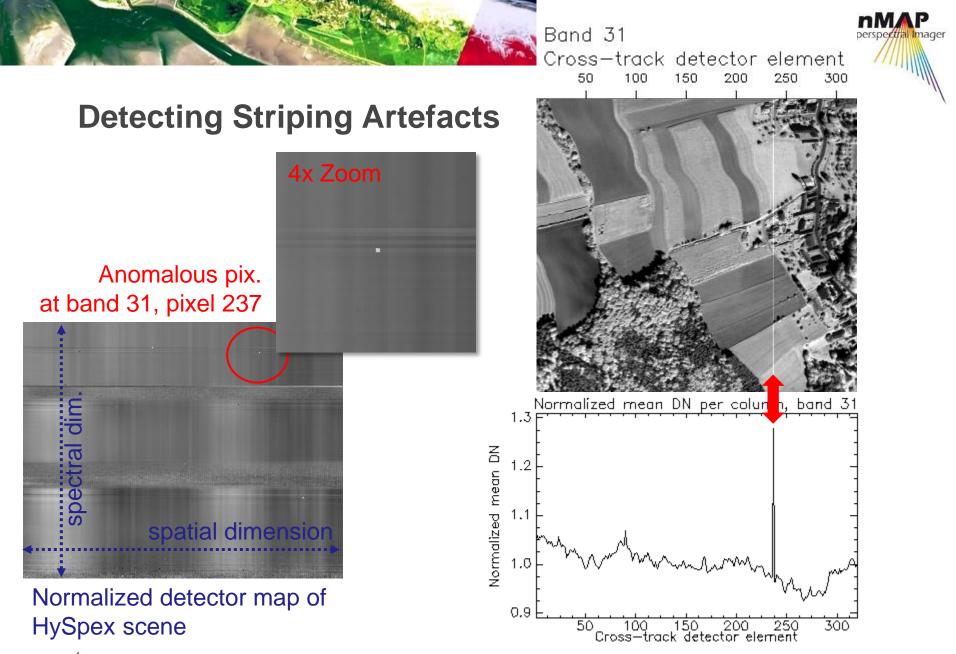
Examples using the airborne HySpex scanner (SWIR camera depicted)

BACHMANN et al., 2013: Extending DLR's operational data quality control (DataQC) to a new sensor - Results from the HySpex 2012 campaign EARSeL SIG-IS, Nantes, 2013.

Band 31 Cross-track detector element 50 100 150 200 250 300


Detecting Striping Artefacts

Band 31 Cross-track detector element 50 100 150 200 250 300

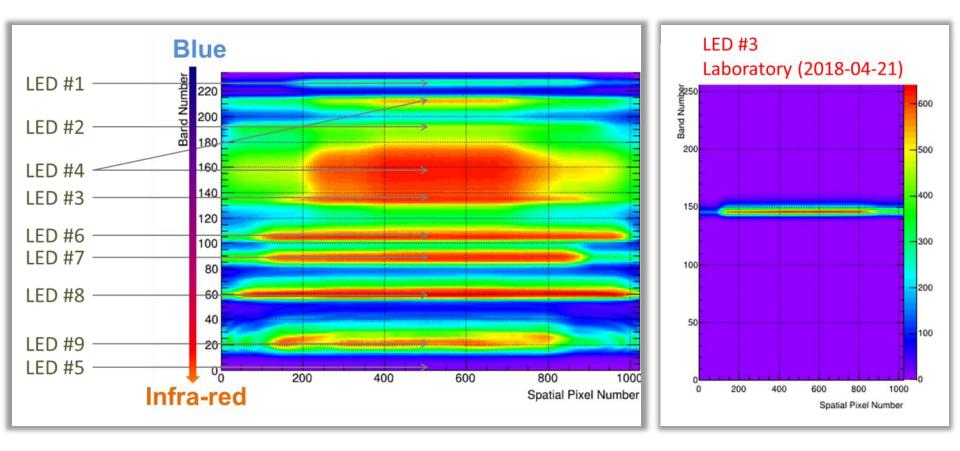

Detecting Striping Artefacts

Normalized detector map of HySpex scene

Normalized mean DN per colun band 31 h, 1.3 Normalized mean DN 1.2 1.1 1.0 0.9 50 100 150 200 250 Cross—track detector element 300

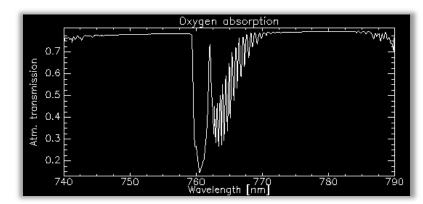
Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

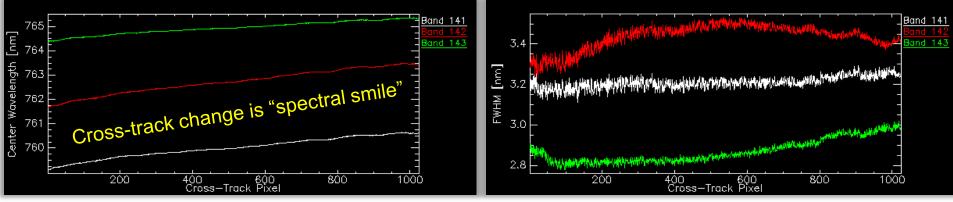
DESIS – first results using 5 Earth datatakes


	Detector Map (mean of 5 scenes)	Manufacturing defects
n mu si	O _{Defective pixels}	
pixels ^400 m		O
spectral		
235	0	inary) results !
8	$\langle -1024 \text{ spatial pixels } - \rangle$	inary)
	First (pro	

- → Manufacturing defects as expected
- → So far: low number of defective pixels on chip
- → So far: consistency in defective pixels (no unstable / "flickering" pixels)

DESIS on-board calibration sources


(Lab. measurements)

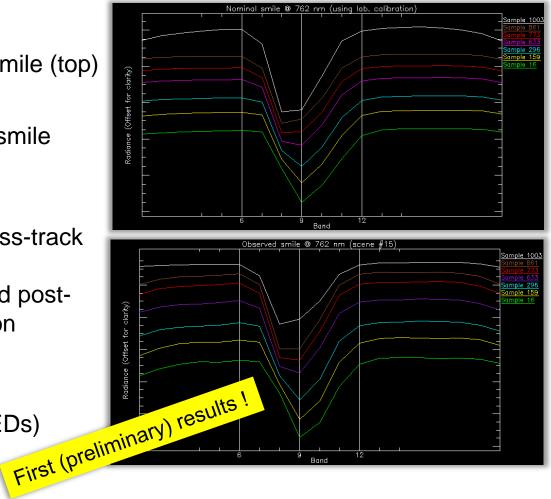


In-orbit vicarious spectral characterization

 Approach: analysis of how atm. absorption features are resolved. Example: 762 nm Oxygen absorption

Nominal center wavelengths

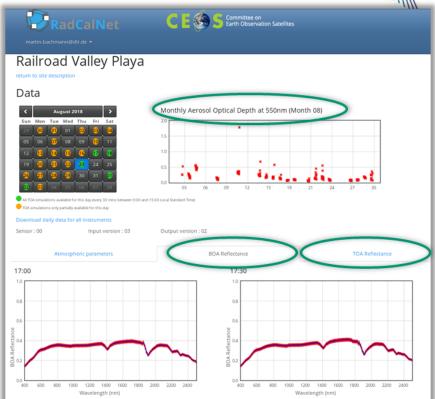
Nominal bandwidths


(Lab. measurements)

In-orbit vicarious spectral characterization

- Comparison of
 - → nominal spectral smile (top)
 - Vs.
 - observed spectral smile (below)
- Derivations for some cross-track elements indicate small change between pre- and postlaunch spectral calibration
- Next steps: compare to calibration datatakes (LEDs)

Part 2: "Offline" Data Quality Control – Vicarious Approaches


Radiometric Cal / Val (I)

- Approach based on
 - permanently instrumented
 CEOS RadCalNet sites
 - → pseudo-invariant desert sites (PICS)

thus using agreed community standards

- ✓ Allows for modeling at TOA & BOA level
- → For vicarious calibration / "flat fielding"
- Also for sensor cross-calibration to other missions (e.g., S-2)
- DESIS tilting capabilities can also contribute to site BRDF characterization !



http://radcalnet.org

Source: http://calvalportal.ceos.org

Radiometric Cal / Val (II)

- Dedicated CalVal campaigns using airborne and in-situ measurements
- Preparatory campaigns in 2018: DLR HySpex and NASA AVIRIS NG overflights over Oberpfaffenhofen, incl. on-site measurements

Summary – Cal/Val/Mon/DataQC for EnMAP & DESIS

Calibration & monitoring

- → On-board calibration sources (& sun calibration)
- → Inclusion of vicarious CalVal approaches
- DataQC within pre-processing chain
 - → Integrated within L0 / L1B / L1C / L2A processors
 - → Generation of QC-related metadata, QC flags + reports
 - \neg Interactive procedures for additional parameters

Independent validation

→ Incl. ground-based CalVal activities

Thank you very much for your attention!

enmap.org

