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Abstract—“What can your humanoid robot do?” is probably
the most commonly asked question that we, as roboticists, have
to answer when interacting with the general public. Often,
the question is framed in the familiar household or office
setting, with implied expectations of robust locomotion on uneven
and cluttered terrain, and compliant interaction with people,
objects, and the environment. Moreover, the question implies
the existence within the humanoid robot of a set of embodied
loco-manipulation skills implemented by a motion planner, skills
that are retrievable when given the corresponding commands.
In this article, we formulate an answer to this question in the
form of an efficient, modular, and extensible motion planner. We
demonstrate its use with three challenging scenarios, designed
to highlight both the robot’s safe operation and its precise
movement in unstructured environments. Additionally, we discuss
key techniques derived from our experience in the practical
implementation of torque-controlled humanoid robots.

I. INTRODUCTION

HUMANOID robots are poised to take a historic step out
of the science laboratories and into the manufacturing

and logistics industries. After being the focus of robotics
research for several decades [1], [2], a new generation of high-
performance humanoid robots is now being built by indus-
trial and technological companies, like Tesla, Figure AI, 1X,
and Unitree [3], joining the highly successful predecessors:
Honda’s Asimo [4] and Boston Dynamics’ Atlas [5].

As humanoid robots develop further, they are moving
closer to becoming versatile assistants in daily scenarios, as
companions and household helpers. However, everyday tasks
that seem straightforward to us and are routinely performed
by humans can be extremely complex in the unpredictable
and unstructured settings of domestic environments. In par-
ticular, generating and executing a coherent motion for a
humanoid robot with its high number of degrees of freedom
(DoF) constitutes a daunting challenge. The difficulties are
further aggravated by the inherently unstable nature of bipedal
locomotion, with its high center-of-mass (CoM) and small
base of support. These challenges are typically addressed by
partitioning the main task into a sequence of motions that
fulfill the overall goal (motion planning), and executing this
sequence while reacting to unforeseen disturbances (whole-
body control). Both topics have a rich history of research and
development in the robotics literature.
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Fig. 1. The humanoid robot TORO, performing two challenging tasks:
retrieving a cushion from a high shelf (left), and dynamic balancing during a
yoga exercise (right).

Given its critical role in enabling humanoid robots to
move safely and effectively, this article particularly emphasizes
motion planning. Commonly used planning methods include
offline trajectory generation such as the one used by Atlas
[5], offline training using Reinforcement Learning (RL) [6],
and online optimization-based approaches such as Model Pre-
dictive Control (MPC) [7]. Due to their compact formulation
and their ability to find useful motions through the extensive
search of the solution space, these methods are becoming
increasingly popular. However, they are showing significant
limitations concerning extensibility and explainability. For
example, extending the set of executable skills by adding or
modifying existing skills in a RL-based motion planner is a
highly challenging problem due to the diffuse encoding of
the motion generation in a neural network. Furthermore, as a
consequence of employing numerical (data- or optimization-
based) methods, the planner can often give no clear explana-
tion of how or why a certain motion was generated.

In this article, we propose an online, extensible, and efficient
motion planner, which can serve as a unifying planning
interface for a large variety of humanoid and legged robots.
The guiding idea that we consistently pursue is dimensionality
reduction. What can be simpler than issuing straightforward
commands like “Bring me a cushion” and “Let’s do yoga
together” (Fig. 1), or directly controlling a humanoid robot
with a joystick on a standard game controller? These com-
mand modalities are both intuitive and desirable from the
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Fig. 2. Demonstration of vision-based locomotion. The robot is asked to autonomously navigate to the shelf and retrieve the cushion. The robot self-localizes
in the world map using the AprilTags attached to the environment.

point of view of human-robot interaction. Adopting a top-
down perspective, our motion planner automatically expands
this high-level command into a sequence of simpler actions
(walking, turning, balancing), these in turn into coordinated
whole-body motions (taking a step, climbing a stair step, etc.),
continuing thus down to the level of executable instructions
using mathematical constructs like polynomials and other
closed-form expressions. Seen from a bottom-up viewpoint,
the motion planner performs a dimensionality reduction at
each level of abstraction, building libraries of reusable motion
components from which the higher-level elements are being
constructed.

A further important feature of our motion planner is that
the generated reference trajectories are continuous at the level
of accelerations (C2 continuous). As a general principle, we
aim to avoid discontinuities in the reference trajectories, as
these lead to two undesirable effects. First, because the robot
has a limited control bandwidth, the whole-body controller
is unable to follow the reference trajectory in case of a
discontinuity, leading to an unnecessary controller tracking
error. Second, the sharp controller response caused by the
reference discontinuity tends to excite inherent joint and link
elasticities of the humanoid robot, thereby further degrading
the tracking performance.

From the point of view of the robot operator, our motion
planner offers a set of high-level motion skills such as walking,
turning, stair climbing, etc., which can be activated individu-
ally or concatenated to form complex sequences. All motion
skills have default configurations that make them immediately

usable, or, alternatively, the robot operator can configure them
as desired at various levels of granularity. Once the robot
operator issues a command to the robot, the whole motion
planning process is performed online and is fully autonomous,
requiring no additional human input. At the same time, the
motion planner is extensible with new motion elements at
all levels of abstraction. The final result is a highly flexible
and configurable planning environment that can be used to
implement various scenarios in challenging environments.

II. DEMONSTRATIONS

In this section, we describe three different application sce-
narios for humanoid robots in homelike environments. A video
of the performed experiments can be found as a multimedia
attachment.

The demonstrations are performed using DLR’s torque-
controlled humanoid robot TORO [8], a 27 degrees-of-freedom
(DoF) robot, with a height of 1.74 m and a total weight of
79.2 kg. Unlike position-controlled robots, torque-controlled
robots [8]–[10] are capable of directly controlling the forces
exerted by their joints, enabling both gentle interactions with
the environment and precise movements. Moreover, TORO’s
whole-body control algorithm is completely based on the
concept of impedance control, which guarantees passivity
and compliance in human-robot and robot-environment in-
teractions. This type of controller allows the robot’s feet to
reactively adapt to different types of ground surfaces during
locomotion, including gravel, grass, sports mattresses, or scat-
tered Lego blocks.
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Fig. 3. The humanoid robot TORO performs dynamic balancing tasks inspired by yoga exercises. The sequence of images from the complete gymnastics
routine is presented from left to right. The top row depicts the front view, while the bottom row depicts a three-quarter view.

Demonstration A: Vision-based Locomotion
In the first scenario, the robot is asked to autonomously
retrieve a cushion stored on a shelf that is accessible only
through a narrow entry-point into a confined space and a set of
stairs. An overview of the entire motion sequence is provided
in Fig. 2. In the following, we describe the individual motion
elements of the motion sequence.
Point 1: First, the robot uses an AprilTag [11] attached to the
ground (tag 1) to determine its own position and orientation
with respect to the workspace objects (self-localization). Once
this is known, the motion sequence to turn and walk towards
the stairs is generated.
Point 2: The robot stops and localizes the stairs using the
AprilTag attached to the stairs (tag 2). While tag localization
is also possible during walking, the localization accuracy
is higher when the robot is stationary. Here, due to the
challenging task of navigating the narrow space in front of
the stairs and climbing the stairs, we opted for the high
localization accuracy in detriment of the task execution speed.
Point 3: Since the space in front of the stairs is highly confined,
TORO has to turn and walk sideways to approach the stairs.
Note that, from this moment on, a high positioning accuracy
for the step placements is required.
Point 4: The robot leans its upper body forward while main-
taining a constant CoM position, moving its hips backwards in
the process. This posture significantly reduces the maximum
torque required in the knee joints during stair climbing.
Point 5: TORO climbs the stairs dynamically, utilizing only
one foot per stair step.
Point 6: The robot grasps the cushion using its inherent
compliance provided by the impedance control strategy. This

task requires precise torque control and a high positioning
accuracy to avoid a collision with the shelf.
Point 7: The robot descends the stairs backwards with one foot
per stair step while carrying the cushion.
After descending the stairs, the robot exits the confined space
by again walking sideways, then returns to the starting posi-
tion, and delivers the cushion.

Demonstration B: Dynamic Balancing
In the second scenario, the robot performs several yoga poses
(Fig. 3) that can be envisioned as a motivation for the elderly
to maintain a healthy body activity level. In addition to the
motion planner capabilities, this scenario demonstrates the
high performance and robustness of the torque-controlled robot
in combination with a passivity-based whole-body controller.
Note that all poses are performed in a continuous dynamic
motion sequence.

Demonstration C: Shared Autonomy Walking
In the last scenario, we demonstrate how the robot can navigate
a homelike environment in a shared autonomy mode (see
Fig. 4). The robot localizes itself in a world map via AprilTags
attached to the environment. The operator commands the
walking direction and velocity via a standard gamepad. At the
same time, the robot validates the human input for feasibility
and ignores commands if these lead to violations of the defined
boundaries. These constraints consist of workspace boundaries
such as walls, virtual barriers, or inaccessible ground areas.
The operator can observe the robot world representation and
the workspace boundaries on a screen where this information
is provided as a digital twin environment.



IEEE ROBOTICS & AUTOMATION MAGAZINE, 2025 4

Real Environment

User Input: Walking 

direction and speed Input Validation Feasible Motion Generation

Robot World Representation

forbidden areas

planned

footsteps

virtual

barrier

Fig. 4. Demonstration of shared autonomy walking. The operator commands the walking direction and speed while the robot validates the inputs for feasibility
based on workspace boundaries, and updates the motion sequence accordingly. The top right image shows the digital twin environment that the robot operator
can observe on a screen, depicting the planned footsteps, the forbidden area, and the virtual barrier that the robot is not allowed to cross.

III. MOTION PLANNING

In our presented demonstrations, the human operator ini-
tiates the humanoid robot’s motion by giving a high-level
command through a joystick input device or a computer user
interface. The command can be as straightforward as executing
a simple action such as walking to a certain point, turning
in place, crouching, etc., or more complex such as bringing
an object (Demonstration A) or performing a gymnastics
routine (Demonstration B). The role of the motion planner
is to transform autonomously the high-level command into
continuous reference trajectories of the quantities relevant
to humanoid locomotion: CoM position, body orientation,
angular momentum, feet positions, and upper body configura-
tion. These quantities constitute the whole-body task that the
tracking controller is realizing on the humanoid robot through
the torque commands.

The motion planner has five main components (see Fig. 5):

• Action sequencer: transforms the high-level command
into a sequence of simple actions (walking, turning,
balancing) with corresponding intermediate goals.

• Footstep planner: generates successive contacts (foot-
steps) such that each intermediate goal is fulfilled.

• Plan assembler: creates a motion plan composed of mul-
tiple phases for each locomotion subtask quantity (CoM
position, base orientation, etc.)

• Reference trajectory generator: produces the instanta-
neous values for each locomotion subtask and assembles
the whole-body task.

• Footstep adjustment module: computes contact adjust-
ments in response to unrecoverable tracking errors re-
ported by the whole-body controller

The actions sequencer, the footstep planner, and the plan
assembler are executed asynchronously, i.e., using an event-
based execution principle. In contrast, the reference trajectory
generator and the footstep adjustment module are part of
the realtime process, and are computed synchronously at
the execution rate of the whole-body controller (1 kHz). In
the following, we describe each module in more detail and
discuss their functionality in the context of the demonstrations
presented above.

For the sake of clarity, we provide here explicit definitions
of common concepts that are used throughout the article.
We denote as the robot’s pose the combined CoM position
and body orientation expressed in world coordinates; a sub-
quantity in the xy-plane is the 2D pose, representable as
the tuple (x, y, yaw). Combining the robot’s pose with the
complete joint configuration produces the robot’s posture. The
robot’s stance is defined as the set of contacts the robot
makes with the environment, each contact being characterized
by the position and orientation of the employed end-effector.
Typical stance types are single- and double-support stances,
and, in the demonstrations presented here, the end-effectors
used for locomotion are always the robot’s feet. Therefore, in
the rest of the article we use the terms contact and footstep
interchangeably. Nevertheless, for multi-contact locomotion
and balancing, other parts of the body can be used to establish
contacts with the environment: hands, elbows, knees, etc., as
we have shown in our previous work [12]. Regarding contact
transitions, we use the terms attach and detach to denote
making and breaking contacts, respectively.
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Fig. 5. Overview of the motion planner. The modules composing the motion planner are depicted in blue. The high-level command can be one of the following:
adapt an action sequence with information gathered through computer vision (Demonstration A), follow a predefined sequence of actions (Demonstration B),
or can be given directly through a joystick interface (Demonstration C).

A. Action sequencer

In response to a high-level command from the human
operator, an action sequence is constructed by either adapting
a predefined sequence with information gathered through com-
puter vision (Demonstration A), retrieving a stored sequence
(Demonstration B), or instantaneously following the com-
mands given through a joystick interface (Demonstration C).
Each action is characterized by a specific goal posture and
is constructed such that the robot can maintain this posture
in static balance indefinitely after finishing the respective
motion. For example, a walking action to a certain waypoint
is specified at this stage only as the final pose of the robot
at the given target location. The number of steps and their
exact locations are not yet known, these computations being
the responsibility of the footstep planner. In consequence, the
total duration of the action is also unknown, as it depends
on the number of steps and the time parametrization of the
walking gait (single/double support times). These aspects of
the motion planning process are covered by the plan assembler.

The action sequencer instantiates actions from a library
of configurable action templates that represent basic motions
of the humanoid robot. Each action template is a reusable
motion element that can be configured with a high level of
granularity. We distinguish among four types of executable
actions, cataloged here by increasing complexity:

1) Elementary actions affect only one subtask of the whole-
body motion, leaving the other subtasks unaffected. Natural
instances of elementary actions are: SHIFT-COM, CHANGE-
ORIENTATION, MOVE-LIMB, MOVE-JOINT, OPEN-HAND,
etc. For example, the CHANGE-ORIENTATION action can be
used to change the robot’s body orientation relative to the
world frame by a configurable amount. We use this action
during Demonstration A to command the robot to lean forward
(increase the body pitch angle by 18◦) before climbing the
stairs.

2) Balancing actions require the coordination of two or more
subtasks while the robot maintains a balancing posture. Typical
examples are stance-changing actions like ATTACH-CONTACT
and DETACH-CONTACT, where the addition or removal of
a contact to the current stance and the corresponding CoM
motion need to be coordinated. A more complex example is the

REPOSITION-CONTACT action, which encapsulates into a sin-
gle action a sequence of three simpler actions performed with
the same limb: DETACH-CONTACT, MOVE-LIMB, ATTACH-
CONTACT. The ATTACH-CONTACT and DETACH-CONTACT
actions are used during Demonstration B to switch to the
single-support stance and back to double-support for the
balancing exercises, with REPOSITION-CONTACT being used
to change to a wide stance before performing the arm motion
exercises.

3) Locomotion actions consist of successive steps with al-
ternating right and left feet. Using the terminology introduced
above, each step can be described as a REPOSITION-CONTACT
action of the corresponding leg. Common locomotion ac-
tions that are used in our demonstrations are: WALK-TO-
WAYPOINT, TURN-IN-PLACE, CLIMB-STAIRS, DESCEND-
STAIRS. Additionally, our action library contains further lo-
comotion gaits, such as running, jumping, or skipping, which
we described in our previous work [13]. However, the absence
of shock-absorbing elements in the real hardware as well as
the limitations in joint torques and velocities prevent us from
demonstrating these gaits in an experimental setting.

4) Composite actions combine two or more actions into one
standalone entity. A composite action extends the basic motion
of one of the actions presented so far with additional subtasks,
for example, by adding arm and hand motions during walking
for a loco-manipulation task. In Demonstration A, a composite
action is used for the cushion grasping motion, combining
arm motions (MOVE-LIMB actions for the left and right arm,
respectively) with a vertical CoM adjustment (SHIFT-COM
action). The commanded CoM vertical shift ensures that the
robot’s hips maintain a relatively constant height above ground
during the arms’ upward motion.

The complete sequence of actions corresponding to the
high-level command performed in Demonstration A is given
in Table 1. In general, the action parameters used in this
demonstration are fixed (lean forward 18◦, 2 stair steps),
fitting our robot’s capabilities and the predefined environment.
Ideally, these parameters could be captured or computed
according to an advanced perception algorithm that interprets
the environment to acquire the corresponding parameters for
each action template. Note that even though the sequence of
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Action Parameter / Comment
WALK-TO-WAYPOINT waypoint 2 (relative to tag 1)
WALK-TO-WAYPOINT waypoint 3 (relative to tag 2)

TURN-IN-PLACE align yaw angle with tag 2
WALK-TO-WAYPOINT waypoint 4 (lateral walking)

CHANGE-ORIENTATION lean forward 18◦

CLIMB-STAIRS 2 stair steps
CHANGE-ORIENTATION stand upright

GRASP-CUSHION composite action
DESCEND-STAIRS 2 stair steps

LOWER-ARMS composite action
WALK-TO-WAYPOINT waypoint 3 (lateral walking)
WALK-TO-WAYPOINT waypoint 1 (start pose)
RELEASE-CUSHION composite action

Table 1. Action sequence for cushion retrieval with vision-based locomotion
(Demonstration A).

actions is predefined, the locations of the waypoints 2, 3, and
4 are specified relative to the tag poses, which are unknown
at the beginning of the demonstration. Therefore, the concrete
actions composing the action sequence can only be instantiated
when the tag locations are determined. During the localization
procedure, while the vision module reorients the camera by
moving the robot’s head, and the tag detection algorithm is
executed, the action sequencer is in idle mode, waiting for the
localization result. This situation occurs at waypoint 1 (start
pose) for tag 1 localization, and at waypoint 2 for tag 2, after
executing the first WALK-TO-WAYPOINT action. Even though
no explicit action is generated, this situation is interpreted by
the plan assembler and the reference trajectory generator as
an instruction to maintain the current reference whole-body
task while balancing. The same behaviour is implemented for
Demonstration C (see Fig. 4), whenever there is no operator
input given through the joystick controller. We discuss these
cases in more detail below.

B. Footstep planner

The footstep planning process is initiated by the action
sequencer whenever a locomotion action is generated. Given
the robot’s 2D pose at the end of the previous action and
the goal pose of the current locomotion action, the footstep
planner generates a sequence of contacts with alternating left
and right footsteps connecting the two poses (see Fig. 6b).
If the previous action is also a locomotion action, the first
footstep is chosen such that it naturally continues the existing
sequence; i.e., if the previous sequence ends with the left foot,
then the first footstep of the current sequence is taken with the
right foot, and vice versa. For other types of preceding actions
or in the initial pose, the first footstep is determined based on
the motion type (see Fig. 6a): forward and backward walking
start with the right foot, lateral walking and turning start with
the foot corresponding to the direction of motion (right foot
if walking to the right, left foot for left turns, etc.). A similar
algorithm is employed when the actions are generated online
via a joystick interface: during walking, the footstep planner
generates alternating footsteps, when no commands are given,
the robot stops and maintains balance in a standing pose, and,

finally, when commands are resumed, the initial footstep is
determined by the direction of motion.

The parameters guiding the footstep planning process are
the maximum step length on the x- and y-axes, and the
maximum turning angle during one step. In order to prevent
collisions between the feet, the footstep planner avoids foot-
step placements that would cause the swing foot to cross the
body’s sagittal plane. Furthermore, potential knee collisions
are averted by prohibiting the inward turning of the footsteps.
The effect of this strategy can be seen in Fig. 6c, where
the walking trajectory curves to the right, as seen in the
local coordinates. Here, only the right footsteps contribute
to the turning motion, as they correspond to outward turns
of the foot; in contrast, the left footsteps maintain the same
orientation as the preceding right footsteps.

The result of the footstep planning process is a chain of
contacts, where each contact is linked to the preceding one
by a constraint formulated as a footstep placement bounding
area (see Fig. 6c). This information is used by the footstep
adjustment module, which can make changes to the contact
positions in response to unrecoverable tracking errors reported
by the whole-body controller. For example, when adjusting
the constrained contact labeled i, the adjustment offset is
limited by the requirement that the footstep remains inside
the bounding area associated with the reference contact i− 1,
marked in gray in Fig. 6c. Moreover, as the contact i is shifted,
its corresponding bounding area (marked in green in Fig. 6c),
being rigidly attached, is moved accordingly. If, as a result,
the subsequent contact i + 1 lies outside the bounding area,
it is also automatically shifted until it is again placed fully
inside the bounding area. This operation is performed for all
remaining contacts in the contact chain, and their respective
constraints are enforced (contact i+2 must remain within the
bounding area associated with contact i+ 1, etc.).

The footstep planner also plays an important role in the
shared autonomy scenario (Demonstration C). Using a world
map consisting of free and forbidden areas, the footstep
planner ensures that all footsteps are placed within the free
areas. If, as a result of a human operator’s command, the
generated footstep would be placed outside the workspace
boundaries or would intersect one of the forbidden areas, the
footstep planner automatically shifts the footstep such that it
is placed fully inside the permissible area.

C. Plan assembler

The plan assembler transforms the action sequence into an
executable motion plan, which consists of explicitly timed
instructions for each subtask of the whole-body motion (CoM
position, body orientation, foot pose, etc.). The motion plan
can be regarded as a two-dimensional structure, with time as
the horizontal axis, and the subtasks forming the vertical axis
(see Fig. 7). The basic building block of the motion plan is
the motion phase, each phase having a configurable duration
and encapsulating a single subtask instruction to the reference
trajectory generator: maintain a constant value (Hold), inter-
polate between start and end values using linear or higher
order polynomials (Move, Shift), etc. The motion phases can
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be configured with a high degree of granularity, and are linked
together such that the final state of one phase becomes the
initial state of the subsequent phase. This approach, combined
with the usage of C2 continuous interpolations within each
phase, ensures that no discontinuities are created in the ref-
erence trajectories. Note that the actual implementation of a
particular phase type depends on the subtask on which it is
applied. For example, the motion phase labeled “Hold” is used
on all subtask plans with the same semantics of maintaining
the previous state unchanged for the complete phase duration.
However, the specific state values being held constant depend
on the actual subtask on which the phase is used.

In most cases, the motions performed by the humanoid robot
require a high degree of coordination among the individual
subtasks. The classic example in this regard is walking,

where foot movements and contact transitions are carefully
synchronized with the CoM motion. With these considerations
in mind, we introduce a new element called a move, which
contains the detailed, complete motion plan for a basic unit
of motion such as taking a step, climbing a stair step, leaning
forward, etc. (see Fig. 8). Moves are designed as a bridging
layer between actions and motion phases: each action is im-
plemented by one or multiple moves, and each move contains
one or several phases for each subtask. This intermediate
layer aspect becomes apparent also in the typical execution
times of the various motion elements. While action execution
times can stretch up to 10 seconds or more (e.g., WALK-
TO-WAYPOINT, CLIMB-STAIRS), and motion phase durations
are generally short (e.g., a contact attach phase lasts 50 ms,
the double support phase during walking, 300 ms), moves are
designed as reusable motion elements with durations around 1
or 2 seconds (e.g. a walking step takes 1.2 s, a climbing step
1.7 s). Of course, the durations given here are meant only for
exemplification. Faster or, if needed, slower walking can be
easily implemented through the appropriate parametrization of
the corresponding moves. In fact, our method of creating CoM
trajectories admits arbitrary motion durations with no upper
limits, and lower limits only given by the physical constraints
of the robot [14].

In an additional role, moves serve as units of communication
between the plan assembler and the reference trajectory gener-
ator. The motion planner employs a rolling window approach
to the plan execution, selecting a fixed number of moves from
the total plan to be sent to the reference trajectory generator
(Fig. 7). Whenever a move execution is finished, the plan
assembler is notified and shifts the rolling window by one,
removing the executed move and appending the next move
to the executing plan. Consequently, we need to consider the
case where the communication between the asynchronous and
the synchronous parts of the motion planner is interrupted,
and the final move within the rolling window would leave
the robot in an undesirable state. One such example is during
walking, where the “Walk Step” move ends in a single support
stance with the swing foot at the next footstep location
without having established contact (see Fig. 8a). To avoid these
situations, the plan assembler creates a safe motion plan by
appending a stopping step that leaves the robot in a statically
stable configuration with both feet parallel to each other (see
Fig. 8b and rightmost robot image in Fig. 7). The “Stop Step”
implementation and its time parametrization depend on the
last move in the plan, with different variants for each walking
mode: walking on flat terrain, stair climbing, etc. Note that
this stopping step is not inserted into the original plan. Instead,
it is appended to a copy of the plan selected by the rolling
window method before being sent for execution. Therefore, in
the nominal case, the original plan is executed normally, using
the rolling window approach presented above.

A special case that we mentioned above is when the action
sequencer is waiting for the tag localization procedure to com-
plete, and no actions are being generated. The plan assembler
recognizes this state and automatically creates waiting moves,
consisting of Hold phases for all subtasks, and appends them
to the motion plan. This instructs the robot to maintain its
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balance in the current contact configuration. When the tag
localization is complete, the plan assembly process resumes
normally for the newly generated actions.

In the following, we discuss the subtask plans in more detail
and, using Fig. 7 and Fig. 8 as case studies, we explain the
effects of each individual phase type. As a general principle,
whenever contacts are involved in the motion phase execution,
the start and end values are defined relative to the contact
poses. For example, the phase “Move c1 → c3” from Fig. 8a
instructs the robot to move its left foot from contact c1
to contact c3. The actual poses of these two contacts are
determined only at execution time, and they can differ from
the planned contact poses after being modified by the footstep
adjustment module.

1) CoM subtask. For the CoM trajectory generation, we use
the three-dimensional Divergent Component of Motion (3D-
DCM) framework [15], which is a reformulation, without loss
of generality, of Newton’s second law of motion

c̈ =
1

m
fext + g, (1)

where c̈ denotes the CoM acceleration, m the robot’s total

mass, fext ∈ R3 is the sum of all external forces acting on
the robot, and g = (0 0 −g)T , the gravitational acceleration
vector. The 3D-DCM framework proposes the substitution of
the external force fext in equation (1) with a point, called
the Enhanced Centroidal Moment Pivot (eCMP). The eCMP
e ∈ R3 encodes the direction and magnitude of the external
force via

fext =
m

b2
(c− e), (2)

where b is a time constant defined as b :=
√

∆z
g , with ∆z

denoting, for walking, the average CoM height above ground.
After introducing two additional points, the Virtual Repellent
Point (VRP) as v := e + (0 0 ∆z)T , and the 3D Divergent
Component of Motion (DCM) as ξ := c + b ċ, the second-
order CoM dynamics (1) can be written equivalently as the
two first-order dynamics

ċ = −1

b
(c− ξ),

ξ̇ =
1

b
(ξ − v).

(3)
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Fig. 8. Two examples of reusable moves, showing the planned footsteps on
the left side and the detailed motion plans on the right. (a) A walking step
taken with the left leg, using the right leg for support. The double and single
support phases are indicated by their durations, TDS and TSS , respectively.
(b) The subsequent stopping step taken with the right leg. This step type
extends the functionality of the walking step with an additional stopping phase
with duration Tstop. At the end of the motion, the robot is standing, with its
CoM horizontal position located in the middle of the support area formed by
the c3 and c4 footsteps.

The planning process using the 3D-DCM framework con-
sists of placing a sequence of eCMP waypoints, computing
the associated VRPs with the vertical offset ∆z given as
a parameter, and integrating in closed-form (3) for a piece-
wise interpolation of the VRP trajectory through the placed
waypoints. From a planning point of view, there are two
major advantages of using the 3D-DCM framework. First,
the planning problem is simplified by directly placing eCMP
waypoints onto arbitrary footstep sequences, compared to
finding feasible force profiles in the vector space for the
same problem. Second, the split into two first-order dynamics
enables the combination of reverse-time integration of the
DCM dynamics and forward-time integration of the CoM
dynamics, leading to bounded CoM trajectories for arbitrary
motion durations [14].

The CoM subtask motion phases encapsulate instructions
for the eCMP waypoint placement and its corresponding
motion during the phase execution. In the motion plan example
from Fig. 7, we use the following phase types, presented in
the order in which they appear in the plan:

• Shift: moves the eCMP from one footstep to the next
using linear interpolation. This phase is usually described
as the double support phase of the walking gait, however,
the term weight-shift is a more accurate depiction of the
performed motion.

• Hold: maintains a constant eCMP position. This phase
is typically used for walking during the single support
phase, or while balancing and performing other subtasks
such as changing the body orientation.

• Stop: moves the eCMP from the last support footstep to a
point situated in the middle of the standing support area.
At the end of this phase, the DCM and VRP positions
coincide, which corresponds to the resting state of the
3D-DCM framework (zero DCM velocity).

• Continuity: computes an intermediate eCMP waypoint
that eliminates a discontinuity in the resulting DCM tra-
jectory caused by the reverse-time integration combined
with the stationary initial DCM position (for more details,
see [13]). This phase is used in the initial state or after
a Stop phase has been executed, i.e., whenever the robot
starts moving from a standing position.

• Raise: moves the eCMP vertically while maintaining a
fixed horizontal position. This motion is typically used
during stair climbing for raising the CoM position to the
configured height above each stair step.

2) Body orientation subtask. The robot’s body orientation
at the end of each motion phase is given as Euler angles,
more specifically using the Tait-Bryan formalization (also
called roll-pitch-yaw angles)1. Here, we prefer this formulation
because its singularity, a pitch angle of 90◦, lies far outside
the range of motions commonly performed by the humanoid
robot. Moreover, each motion phase can change the angle of
a single rotation axis while leaving the others unaffected. For
example, crouched locomotion in vertically confined spaces
[12] is implemented by increasing the pitch angle once, at the
start of the motion, and only adjusting the yaw angle during
walking. We use the same method here, in Demonstration
A, for climbing the stairs. During walking, the yaw angle is
parametrized with the yaw orientations of the right and left
footsteps: in Fig. 8a, the term yaw(c2, c3) denotes the average
yaw angle of footsteps c2 and c3. In the motion plan example
from Fig. 7, we use the following phase types:

• Yaw: aligns the yaw angle with the current footsteps, as
discussed above, using a fifth-order polynomial interpo-
lation from the previous value.

• Hold: maintains a constant orientation.
• Pitch: changes the pitch angle to lean forward or stand

upright, using a fifth-order polynomial interpolation.
3) Limb subtask. Each limb (arm or leg) has two main modes

of operation: “in-contact” and “free”. While in-contact, the
limb is used to push against the environment, and thus gener-
ates an external force that moves the CoM along its reference
trajectory. The direction and magnitude of the contact force are
computed in realtime by the whole-body controller and depend
on the required CoM force, the number of limbs in contact
with the environment, and their respective contact constraints
(friction cone, center of pressure bounds, etc.). Consequently,
we can say that, in this operation mode, the limb’s subtask
is completely subordinated to the CoM subtask. In contrast,

1The Tait-Bryan angles are applied in ZYX order, i.e. z-y’-x”(intrinsic
rotations) or x-y-z (extrinsic rotations). The intrinsic rotations are known as
yaw, pitch, and roll.
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when the limb is free, the position and orientation of the end-
effector (foot or hand) can be given as Cartesian quantities, or,
alternatively, its configuration can be specified in joint space.
Due to the widely different nature of the two operation modes,
switching from one to the other requires transition phases that
ensure the continuity of the commanded forces [16]. Note that
in our presented demonstrations, the legs are always controlled
in Cartesian space, while the arms are controlled in joint space.

In the motion plan example from Fig. 7, we use the
following limb phase types:

• Attach: establishes a rigid contact with the environment.
The limb is in-contact already at the start of this transition
phase, however the maximum generable contact force is
limited throughout the phase, gradually increasing to its
nominal value.

• Hold: maintains the current operation mode. If the limb
is free, maintain a constant Cartesian pose or joint con-
figuration.

• Detach: gradually reduces the contact force to zero. The
limb is still in-contact throughout the phase, only at the
very end of this transition phase, the limb is free.

• Move: moves the foot from one contact pose to the next
on a collision-free trajectory. There are different variants
of this phase for each walking mode: on flat terrain, a
simple ground-clearing motion with a configurable step
height is sufficient; for stair climbing and descending, the
foot trajectory is designed such that the toe edge does not
collide with the stair step.

D. Reference trajectory generator

The motion planner modules presented until this point - the
action sequencer, the footstep planner, and the plan assem-
bler - work asynchronously, using an event-based execution
principle. Each module reacts to its external input (high-level
command or action sequence), computes a result (action se-
quence, footstep sequence, or motion plan), and then waits for
the next event. In contrast, the reference trajectory generator
works synchronously, in realtime, at the same execution rate
as the whole-body controller. As a consequence, the reference
generator has to produce a whole-body task for the controller
even in the absence of a motion plan. We identify two cases
where this situation can occur.

First, when the reference trajectory generator is started for
the first time, it samples the current robot posture (CoM posi-
tion, body orientation, and joint configuration) and holds this
sampled state as a constant whole-body reference. This initial
posture is also sent to the action sequencer in preparation for
receiving the first command from the human operator. The
only assumption made by the motion planner in the initial
state is that both feet are in contact with the ground and the
initial CoM is positioned such that the robot can maintain its
balance indefinitely, i.e. the robot is standing. This default
assumption can still be adapted by the human operator to
specific scenarios before starting the motion planner and the
whole-body controller.

Second, when the motion plan ends, the reference trajectory
generator holds the last posture as a constant whole-body

reference. As stated before, the final posture for each action is
designed such that the robot can maintain it indefinitely (stable
balance). As an additional safety feature, the motion plan sent
for execution is amended to leave the robot in a safe resting
posture in case the plan execution is stopped prematurely due
to a communication breakdown.

Finally, we consider the nominal case, where the reference
task is computed from a received motion plan. For each sub-
task, the trajectory generator keeps track of the current move
and the local execution time, notifying the plan assembler of
the execution progress whenever a move is completed.

Each motion phase contains a single instruction to be per-
formed by the trajectory generator, together with the necessary
parameters: the phase duration, the interpolation function, and
the subtask-specific goal values or contact references, where
applicable. In general, the information contained in the current
motion phase is sufficient to compute the instantaneous quan-
tities. However, for the CoM subtask, the trajectory generation
uses eCMP waypoints and the reverse-time integration of
the DCM trajectory, starting from a DCM resting position
at the end of the motion plan. This approach requires the
reference generator to determine all DCM waypoints, and,
in case of locomotion gaits that contain flight phases, also
all CoM waypoints. To address this requirement, we propose
in our recent work [13] a highly efficient, realtime capable
algorithm for computing the DCM and CoM waypoints for an
arbitrary sequence of motion phases. As an example of the
execution performance, the algorithm calculates all waypoints
for a sequence of 26 CoM motion phases within 25 µs on
TORO’s computing hardware [8].

A further noteworthy aspect pertains to the implementation
of the transitions between the two limb operation modes, in-
contact and free. While in-contact, only the contact force is
relevant, with the foot reference pose being left unspecified. As
a result, the robot’s actual foot pose naturally adopts the height
(z coordinate) and slope (roll and pitch angles) of the ground
under the foot, this contact adaptability being one of the
main advantages of the torque-controlled locomotion method.
However, once the limb is free, the interpolation algorithm
requires an initial reference pose from which to compute the
instantaneous reference values. Therefore, at the start of the
Detach phase, the reference generator samples and retains the
actual foot pose for use as the initial reference value in the
subsequent phase, which can be either a Move or Hold phase.

E. Footstep adjustment
The addition of the footstep adjustment module transforms

the purely feed-forward motion planner presented so far into a
reactive motion planner. In most cases, it is the responsibility
of the whole-body controller to react to external disturbances
and to correct deviations from the reference trajectory. How-
ever, due to actuation limitations as well as the requirement
for the robot to react compliantly in human-robot and robot-
environment interactions, some tracking errors will remain
uncorrected. Combined with the unstable nature of bipedal
walking, which is mathematically apparent in the unstable
DCM dynamics (3), these tracking errors could lead to the
robot falling with potentially dangerous consequences.
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Legged locomotion requires the careful synchronization
of the CoM trajectory with the feet movement and their
respective contact transitions. We have already achieved this
synchronization within the plan assembler by referencing the
contact poses in all motion phases of the relevant locomotion
subtasks (Fig. 8). As a consequence, any runtime changes
to the contact poses will continue to produce consistent
whole-body trajectories. This approach greatly simplifies the
implementation of the reactive module, as it can just modify
the planned contacts in response to the unrecoverable tracking
errors reported by the controller. We distinguish between two
types of correcting reactions performed by the motion planner,
with both being introduced in our previous work [17].

First, swing foot tracking errors are interpreted probabilis-
tically to determine the contact placement accuracy. At the
start of the swing phase, the likelihood that the foot tracking
error will be corrected until contact acquisition is high, but
this probability decreases as the phase progresses. Therefore,
the planned footstep is gradually adjusted to reflect the likely
foot placement, with the final footstep location corresponding
to the actual foot pose at the end of the swing phase. We refer
to this reaction as the stumble recovery, because it adjusts the
CoM trajectory in response to swing foot tracking errors.

The second reaction type corresponds to the stepping strat-
egy employed as part of the push recovery. In this case, the
footstep adjustment is computed from the DCM tracking error
that cannot be corrected by the eCMP modulation within the
boundaries of the current support area (ankle strategy). In
our CoM trajectory generation algorithm, the relation between
the instantaneous DCM position and each footstep location is
linear, and can be computed efficiently for all stages of the
walking gait [17].

Finally, note that one footstep adjustment can lead to addi-
tional footsteps being adjusted in order to keep them within
their respective placement bounding areas. This aspect was
discussed in more detail in the footstep planner section.

IV. MOTION CONTROL AND HARDWARE

For the motion execution, we use the passivity-based whole-
body torque controller, introduced for balancing tasks in [18],
and extended to dynamic contact transitions such as walking,
running, or general multi-contact locomotion in [16]. The
whole-body controller was described in detail in the referenced
publications; here, we present briefly its main components.

State estimation. The tracking performance of the whole-
body controller is directly linked to the quality of the state
estimation. Our implementation uses a direct, lag-free method
of computing the robot’s base frame and its velocity using
contact information, the robot’s kinematic model, as well as
measurements of the joint positions, force/torque sensor, and
inertial measurement unit (IMU).

Angular momentum (online motion optimization). The
motion optimizer uses a subset of the DoF of the whole-
body reference trajectories to induce an angular momentum
objective resulting from the motion planner [19]. For walking
scenarios, the DoF of the upper body are used to regulate the
yaw component of the centroidal angular momentum to zero,
leading to an arm-swinging motion.

Fig. 9. The humanoid robot TORO, highlighting the hardware improvements
made from the previous version presented in [8].

Whole-body controller. The passivity-based whole-body
controller [16], [18] implements the whole-body task as a non-
strict task hierarchy, creating passive and compliant behavior
for each locomotion subtask (CoM location, body orientation,
etc.) via virtual spring-damper constructions. The algorithm
computes contact forces as the solution of an optimization
problem, distributing the CoM wrench to the end-effectors,
while taking into account the contact constraints (unilateral-
ity, friction, center of pressure). Furthermore, the compliant
feedback controller is combined with a feedforward control
element, thereby improving the overall tracking performance.

Low-level torque controller. The joints are modeled as
linear mass-spring-damper systems due to their comparably
low joint stiffness induced by the strain wave gears. A PD-
type torque feedback method is formulated in [20], using the
link-side torque measurement to track the commanded joint
torques. The joint torque feedback can be interpreted as a
shaping of the motor inertia, while the allowable shaping ratio
depends mainly on the noise level of the torque sensor. Here,
a ratio between 4 and 6 could be achieved, based on our
empirical findings. The low-level torque controller at the joints
runs at a rate of 3 kHz.

Hardware. Since its debut, DLR’s torque-controlled hu-
manoid robot underwent several significant updates, starting
with the DLR Biped in 2010, and presenting the full humanoid
robot TORO in 2014 [8]. This article presents the latest
hardware upgrades (Fig. 9), which focused on increasing the
motor torques in the ankle and knee joints, and incorporat-
ing an advanced IMU (KVH 1750), leading to a significant
enhancement in the quality of the state estimation.

V. CONCLUSION

In this article, we have examined in detail the inner work-
ings of a practical motion planner, and demonstrated its use
in three different challenging scenarios. Note that, while the
sequence of actions for Demonstration A has been hand-
crafted to achieve the desired task, an automated knowledge-
based task planner could use the library of actions provided
by the motion planner to infer the task order autonomously.
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This extension of the motion planner, as well as increased
perception capabilities to navigate the environment without
requiring tags, but using for instance a pure Simultaneous
Localisation and Mapping (SLAM) approach, are part of our
future research efforts.

While the presented motion planner is by no means com-
plete, its extensibility and configurability can be seen as the
necessary prerequisites towards the development of a full
motion planning framework. We have already taken the first
steps in this direction, by extending the motion planning
to generate and control more dynamic bipedal locomotion
gaits like running and jumping [13], or enhance the walking
gait with an angular momentum compensation strategy [19].
Moreover, the planning framework is generic enough to be
extendable to quadrupedal locomotion by including additional
gait types like trotting, pacing, etc.

Our motion planning framework borrows concepts from the
field of software engineering, including abstractions, modular-
ity, and reusability. Its major advantages over holistic meth-
ods like Model Predictive Control (MPC) or Reinforcement
Learning (RL) lie in the resulting explainability, ease of tuning
and adaptation, and in safety and stability guarantees. The
latter are based on the availability of analytical solutions for
the trajectory generation part, and the logical and consistent
structure of the actions, moves, and motion phases. Currently,
many of the motion parameters used in our planning frame-
work are empirically tuned to the capabilities of the robot.
Therefore, a combination of our motion planner with RL or
other optimization techniques carries great potential. This way,
motion phases and control parameters, or even complete trajec-
tories or moves, could be optimized and augmented to improve
the performance of our planning and control framework even
further, while the mentioned safety and stability guarantees
can still be upheld.

The motion planning framework proposed here alleviates
the load for roboticists to program in detail complex task
sequences. Such a framework is required to develop, exploit,
and transfer the motion skills among the numerous humanoid
robots in development nowadays. In response to the world-
wide interest in humanoid robots, we hope that our motion
planner can contribute to the rapid advancement of this tech-
nology, and can open the door towards new and exciting
applications in industrial settings and home environments.
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walking control based on divergent component of motion,” IEEE Trans-
actions on Robotics, vol. 31, no. 2, pp. 355–368, 2015.

[16] G. Mesesan, J. Englsberger, G. Garofalo, C. Ott, and A. Albu-Schäffer,
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