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Simulations of aeroelastic phenomena involve modelling complex fluid dy-
namics and the structural behaviour of components. Data driven implementa-
tions using machine-learning algorithms for aerodynamic simulations are cur-
rently under development as possible solutions. Recently there has also been an
increasing interest in utilising quantum computations and tensor network ap-
proaches (both on classical and quantum hardware) for machine learning (ML).
Therefore, we investigated the prospect of using hybrid quantum tensor network
based algorithms for aeroelastic problems.

Tensor networks were initially developed to reduce the computational cost
of lowly entangled multi-particle quantum states. Nevertheless, they are able to
efficiently approximate a wide variety of large tensorial objects using a regu-
lar, less complex structure. Thus, providing a convenient approach to quantum
machine learning (QML) [6].

A wide variety of QML approaches employing quantum circuits with tun-
able parameterised gates, so called variational quantum circuits (VQCs), have
recently been proposed [4]. Quantum tensor network for ML can be realised by
VQCs using a tensor network inspired internal gate structure [6].Unlike for gen-
eral VQCs, the dimension of the space of possible weights can be adjusted easily
by varying the bond dimension between each tensor node. This allows for access
to the full Hilbert space and a set of product spaces. Thus allowing the tuning
of the expressivity of the circuit [2].

QML is still in very early stages of development, therefore when designing
a quantum circuit, choices on a very basic level must be made, e.g. the data
encoding circuit, entangling schemes and the measurement processes. As it is
not clear to date which choices are the most relevant we carried out multiple
hyperparameter searches to find optimal configurations.

Classical tensor networks have various applications within aeroelastics, such
as aeroelastic system identification. The goal is to derive data driven models
which enable the prediction of aeroelastic characteristics including the stability
behaviour of the system [1].
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Fig. 1. Stable aeroelastic response.
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Fig. 2. Unstable aeroelastic response.

We used a simplified aeroelastic configuration including a low-dimensional
aerodynamic model for investigating the potential of QML for estimating the
flutter stability of the system, based on [5]. The stability is represented by time
series for different combinations of aerolastic parameters (a, µ, U∞), examples
are shown in fig. 1 and 2. The goal of this application case is to apply hybrid
quantum algorithms to the complete time series and on one hand determine
the binary stability classification and on the other to regress the generating
aeroelastic parameters from the time series.

The data has a wide range of values, therefore we clipped outlier values and
then applied a ±1 normalisation. Due to the one dimensional structure of the
time series, tensor networks and specifically Matrix Product States (MPS) are
well suited to express this type of data [6]. However, due to the computational
power needed to simulate quantum circuits we first needed to carry out a di-
mensionality reduction. We used classical 1D convolutional neural networks [3]
to reduce the data from 201 to an 8-dimensional compressed feature vector.
Which was then used as input for the MPS inspired quantum neural networks.

We found that the simple binary time-series classification could be easily
solved by our algorithm. Achieving a maximum F1-score of well above 0.9, av-
eraged over 5 repeated training runs. The best model achieved a F1-score of
0.999 as shown in the confusion matrix (CM) in fig. 3. We carried out a small
hyperparameter search since we quickly found good performing configurations.

For the regression task we used the same tensor networks inspired VQC
algorithm as in the previous task, up to the number of qubits measured. In the
first task we measured only 1 qubit to get the binary classification probability,
but for the regression task we needed to measure 3 expectation values to get the
regression values. This also increased the minimal bond dimension.

We carried out an extensive hyperparameter search and found that overall the
runs are less stable, especially when considering each dimension of the regression
vector separately as shown in fig. 4. This can be explained by the different
granularity of each component: a has 9 distinct values, µ has 5 and U∞ has 201.
The score difference between a and µ could be explained by the former having
enough values to better cover the normed target value range, so that the errors
between predictions and targets in the mean are less than for the more separated
values of µ.
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Fig. 3. Best test CM for
the classification task.
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Fig. 4. Test regression score for the best model for the re-
gression task, averaged over 5 runs.

The regression task is considerably harder to solve since the prediction of
discrete variables with multiple possible values using expectation values of ob-
servables is far more challenging than a binary classification, where only a certain
threshold has to be surpassed.

In conclusion, we found that hybrid quantum tensor network based algo-
rithms can be successfully applied to aeroelastic problems. Nevertheless the ap-
propriate choice of hyperparameters is still a challenge. At the moment, we have
achieved outstanding results for the time series classification task, and promising
results for regressing parameters from the time series.
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