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Borromean states in a one-dimensional three-body system
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We show the existence of Borromean bound states in a one-dimensional quantum three-body system composed
of two identical bosons and a distinguishable particle. It is assumed that there is no interaction between the two
bosons, while the mass-imbalanced two-body subsystems can be tuned to be either bound or unbound. Within
the framework of the Faddeev equations, the three-body spectrum and the corresponding wave functions are
computed numerically. In addition, we identify the parameter-space region for the two-body interaction, where
the Borromean states occur, evaluate their geometric properties, and investigate their dependence on the mass
ratio.
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I. INTRODUCTION

Few-body physics plays a central role in the fields of ul-
tracold quantum gases [1], nuclear physics [2], and hadron
physics [3]. Special attention is given to three-body systems
that have resonantly interacting two-body subsystems because
they often show universal properties that are independent
of the details of their short-range potentials [4]. Three-body
bound states can even exist in situations when all of the two-
body subsystems are unbound; those states are then named
Borromean states [5,6].

In three spatial dimensions, a two-body system with an
overall attractive potential may be unbound, when the inter-
action is weak enough. A system of three identical bosons
with the same pairwise interaction can, however, be bound.
Therefore there is a window for the coupling constant where
Borromean states can occur [7]. The Efimov effect is a
well-known example displaying such a behavior [8,9], and
the theoretical predictions have been verified successfully in
many experiments [6]. Moreover, such Borromean binding
plays an essential role in subatomic physics, e.g., in halo
nuclei [5,10,11]. In addition, those nuclei in three dimensions
have been modeled by one-dimensional three-body systems
[12].

When the particles are restricted to a two-dimensional
plane, the situation is different. Here a two-body interac-
tion with an overall attractive contribution always supports a
bound state [13]. Therefore the bound states of a three-body
system with such two-body interactions are not Borromean.
Nevertheless, it has been shown that Borromean three-body
states can exist in two dimensions by adding a repulsive con-
tribution to the two-body interaction potential [14,15].
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It is challenging to find or observe Borromean states in a
one-dimensional setup, as the underlying two-body systems,
similar to two dimensions, almost always have a bound state
for an overall attractive potential [13]. However, for the spe-
cial case of a continuously scale-invariant two-body potential,
which does not fulfill all conditions considered in Ref. [13],
the coupling can be tuned so that the two-body subsystem
supports an infinite amount of bound states or none at all.
For the latter case, it has been shown that an infinite number
of Borromean states exists in the corresponding three-body
system [16].

In this article we consider a one-dimensional three-body
system consisting of two types of particles with different
masses. They interact via a potential that has separate attrac-
tive and repulsive contributions. In this way, the parameters
for this potential can be chosen such that the two-body system
can be tuned continuously between two regimes to support
either one or zero bound states. Such a smooth tuning allows
us to identify the origin of the Borromean states. We solve the
three-body system numerically with the Faddeev equations in
momentum space [17] and find that this three-body system
indeed has Borromean states. Moreover, we identify their
region of existence in the parameter space of the two-body
interaction and analyze their geometric properties. In addition,
we find that the number of Borromean states increases for
larger mass ratios.

Considering the experimental feasibility, quasi-one-
dimensional systems in the form of cigar-shaped traps have
been realized [18,19]. The interaction between different
types of atoms can be adjusted with Feshbach resonances
[20,21] or confinement-induced resonances [22,23]. To
realize our system, cold dipoles which are aligned by an
external field and confined to multiple quasi-one-dimensional
tubes is a promising setup. The effective dipole-dipole
interaction within the same or different tubes can be adjusted
by the relative angle between the external field and the
tube alignment [24,25]. Thus, the necessary ingredients to
experimentally verify the theoretical predictions of this article
are fully accessible with current experimental techniques.
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The article is organized as follows. In Sec. II we introduce
the underlying two-body subsystems as well as the corre-
sponding three-body system. We also discuss the Faddeev
equations that we use in our numerical calculations. Then, in
Sec. III we show from our numerical results the existence of
Borromean states and their dependence on the system parame-
ters. In Sec. IV we propose an experimental setup to verify our
theoretical predictions. In Sec. V we summarize our findings.
The Appendixes A, B, and C provide further details on our
calculations.

II. TWO- AND THREE-PARTICLE SYSTEMS

A. Two-particle subsystem

We start from a one-dimensional two-particle system con-
sisting of distinguishable particles with masses M and m.
The stationary Schrödinger equation for the two-particle wave
function ψ (2)(x) is then given by[

−1

2

d2

dx2
+ v(x)

]
ψ (2)(x) = E (2)ψ (2)(x), (1)

with an interaction potential v(x). A two-body potential in
one dimension with

∫
dx v(x) < 0 always has a bound state

[13]. In contrast, a single repulsive barrier does not support a
bound state. In order to be able to tune the system between
a bound and unbound regime, we need both an attractive and
repulsive term. For simplicity, and in order to treat the two-
body system analytically, we consider a potential consisting
of two δ distributions,

v(x) = −v0
[
δ
(
x − 1

2

) − αδ
(
x + 1

2

)]
, (2)

with the parameters v0 > 0 and α, describing the magnitudes
of the overall potential and its relative repulsive contribution,
respectively. An interaction potential adapted for a possible
experimental setup employing dipoles is discussed later in
Sec. IV.

Both equations (1) and (2) are presented in dimensionless
variables. The position coordinate x is measured in units of the
distance a between the two δ functions. The potential strength
v0 and the two-particle energy E (2) are both given in units of
a characteristic energy h̄2/μa2, where μ = Mm/(M + m) is
the reduced mass.

In Appendix A we solve Eq. (1) analytically, derive a
transcendental equation for the two-particle energy E (2), and
discuss the number of solutions depending on α. For v0 > 0
we can distinguish four regions in the parameter space (α, v0),
Fig. 1, with different numbers of bound and virtual states in
our two-body subsystem. Virtual or antibound states corre-
spond to poles of the two-body S matrix, which are on the
negative imaginary axis of the complex momentum plane.
These states have negative energies, and their wave func-
tions grow exponentially and are therefore not normalizable
[26,27]. In this article we entirely work with regions I and II,
that is, restricting ourselves to α � 0, where the line

αc(v0) = 1

1 − 2v0
(3)

corresponds to E (2) = 0 and separates region I with a single
virtual state and region II with a single bound state. To explore

FIG. 1. The parameter space (α, v0) of the two-body subsystems
divided into four separate regions with respect to the number of
bound and virtual states. From top-left to bottom-right: one virtual
state (region I), one bound state (region II), one virtual and one
bound state (region III), two bound states (region IV). The dashed
line indicates αc(v0) given by Eq. (3).

the Borromean states in the three-particle system, we focus on
the transition between these two regions. For α < 0, the two-
particle subsystem supports either one virtual and one bound
state (region III), or two bound states (region IV).

B. Three-particle system

Next, we consider a three-body system in one dimension
with two identical bosons (B) of mass M and one distin-
guishable particle (X) of mass m. We assume no interaction
between the two bosons, while the BX subsystems interact
via the potential v(x), Eq. (2).

By eliminating the center-of-mass motion of the three-
body BBX system, depicted in Fig. 2, we arrive at the
stationary Schrödinger equation,

[H0 + V21 + V31]ψ (3) = E (3)ψ (3), (4)

for the three-particle wave function ψ (3)(x1, y23), where the
Hamiltonian of the free motion is given by

H0 = −αx

2

d2

dx2
1

− αy

2

d2

dy2
23

, (5)

FIG. 2. The Jacobi coordinates x1 and y23 for the one-
dimensional three-particle (BBX) system. The dot shows the center
of mass of two identical bosons, particles 2 and 3.
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and both of its coefficients

αx = m + 2M

2(m + M )
and αy = 2m

m + M
(6)

depend only on the mass ratio M/m. The two-body potential
terms

V21 = v
(

x1 + y23

2

)
and V31 = v

(
x1 − y23

2

)
(7)

for the BX subsystems are given by the function v(x), Eq. (2),
with the arguments being the relative distances between the
respective particles B and X.

In this article we are interested in finding the Borromean
states and their main features in our system. A three-body
state is called Borromean if it is bound, while all of its
two-body subsystems are unbound by themselves [5,6]. For
our interaction potential v(x), Eq. (2), the Borromean states
should therefore lie in region I of the parameter space (α, v0),
displayed in Fig. 1, where there is no two-body bound state.

C. Faddeev equations

We employ the Faddeev equations [26,28,29] in order to
calculate the bound-state spectrum and the wave functions
of the BBX system. For a derivation of the explicit form of
the Faddeev equations for our type of system, we refer to
Appendix of Ref. [17]. In practice, all information is encapsu-
lated in the set of one-dimensional integral equations

ϕλ(p, E ) =
∑

ν

∫
R

dq

2π
Kλν (p, q, E )ϕν (q, E ) (8)

for the functions ϕν (p, E ) with the kernel

Kλν (p, q, E ) = gλ(q + βp, Ep) g∗
ν (p + βq, Eq )

E − 1
2 q2 − 1

2 p2 − βpq
τν (Eq) (9)

and the shorthand notation

β = M

M + m
and Ep = E − 1

2
αxαy p2. (10)

The functions gν (k, E ) and τν (E ) originate from the sepa-
rable expansion for the off-shell t matrix of the BX subsystem,
whereas the indices λ and ν denote the number of terms in this
expansion. As shown in Appendix B, for the specific form of
our interaction potential v(x), Eq. (2), the separable expansion
has exactly two terms, ν ∈ {−,+}, and gν (k, E ) and τν (E ) can
be derived analytically.

We solve Eq. (8) numerically, Appendix C, and obtain
the energy E of three-body bound states together with their
functions ϕν (p, E ). The latter can be used to construct the
Faddeev component,

�(k, p) =
∑

ν

gν (k, Ep)τν (Ep)ϕν (p, E ), (11)

and finally, the wave function

ψ (p1, k23) = G0(p1, k23, E )

×
[
�

(
−αx p1 − αy

2
k23,−1

2
p1 + k23

)

+ �

(
−αx p1 + αy

2
k23,−1

2
p1 − k23

)]
(12)

of the three-body system in momentum space. Here,

G0(p1, k23, E ) = (2π )2

E − 1
2αx p2

1 − 1
2αyk2

23

(13)

is the Green function of the free three-body system, corre-
sponding to the Hamiltonian H0, Eq. (5).

In this way the wave function in position space can be
obtained from the Fourier transform

ψ (3)(x1, y23) =
∫
R

dp1

2π

∫
R

dk23

2π
ei(p1x1+k23y23 )ψ (3)(p1, k23)

(14)
of the wave function in momentum space.

III. BORROMEAN STATES

In this section we study the three-body spectrum of the
BBX system and the conditions for the parameters α and v0

under which the Borromean states exist, as well as the ground-
state wave function and its geometric properties. Further, we
examine the dependence of Borromean states on the mass
ratio M/m.

The goal is to observe the behavior of the three-body BBX
system while its BX subsystems undergo a transition from
supporting exactly one bound state to supporting only a single
virtual state. To do this we are tuning the parameters α and v0

for both two-body interactions V21 and V31 simultaneously, so
that both BX subsystems are identical at all times.

A. Existence and Borromean window

We start in parameter-region II, Fig. 1, at the point (v0 =
0.32, α = 0), where the potential v(x), Eq. (2), has only a
single δ well and therefore the BX subsystem supports exactly
one bound state. We confirm the correctness of our calcula-
tions by setting the mass ratio to M/m = 22.2, corresponding
to a Cs-Li mixture [30,31], and reproducing the energy spec-
trum

E (3)
0 = 2.7515 E (2)

E (3)
1 = 1.3604 E (2) (15)

E (3)
2 = 1.0525 E (2)

of three-body bound states reported previously in Ref. [32]
and obtained with the Skorniakov-Ter-Martirosian method
[33]. Here, E (3)

0 , E (3)
1 , and E (3)

2 denote the energies of the
ground, first excited, and second excited three-body state,
respectively, in units of the two-body energy E (2).

Positive values for α introduce a repulsive barrier in the
potential v(x), Eq. (2). Therefore, increasing α pushes the
two-body energy E (2) of the single bound state in the BX
subsystems closer to the threshold, E (2) = 0, which is reached

013090-3



SCHNURRENBERGER, HAPP, AND EFREMOV PHYSICAL REVIEW RESEARCH 7, 013090 (2025)

FIG. 3. Three-body spectrum as a function of the repulsion parameter α for the coupling constant v0 = 0.32 and the mass ratio M/m =
22.2. The dashed line shows the energy E (2)

0 of the two-body bound state (left) or virtual state (right), whereas the dotted lines display the
energies E (3)

n of the three-body bound states. As α approaches αc from below (left), the energies E (3)
1 and E (3)

2 of the excited three-body states
follow the two-body energy described by the power law, Eq. (16), and vanish at α = αc. On the contrary, the three-body ground state has a
finite, negative energy E (3)

0 at α = αc and remains bound even for α > αc (right), until α = αw . As for α > αc, there is no two-body bound
state, this three-body state is Borromean, and the interval αc < α < αw defines the Borromean window.

at α = αc. For the corresponding BBX system, increasing the
barrier strength α results in larger energies E (3)

n , i.e., weaker
binding, for all three bound states, as displayed in Fig. 3.
When α approaches αc, only the energies E (3)

1 and E (3)
2 of the

excited states vanish together with the energy E (2), depicted
by the dashed line. The linear behavior in the log-log scale of
Fig. 3 suggests a power-law dependence, and in Appendix A
we indeed find

E (2) ≈ −1

2

[
v0(1 − 2v0)2

(1 − v0)2 + v2
0

]2

(α − αc)2 (16)

as the relative coupling strength of the barrier α → αc and
therefore E (2) → 0. In sharp contrast, the three-body ground
state does not dissociate at the two-body threshold. Instead, its
energy E (3)

0 takes a finite, negative value at α = αc, Fig. 3.
It is important to mention that the quadratic power law of

Eq. (16) is very similar to the results proven in Ref. [13],
where a one-dimensional two-body system is considered and
the coupling strength of the full potential goes to zero.

By increasing α beyond αc, we enter region I of Fig. 1,
where the two-body systems become unbound and each only
has one virtual state. Here, the BBX system is however able
to retain the bound ground state. We emphasize that both BX
subsystems are unbound, and hence the three-body state is
Borromean. Moreover, we note that the energy E (3)

0 of this
Borromean state as a function of α changes continuously at
the point α = αc. In addition, we observe from Fig. 3 that
for even larger values of α, the Borromean state eventually
disappears at α = αw, above which there is no three-body
bound state anymore. For α → αw, we numerically find that

E (3)
0 follows the power law

E (3)
0 ≈ −0.001 717 5 (αw − α)1.0605, (17)

with αw = 3.895 063 3. We emphasize that the fit given
by Eq. (17) has a small relative error with respect to
the data points, |(Edata − Efit)/Edata| � 10−2 for 9 × 10−6 �
(αw − α) � 7 × 10−4 including nine data points. Moreover,
as shown in Fig. 3, the energy E (3)

0 is no longer smaller than the
energy E (2) of the corresponding virtual state in the two-body
subsystem.

In summary, we find that for a given potential strength v0

and mass ratio M/m, a Borromean state exists in the BBX
system in the window αc < α < αw. By determining αc and
αw for multiple values of v0, we identify an area in the param-
eter space (α, v0), Fig. 1, where the Borromean state occurs,
as depicted in Fig. 4. Here it becomes evident that a larger
magnitude v0 leads to a wider “Borromean window” (αc, αw )
for α.

The numerical results presented in this section are checked
for convergence by varying the number of discretization
points for the momenta needed to solve Eq. (8). We have
calculated the relative error of the three-body ground-state
energy εr = |(EN − EN ′ )/EN | (for N = 1536 and N ′ = 1280)
to be small (εr � 10−3) in the threshold region α ≈ αw and
very small (εr � 10−7) everywhere else. The larger error at
the threshold is expected, because the wave function is very
large and the calculations become very sensitive to the dis-
cretization at the small values of the momenta.
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FIG. 4. Upper-left quadrant of Fig 1, displaying the parameter
space (α, v0 ). We highlight two curves: (i) the two-body threshold
αc, given by Eq. (3) and shown by dashed line, separates regions
(I) and (II) with one virtual and one bound state in the BX subsys-
tems, respectively. (ii) The three-body threshold αw marks the line,
displayed by blue dots, above which there is no three-body bound
state. It generally depends on the mass ratio, here M/m = 22.2,
and is determined numerically. Together, both lines define an area
(“Borromean window”) between the dotted and dashed curves in
which our system has Borromean states.

B. Geometric properties

Studying the geometric properties of the three-body ground
state gives us insight into its particle configuration. For that we
calculate the wave function ψ (3)(x1, y23) of the BBX system
and present a contour plot of |ψ (3)(x1, y23)| in Fig. 5 for three
different values of the parameter α: α = 0, (a), α = 2.11, (b),
and α = 3.84, (c). To visualize the interaction potentials in
both BX subsystems, we plot additionally the dashed lines
x1 ± y23/2 = 1/2 (purple) and x1 ± y23/2 = −1/2 (red), de-
scribing the attractive and repulsive δ wells in v(x), Eq. (2),
respectively. In addition, we calculate the expectation values
〈x1〉 and 〈y23〉, as well as the standard deviations σx1 and σy23

as functions of α, with

σz =
√

〈z2〉 − 〈z〉2, (18)

and display them in Figs. 6(a) and 6(b), accordingly.
For zero repulsion in the interaction (α = 0), Fig. 5(a)

shows that the wave function |ψ (3)(x1, y23)| is point sym-
metric with respect to its expectation values 〈x1〉 = 1/2 and
〈y23〉 = 0. Since y23 is the distance between the identical
bosonic particles, Fig. 2, the wave function ψ (3)(x1, y23)
is symmetric in this coordinate, i.e., ψ (3)(x1,−y23) =
ψ (3)(x1, y23), giving rise to 〈y23〉 = 0 for all parameters. Apart
from the shift by 1/2 in x1 direction, this result coincides with
the one found previously [32] for the same three-body system
but with the single contact interaction being centered.

Next, we increase the repulsion by setting α = 2.11, a
bit below αc = 2.78, and present the resulting wave function
in Fig. 5(b). Here we have a shift of the expected position

〈x1〉 = 2.31 of the distinguishable particle, whereas 〈y23〉 = 0,
as shown in Fig. 6(a). Moreover, the wave function becomes
broader compared to the case with α = 0, Fig. 5(a), which
is also indicated by the scale of |ψ (x1, y23)| as well as the
standard deviations σx1 and σy23 , presented in Fig. 6(b). The
result also agrees with the fact that the ground-state energy
E (3)

0 at α = 2.11 is smaller by about one order in comparison
with E (3)

0 at α = 0, as displayed by Fig. 3.
Now increasing α to the value slightly below αw, which

identifies the Borromean three-body threshold, Fig. 5(c), the
wave function ψ (x1, y23) shows that the distinguishable par-
ticle moves on average even further away, 〈x1〉 = 19.5, from
the center of mass of the identical particles, whereas 〈y23〉 =
0, Fig. 6(a). In addition, the wave function becomes again
broader and extremely delocalized with very weak binding
energy E (3)

0 as α → αw, Fig. 3, before the Borromean ground
state dissociates completely. This observation is in line with
both standard deviations σx1 and σy23 becoming very large
when α approaches αw, Fig. 6(b).

It is important to note that the wave function continuously
changes as the function of α throughout Figs. 5(a), 5(b) and
5(c), as do the expectation values presented in Fig. 6.

C. Dependence on the mass ratio

Finally, we analyze the dependence of the Borromean
three-body energy on the mass ratio M/m. This is shown
in Fig. 7. Here we choose α to be just slightly above αc,
i.e., we are just inside the Borromean window, where the
Borromean states are relatively deeply bound. Nevertheless,
we see that for smaller mass ratios, the binding energy of the
Borromean ground state (blue line) quickly approaches zero.
On the other hand, as the mass ratio increases, this Borromean
state becomes more strongly bound. Moreover, when the mass
ratio is sufficiently large (M/m � 600), a second (excited)
Borromean state appears, as depicted by a green line. We note
that the energy E (3) is expressed in units of h̄2/(μa2) with the
reduced mass μ. Overall, for larger mass ratios the three-body
states become more bound, and the Borromean states appear
one by one.

To trace back the origin of the second Borromean state,
we analyze the three-body spectrum for different values of α

and M/m, as demonstrated in Fig. 8. In Fig. 8(a) we choose
M/m = 0.2 and we cannot find a Borromean state. There is
just a single non-Borromean bound state for α < αc. That is
similar to the case of when the subsystems have a zero-range
interaction, then the three-body system does not support more
than one bound state for M/m � 1 [34]. At an intermediate
value of the mass ratio, e.g., M/m = 22.2 in Fig. 3, we clearly
see the three-body ground state in the Borromean region,
αc < α < αw. Finally, for M/m = 720, Fig. 8(b), the ground
state is quite deeply bound and we see the second state (green
line) in the Borromean window. Again, the energy of all three-
body bound states changes smoothly as a function of α when
crossing the value α = αc.

IV. EXPERIMENTAL VERIFICATION

For an experimental verification of our theoretical predic-
tions we suggest a system of two parallel one-dimensional
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FIG. 5. Contour plots of the Borromean ground-state wave function |ψ (3)(x1, y23)| in position space spanned by the Jacobi coordinates
x1 and y23, Fig. 2, for three different values of the repulsion parameter: α = 0 (a), α = 2.11 (b), α = 3.84 (c), as well as v0 = 0.32 and
M/m = 22.2. With increasing α, the wave function starts to become increasingly skewed towards the positive x1 direction, whereas it remains
symmetric in y23 direction. Similarly to the energy spectrum shown in Fig. 3, this trend is continuous and no sudden change occurs when the
state becomes Borromean. For all values of α, the derivative of the wave function jumps at the positions of the attractive (repulsive) contact
interactions, highlighted by purple (red) dashed lines.

tube-shaped traps [24]. The first tube contains two heavy
dipolar particles of mass M, whereas the second one contains

FIG. 6. The expectation values 〈x1〉 , 〈y23〉 (a) and the standard
deviations σx1 , σy23 (b), Eq. (18), as functions of α. Top: With increas-
ing α, also 〈x1〉 increases, meaning that the distinguishable particle
is found on average further away from the center of mass of the two
bosons. Close to the dissociation point αw, 〈x1〉 becomes very large.
As the other two particles are identical, 〈y23〉 remains zero for all
values of α. Bottom: Both standard deviations σx1 , σy23 grow with
increasing α. Overall, the effect is stronger for the x1 coordinate and
for both directions strongly enhanced close to the dissociation point
αw where the three-body state becomes very dilute.

a dipolar particle of mass m. When the dipole vectors

D = D[cos(θ ) cos(φ), cos(θ ) sin(φ), sin(θ )] (19)

of these three particles are identical and aligned by an external
field, the interaction potential between heavy and light parti-
cles reads [24,25]

VBX(x) = D2

d3

x2 + 1 − 3 cos2(θ )[x cos(φ) + sin(φ)]2

(x2 + 1)5/2 . (20)

Here x is the dimensionless distance between particles along
the tubes in terms of the distance d between two tubes.

The interaction potential VBB(x) between the two identical
heavy particles inside the same tube is given by

VBB(x) = D2

d3

1 − 3 cos2(θ ) cos2(φ)

|x|3 (21)

and can be set to zero at cos2(θ ) cos2(φ) = 1/3. We empha-
size that the interaction potential VBX(x) between two dipoles
in different tubes has attractive and repulsive parts and is not
symmetric, similar to our BX potential, Eq. (2). Moreover,
as shown in Ref. [25], the potential VBX(x) supports a bound
state for cos(2θ ) � 1/3 and no bound state for cos(2θ ) < 1/3,
under the condition that cos2(θ ) cos2(φ) = 1/3. As a result,
by changing the direction of the dipole moment D with re-
spect to the tube, one can realize a smooth transition between
these two cases, that is, the transition between regions I and
II shown in Fig. 1. Hence, this experimental scheme based
on dipolar particles [25,35] allows one to realize the one-
dimensional Borromean three-particle states predicted and
studied in this article.

V. CONCLUSION

In this article we have investigated Borromean states in a
three-body BBX system confined in one dimension, provided
there is no interaction in the BB subsystem and each BX
subsystem supports only a single virtual state. By solving
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FIG. 7. Three-body spectrum as a function of the mass ratio
M/m and with coupling constant v0 = 0.32. We choose the repulsion
parameter α just above αc, i.e., inside the Borromean window, Fig. 4,
and therefore the displayed states are Borromean. With increasing
mass ratio, the system goes from supporting zero, to one, and to two
Borromean bound states.

FIG. 8. Three-body spectrum as a function of α with constant
v0 = 0.32 for the mass ratios M/m = 0.2 (a) and M/m = 720 (b).
Top: The BBX systems supports only a single three-body bound state
for α < αc and it dissociates at α = αc, leading to no Borromean
state for the small mass ratio. Bottom: For the much larger mass
ratio, the three-body system supports many bound states for α < αc.
Here, only the first three bound states with the lowest energies are
presented. The two deepest bound states remain bound also for
α > αc and are hence Borromean states.

the Faddeev equations numerically, we have calculated the
spectrum and the corresponding wave functions of the BBX
system. We have demonstrated the existence of Borromean
states in our system and, for a given mass ratio, identified an
area in the parameter space where these states occur. Further,
we have found that the number of Borromean states and their
binding energies strongly depend on the mass ratio of the
two particles types. In addition, we have shown that in all
cases these novel states originate from ordinary bound ones
with the lowest three-body binding energies. Finally, we have
proposed an experimental scheme based on dipolar particles
in one-dimensional tubes to verify our theoretical predictions.
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APPENDIX A: BX SUBSYSTEM

In this Appendix we derive the transcendental equation for
the spectrum of the BX subsystem. Moreover, we discuss
the number of solutions as a function of α and derive the
asymptotic behavior of the two-body energy near the thresh-
old α → αc.

We start from the stationary Schrödinger equation,[
−1

2

d2

dx2
+ v(x)

]
ψ (2)(x) = E (2)ψ (2)(x), (A1)

where the two-body interaction potential v(x) is given by the
potential

v(x) = −v0
[
δ
(
x − 1

2

) − αδ
(
x + 1

2

)]
(A2)

with positive v0.
With κ defined as E (2) = κ2/2, the solution of Eq. (A1) can

be written in the form

ψ (2)(x) =
⎧⎨
⎩

Aeiκx + A′e−iκx, x < − 1
2

Beiκx + B′e−iκx, − 1
2 < x < 1

2
Ceiκx + C′e−iκx, 1

2 < x,
(A3)

where A, A′, B, B′,C, and C′ are constants.
To determine them, we first incorporate the outgoing-wave

boundary condition [36], that is, A = C′ = 0. Next, we require
the wave function to be continuous at x = − 1

2 and x = 1
2 and

arrive at two conditions,

A′eiκ/2 = Be−iκ/2 + B′eiκ/2, (A4)

Beiκ/2 + B′e−iκ/2 = Ceiκ/2. (A5)

Integrating the Schrödinger equation (A1) on the intervals
x ∈ [− 1

2 − ε,− 1
2 + ε] and x ∈ [ 1

2 − ε, 1
2 + ε], and then tak-

ing the limit ε → 0, gives us expressions for the jump of the
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FIG. 9. The left- and right-hand sides of the transcendental equa-
tion (A8) as functions of κI with v0 = 0.32. We look for solutions
κI 	= 0. In subfigure (a) α = 0.4 and the intersection of these lines is
marked by a dot and occurs for κI > 0, corresponding to the bound
state. In subfigure (b) α = 10, the intersection occurs for κI < 0 and
corresponds to the virtual state.

derivative of the wave function at x = − 1
2 and x = 1

2 , respec-
tively. These expressions yield the two additional conditions

A′
(

1 + 2i
v0α

κ

)
eiκ/2 + Be−iκ/2 − B′eiκ/2 = 0 (A6)

−Beiκ/2 + B′e−iκ/2 + C
(

1 − 2i
v0

κ

)
eiκ/2 = 0. (A7)

The system of four linear equations (A4)–(A7) for the
coefficients A′, B, B′, and C has nontrivial solutions only if
the determinant of this system equals zero, giving rise to a
transcendental equation for κ = κR + iκI . By setting κR = 0,
we restrict the possible solutions to virtual (κI < 0) and bound
(κI > 0) states and obtain the transcendental equation

(κI − v0)(κI + v0α) = −v2
0αe−2κI (A8)

for κI .
We are not interested in the trivial solution κI = 0 of

Eq. (A8). In Fig. 9 both the left (gray line) and right (black
line) sides of Eq. (A8) are depicted as a function of κI . We
see that for α > 0 there is one nontrivial solution (black dot).
Whether this root is located on the positive or negative κI axis
depends on the difference of the derivatives of the left- and
right-hand sides of Eq. (A8) at κI = 0, that is, v0(α − 1) −
2v2

0α = v0(α − 1 − 2v0α). This difference vanishes for

α = αc = 1

1 − 2v0
. (A9)

In this way, for 0 < α < αc there is only one bound state (with
κI > 0) in the BX subsystem, whereas for 0 < αc < α, the
subsystem supports only one virtual state (with κI < 0). In the
case α < 0, there are one bound and one virtual state for αc <

α < 0 and two bound states for α < αc < 0. All these cases
are summarized in the parameter space of the BX subsystem,
Fig. 1.

FIG. 10. Comparison of the two-body energy E (2,a), given by the
asymptotic expansion, Eq. (A14), to E (2,n) obtained as the numerical
solution of the transcendental equation (A8). Subfigure (a) shows
the solution for the bound state with α < αc, whereas subfigure
(b) displays the solution for the virtual state with αc < α.

In addition, we now derive the analytical formula for the
nontrivial solution of Eq. (A8) as α → αc. In this limit the
nontrivial root κI → 0. Therefore, we can use the asymptotic
expansion

e−2κI = 1 − 2κI + 2κ2
I + O

(
κ3

I

)
(A10)

in Eq. (A8) and solve the resulting equation for κI 	= 0, to
arrive at

κI (α) ≈ v0
1 + α(2v0 − 1)

1 + 2v2
0α

. (A11)

Next, we expand α around αc to the first order and obtain

κI (α) ≈ c1(α − αc) (A12)

with the coefficient

c1 = − v0(1 − 2v0)2

(1 − v0)2 + v2
0

. (A13)

As a result, we obtain the approximate behavior

E (2)(α) = −1

2
κ2

I ≈ −c2
1

2
(α − αc)2 (A14)

of the two-body energy as α → αc. The asymptotic approx-
imation is compared to the exact numerical solution in Fig.
10.

APPENDIX B: SEPARABLE EXPANSION

In this Appendix we derive the analytical form of the sepa-
rable expansion [26] for the two-body t matrix, corresponding
to the two-body potential v(x), Eq. (2).
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We expand the t matrix in separable terms,

t (k, k′, E ) =
∑

ν

τν (E )g∗
ν (k, E )gν (k′, E ), (B1)

with

τν (E ) = ην (E )

ην (E ) − 1
, (B2)

where the functions ην (k, E ) and gν (E ) are determined by the
integral equation

∫
R

dk′

2π

v(k, k′)
E − 1

2 k′2 gν (k′, E ) = ην (E )gν (k, E ). (B3)

Here,

v(k, k′) =
∫
R

dx v(x) e−i(k−k′ )x (B4)

is the momentum representation of the two-body interaction
potential v(x) and the functions gν (k, E ) are orthogonal and
normalized according to the condition

∫
R

dk

2π

gν (k, E ) g∗
ν ′ (k, E )

E − 1
2 k2

= −δν,ν ′ . (B5)

By inserting the potential defined in Eq. (2) into Eq. (B4),
we find

v(k, k′) = −v0[e−i(k−k′ )/2 − α ei(k−k′ )/2], (B6)

resulting in a separable kernel of the integral equation (B3).
This allows us to rewrite Eq. (B3) in the form

−v0[e−ik/2G(+)
ν (E ) − α eik/2G(−)

ν (E )] = ην (E )gν (k, E ),
(B7)

where

G(±)
ν (E ) =

∫
R

dk′

2π

e±ik′/2

E − 1
2 k′2 gν (k′, E ) (B8)

are single-argument functions of the energy E .
In order to determine G(±)

ν (E ), we insert the function
gν (k, E ) given by Eq. (B7) into Eq. (B8) and obtain

(
1 + v0

ην

A
)

G(+)
ν − v0α

ην

BG(−)
ν = 0 (B9)

v0

ην

B∗G(+)
ν +

(
1 − v0α

ην

A
)

G(−)
ν = 0 (B10)

with

A =
∫
R

dk′

2π

1

E − 1
2 k′2 = − 1√−2E

(B11)

and

B =
∫
R

dk′

2π

eik′

E − 1
2 k′2 = − 1√−2E

e−√−2E , (B12)

valid for E < 0.
The system of algebraic equations (B9)–(B10) for G(−)

ν and
G(+)

ν has nontrivial solutions only when the determinant of this
system is zero, that is,

(ην + v0A)(ην − v0αA) + v2
0α|B|2 = 0, (B13)

resulting in two eigenvalues

η±(E ) = v0

2
√−2E

[1 − α ± S (E )] (B14)

with

S (E ) =
√

(1 − α)2 + 4α(1 − e−2
√−2E ). (B15)

Finally, using Eq. (B7) together with the normalization
condition Eq. (B5), we obtain the expression

gν (k, E ) =
v0
ην

∣∣ ην

v0

∣∣(−2E )1/4√
e2

√−2EP2
ν (E ) − 2Pν (E ) + 1

× [e
√−2EPν (E )eik/2 − e−ik/2] (B16)

with

Pν (E ) =
(

1 − ην

v0

√−2E
)

= αe−2
√−2E(

ην

v0

√−2E + α
) (B17)

for the corresponding eigenfunctions, where we used
Eq. (B13) in the second step.

APPENDIX C: NUMERICS

In this Appendix we discuss our approach for the numerical
solution of the integral Eq. (8). We use discrete momenta pi

and q j with the indices i, j ∈ {0, . . . , N − 1}, with N being
the number of discretization points, to define the vector ele-
ments

[ϕλ(E )]i = ϕλ(pi, E ) (C1)

and the matrix elements[
K̃λν (E )

]
i j = w j

2π
Kλν (pi, q j, E ), (C2)

respectively. The integral weights w j depend on the ex-
act form of the discretization. We use the Gauss-Legendre
quadrature rule [37,38]. The indices λ and ν label the terms
from the separable expansion given in Eq. (B1). In practice,
the sum over ν in Eq. (8) needs to be finite or truncated. In
the case of the two-body potential, Eq. (2), we have exactly
two terms. The integral equation now takes the form of an
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eigenvalue problem,

[
ϕ0

ϕ1

]
︸︷︷︸

=v

= ±
[

K̃00 K̃01

K̃10 K̃11

]
︸ ︷︷ ︸

=W

[
ϕ0

ϕ1

]
, (C3)

with fixed eigenvalue +1 (−1) for bosons (fermions). Equa-
tion (C3) has a solution when

det[±W(E ) − I] = 0 (C4)

is fulfilled. The determinant in Eq. (C4) is calculated for
a range of energy values E , and each zero point of the
determinant corresponds to an eigenenergy E (3) of the three-
body spectrum of Eq. (4).

To find the wave function, we calculate the eigenvector
v(E (3) ) of the matrix W(E (3) ) for the corresponding eigenen-
ergy E (3). From the subvectors ϕν (E (3) ) of the eigenvector
v(E (3) ) we can get the Faddeev component from its separable
terms via Eq. (11). Finally, we use Eq. (12) to obtain the wave
function in momentum space.

[1] D. Blume, Few-body physics with ultracold atomic and
molecular systems in traps, Rep. Prog. Phys. 75, 046401
(2012).

[2] E. Nielsen, D. Fedorov, A. Jensen, and E. Garrido, The three-
body problem with short-range interactions, Phys. Rep. 347,
373 (2001).

[3] J.-M. Richard, The nonrelativistic three-body problem for
baryons, Phys. Rep. 212, 1 (1992).

[4] E. Braaten and H.-W. Hammer, Universality in few-body sys-
tems with large scattering length, Phys. Rep. 428, 259 (2006).

[5] M. Zhukov, B. Danilin, D. Fedorov, J. Bang, I. Thompson, and
J. Vaagen, Bound state properties of Borromean halo nuclei:
6He and 11Li, Phys. Rep. 231, 151 (1993).

[6] P. Naidon and S. Endo, Efimov physics: A review, Rep. Prog.
Phys. 80, 056001 (2017).

[7] J. Goy, J.-M. Richard, and S. Fleck, Weakly bound three-body
systems with no bound subsystems, Phys. Rev. A 52, 3511
(1995).

[8] V. Efimov, Energy levels arising from resonant two-body forces
in a three-body system, Phys. Lett. B 33, 563 (1970).

[9] V. Efimov, Energy levels of three resonantly interacting parti-
cles, Nucl. Phys. A 210, 157 (1973).

[10] A. S. Jensen, K. Riisager, D. V. Fedorov, and E. Garrido, Struc-
ture and reactions of quantum halos, Rev. Mod. Phys. 76, 215
(2004).

[11] K. Riisager, Halos and related structures, Phys. Scr. T152,
014001 (2013).

[12] L. Moschini, F. Pérez-Bernal, and A. Vitturi, Bound and un-
bound nuclear systems at the drip lines: A one-dimensional
model, J. Phys. G: Nucl. Part. Phys. 43, 045112 (2016).

[13] B. Simon, The bound state of weakly coupled Schrödinger op-
erators in one and two dimensions, Ann. Phys. 97, 279 (1976).

[14] A. G. Volosniev, D. V. Fedorov, A. S. Jensen, and N. T.
Zinner, Occurrence conditions for two-dimensional Borromean
systems, Eur. Phys. J. D 67, 95 (2013).

[15] A. G. Volosniev, D. V. Fedorov, A. S. Jensen, and N. T. Zinner,
Borromean ground state of fermions in two dimensions, J. Phys.
B: At., Mol. Opt. Phys. 47, 185302 (2014).

[16] S. Moroz, J. P. D’Incao, and D. S. Petrov, Generalized Efimov
effect in one dimension, Phys. Rev. Lett. 115, 180406 (2015).

[17] L. Happ, M. Zimmermann, and M. A. Efremov, Universality of
excited three-body bound states in one dimension, J. Phys. B:
At., Mol. Opt. Phys. 55, 015301 (2022).

[18] I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys.
1, 23 (2005).

[19] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[20] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman,
Feshbach resonances in atomic Bose–Einstein condensates,
Phys. Rep. 315, 199 (1999).

[21] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225
(2010).

[22] V. Dunjko, M. G. Moore, T. Bergeman, and M. Olshanii,
Confinement-induced resonances, in Advances in Atomic,
Molecular, and Optical Physics, Advances In Atomic, Molec-
ular, and Optical Physics Vol. 60, edited by E. Arimondo, P.
Berman, and C. Lin (Academic Press, 2011), Chap. 10, pp.
461–510.

[23] C. H. Greene, P. Giannakeas, and J. Pérez-Ríos, Universal
few-body physics and cluster formation, Rev. Mod. Phys. 89,
035006 (2017).

[24] N. T. Zinner, B. Wunsch, I. B. Mekhov, S.-J. Huang, D.-W.
Wang, and E. Demler, Few-body bound complexes in one-
dimensional dipolar gases and nondestructive optical detection,
Phys. Rev. A 84, 063606 (2011).

[25] A. G. Volosniev, J. R. Armstrong, D. V. Fedorov, A. S.
Jensen, M. Valiente, and N. T. Zinner, Bound states of dipolar
bosons in one-dimensional systems, New J. Phys. 15, 043046
(2013).

[26] A. G. Sitenko, Scattering Theory, 1st ed., Springer Series in
Nuclear and Particle Physics (Springer, Berlin, Heidelberg,
2012).

[27] R. G. Newton, Scattering Theory of Waves and Particles, 2nd
ed., Theoretical and Mathematical Physics (Springer, Berlin,
Heidelberg, 2014).

[28] L. D. Faddeev, Scattering theory for a three-particle system, Zh.
Eksp. Teor. Fiz. 39, 1459 (1960) [Sov. Phys. JETP 12, 1014
(1961)].

[29] J. S. Ball, J. C. Y. Chen, and D. Y. Wong, Faddeev equations for
atomic problems and solutions for the (e, h) system, Phys. Rev.
173, 202 (1968).

[30] R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D.
Kuhnle, and M. Weidemüller, Observation of Efimov reso-
nances in a mixture with extreme mass imbalance, Phys. Rev.
Lett. 112, 250404 (2014).

[31] S.-K. Tung, K. Jiménez-García, J. Johansen, C. V. Parker, and
C. Chin, Geometric scaling of Efimov states in a 6Li − 133Cs
mixture, Phys. Rev. Lett. 113, 240402 (2014).

[32] L. Happ, M. Zimmermann, S. I. Betelu, W. P. Schleich, and
M. A. Efremov, Universality in a one-dimensional three-body
system, Phys. Rev. A 100, 012709 (2019).

[33] G. V. Skorniakov and K. A. Ter-Martirosian, Zh. Eksp. Teor.
Fiz. 31, 775 (1956) [Sov. Phys. JETP 4, 648 (1957)].

013090-10

https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1016/S0370-1573(00)00107-1
https://doi.org/10.1016/0370-1573(92)90078-E
https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1088/1361-6633/aa50e8
https://doi.org/10.1103/PhysRevA.52.3511
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1016/0375-9474(73)90510-1
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1088/0031-8949/2013/T152/014001
https://doi.org/10.1088/0954-3899/43/4/045112
https://doi.org/10.1016/0003-4916(76)90038-5
https://doi.org/10.1140/epjd/e2013-30693-5
https://doi.org/10.1088/0953-4075/47/18/185302
https://doi.org/10.1103/PhysRevLett.115.180406
https://doi.org/10.1088/1361-6455/ac3cc8
https://doi.org/10.1038/nphys138
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1016/S0370-1573(99)00025-3
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.89.035006
https://doi.org/10.1103/PhysRevA.84.063606
https://doi.org/10.1088/1367-2630/15/4/043046
https://doi.org/10.1103/PhysRev.173.202
https://doi.org/10.1103/PhysRevLett.112.250404
https://doi.org/10.1103/PhysRevLett.113.240402
https://doi.org/10.1103/PhysRevA.100.012709


BORROMEAN STATES IN A ONE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 7, 013090 (2025)

[34] O. I. Kartavtsev, A. V. Malykh, and S. A. Sofianos, Bound states
and scattering lengths of three two-component particles with
zero-range interactions under one-dimensional confinement, J.
Exp. Theor. Phys. 108, 365 (2009).

[35] L. Du, P. Barral, M. Cantara, J. de Hond, Y.-K. Lu, and
W. Ketterle, Atomic physics on a 50-nm scale: Realiza-
tion of a bilayer system of dipolar atoms, Science 384, 546
(2024).

[36] R. Zavin and N. Moiseyev, One-dimensional symmetric rectan-
gular well: From bound to resonance via self-orthogonal virtual
state, J. Phys. A: Math. Gen. 37, 4619 (2004).

[37] L. M. Delves and J. L. Mohamed, Computational Methods for
Integral Equations (Cambridge University Press, Cambridge,
England, 1985).

[38] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature
rules, Math. Comp. 23, 221 (1969).

013090-11

https://doi.org/10.1134/S1063776109030017
https://doi.org/10.1126/science.adh3023
https://doi.org/10.1088/0305-4470/37/16/011
https://doi.org/10.1090/S0025-5718-69-99647-1

