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Abstract
If an aircraft’s initial mass, the variation of true airspeed, true rate of climb, wind speed and wind direction with
time and the relationship between barometric altitude and local temperature are known, the performance along the
entire flight path can be determined. Previously published work has provided the building blocks for a simple, fast,
open-source and transparent method to estimate the instantaneous fuel flow rate and the engine overall efficiency,
plus several other performance characteristics for turbofan powered, civil transport aircraft. The flight phases of
primary interest are the climb, cruise, descent and holding, when the flaps and undercarriage are fully retracted and
the engine is providing significant, positive thrust. However, for completeness, an approximate relation is provided
for the engine’s ‘flight idle’ condition, together with simple estimates for fuel use during take-off and landing,
plus a factor to allow for in-service deterioration. Detailed consideration is also given to the operating limits and
relations are developed for the estimation of their location in Mach number and flight level space. To apply the
method, a series of characteristic coefficients and constants must be known. Estimates for these quantities have been
progressively improved and extended over time. Initially, results were published for 53 aircraft types and variants.
The data base has now been extended to 67 entries and this is given in tabular form. Finally, to demonstrate the
method’s accuracy, estimates of fuel flow rate are compared with flight data recorder values for 20 complete flights
of six different aircraft types.

Nomenclature
Ae sum of the engine core and bypass jet exit cross sectional areas
AR wing aspect ratio
a constant in the skin friction law – Equation (33)
a∞ speed of sound = (γ�T∞)1/2

BPR engine nominal bypass ratio
b constant in the skin friction law – Equation (33)
bf fuselage width
Cd airframe drag coefficient = D/(q∞Sref )
Cdo zero-lift drag coefficient
Cdw wave drag coefficient
CL overall lift coefficient = L/(q∞Sref )
CF mean skin friction coefficient – Equation (33)
CP specific heat at constant pressure for air
CT total aircraft net thrust coefficient = n.Fn/(q∞Sref )
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2 Poll and Schumann

Ct engine net thrust coefficient = Fn/(q∞Ae)
c1,2,3 dummy variables – Equations (E11), (E12) and (E13)
D total drag force
e aircraft Oswald efficiency factor
FCOM flight crew operating manual
FL flight level
Fn net installed thrust per engine
g acceleration due to gravity
gn net vertical acceleration due to gravity and Coriolis effect
gISA acceleration due to gravity in the International standard atmosphere (9.80665m/sec2 at sea level)
H geopotential altitude above local sea level – Appendix A
h0-2 engine dependent functions – Equations (24), (27) and (28)
h geometric height above local sea level = geodetic height
J1-3 constants in Equations (42) and (44)
K s lift-dependent drag factor – Equation (30)
k1 miscellaneous lift-dependent drag factor – Equation (37)
L lift force
LCV lower calorific value of fuel (≈43×106J/kg for kerosene)
L/D lift-to-drag ratio
l characteristic streamwise length = S1/2

ref

M∞ flight Mach number = V∞ /a∞
Mcc crest critical Mach number – Equation (40)
MTF ‘technology level’ constant in Equation (41)
MTOM maximum permitted take-off mass
m instantaneous total aircraft mass
ṁf fuel mass flow rate – summed over all engines
n number of engines on aircraft
p static pressure
pi impact pressure – Equation (59)
q∞ freestream dynamic pressure = 0.5ρ∞(V∞)2 = 0.5γ p∞(M ∞)2

Rac characteristic Reynolds number – Equation (34)
� gas constant for air (287.05J/(kg K))
r the geocentric radius of the Earth at sea level
rE equatorial radius
rP polar radius
S distance travelled through the air
Sref aerodynamic reference wing area (Airbus definition)
s wingspan
T static temperature
TR engine throttle parameter – Equation (E4)
To total temperature – Equation (E5)
TCDS type certificate data sheet
TET ratio of total temperature at turbine entry to freestream total temperature
t time
VG speed along flight path relative to the ground
Vw wind speed
V∞ true air speed
X wave drag variable – Equation (40)
βh aircraft heading angle
β t aircraft ground track angle
βw wind direction
γ ratio of specific heats for air (=1.4)
δ2 induced drag wing-fuselage interference factor
ε angle between the thrust line and the flight direction
ηo propulsion system overall efficiency – Equation (1)
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η2 constant in Equation (27)
θ climb gradient – Equation (4)
Λw wing quarter-chord sweep angle
μ dynamic viscosity
φ geocentric latitude
ρ air density = p/(�T )
� coefficient in Equation (24)
ψ 0,ψ 6 constant coefficients – Equations (32) and (49)
ω Earth’s angular velocity

Superscripts
ac whole aircraft value

Subscripts
AC at the aerodynamic ceiling
B best, or local maximum, value
buff at buffet onset
CAS calibrated air speed
CO crossover value
DO at design optimum conditions
EAS equivalent air speed
EC engine characteristic value
FI flight idle
IS ‘in service’ value
ISA International Standard Atmosphere
LS low speed
MU maximum useable
MCC maximum continuous climb rating
MTO maximum take-off rating
MO maximum permitted operational value
Max maximum value
Min minimum value
O when (ηoL/D) has its absolute maximum value
ref reference
SC at the service ceiling
SL at sea level
SLS at sea level static conditions
Stall at the 1-g stall condition
TP at the tropopause
ηB when (ηoL/D) has its best value at a given Mach number
∞ flight, or freestream, value

1.0 Introduction
Over the past 30 years, the atmospheric science community has been improving the understanding of the
impact of global aviation on the environment. An essential element in this process has been the avail-
ability of performance estimates for individual aircraft. Until recently, attention has been focused on
fuel use, since this determines the amounts of carbon dioxide, water vapour and NOx1 that are released.

1The engine emits a mixture of nitric oxide and nitrogen dioxide, collectively refered to as NOX.
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4 Poll and Schumann

However, it is now recognised that contrails and contrail induced cirrus cloud are an important contribu-
tor to climate change – see Schumann [1]. Prediction of contrail formation and its environmental impact
requires a knowledge of the engine’s overall efficiency, together with the number and physical charac-
teristics of the non-volatile particulate matter (nvPM) in the exhaust. This places increased demands
upon performance models and more comprehensive, more detailed and more accurate models are now
required.

To address these challenges, a novel, open, transparent and independently verifiable performance
model has been under development for several years, as reported in Poll [2] and Poll and Schumann [3,
4, 5, 6]. Currently, this provides estimates of fuel flow rate, thrust and engine overall efficiency for the
cruise phase only, using a set of input parameters that characterise the airframe and engine combination.
Estimates of these parameters have been published for 53 aircraft types – see Poll and Schumann [4, 5,
6]. However, since results are needed for all phases of flight, whilst the method is restricted to steady,
straight and level flight, its usefulness is limited.

Here, an improved and extended version of the method is presented. This covers climb, cruise, initial
descent and holding2 for an aircraft in the clean configuration, i.e. with all high lift devices and the
undercarriage fully retracted. In addition, a simple estimate is proposed for the engines in the flight idle
condition sometimes employed during descent and, for completeness, first order estimates are provided
for situations where the undercarriage and flaps are deployed, i.e. take-off, initial climb out, approach
and landing.

For various reasons, large trajectory data sets may contain spurious, or erroneous information and
consistency checks are needed so that potentially misleading data can be rejected. Therefore, detailed
consideration is given to the aircraft operating envelope. Approximate relations are developed so that the
permissible, or achievable, operational Mach number versus flight level (FL) space can be determined
for an aircraft of given weight flying in a completely general atmosphere.

2.0 Extension to the general case
If the overall propulsive efficiency of the engine, ηo, is defined as

ηo = nFnV∞
ṁf LCV

, (1)

where n is the number of engines on the aircraft, Fn is the installed3, net thrust per engine, V∞ is the
true airspeed, ṁf is the total fuel mass flow rate and LCV is the lower4 calorific value of the fuel, then
the total fuel consumption per unit distance travelled through the air is

dmf

dS
= ṁf

V∞
= −dm

dS
=
(

nFn

D

)(
L

(ηoL/D) LCV

)
. (2)

Here m is the instantaneous aircraft mass, S is the distance travelled through the air, L is the lift and D is
the drag. In general, ηo depends upon the net thrust, the altitude and the Mach number, M∞, whilst L/D
depends upon the drag, the altitude and M∞.

In the general flight situation, thrust is not equal to the drag and lift is not equal to the weight.
Therefore, consider an aircraft accelerating and climbing in the vertical plane through still air with an
instantaneous speed, V∞, relative to a stationary, ground-based observer, as shown in Fig. 1. In gen-
eral, the engine thrust line is set at a fixed angle, known as the thrust setting angle, relative to the
aircraft’s longitudinal datum. Hence, the angle, ε, between the thrust line and the direction of travel

2It should be noted that not all holding takes place in the clean condition.
3An engine installed in an aircraft delivers about 97% of the thrust of the same engine in isolation, e.g. on a test bed.
4The lower value is appropriate since water generated in the combustion process leaves the engine in its gaseous phase.
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Figure 1. The forces acting upon an aircraft accelerating and climbing in the vertical plane through
still air.

is equal to the sum of the thrust setting angle and the angle-of-attack, also measured relative to the air-
craft’s longitudinal datum. Since the air is still, V∞ is also equal to the airspeed and the ground speed,
VG, is

VG = V∞
cos θ

, (3)

where θ is the climb gradient and, if h is the geometric height above local sea level5, then

sin θ = dh/dt

V∞
and cos θ =

(
1 −

(
dh/dt

V∞

)2
)1/2

. (4)

Relative to the ground-based frame of reference, when an aircraft is following a curved path in the
vertical plane, whilst losing mass as fuel is consumed, the acceleration along the flight path is

1

gn

dV∞
dt

=
(

n.Fncosε− D

mgn

)
− sin θ + V∞ṁf

gnm
(5)

and the acceleration normal to the flight path is
V∞
gn

dθ

dt
=
(

L + n.Fnsinε

mgn

)
− cos θ ≈ 0, (6)

see for example Bower et al. [7].
Strictly speaking, since the Earth is rotating, a co-ordinate system fixed to the ground is not an inertial

frame of reference. Consequently, the quantity gn includes not only the planet’s gravitational accelera-
tion, g, but also the vertical component of the Coriolis acceleration and the centrifugal acceleration due
to the aircraft’s speed relative to the ground. As shown in Appendix A, g is the sum of Newtonian gravity
and the vertical component of the Earth’s centrifugal acceleration. Both these elements are functions
of latitude, φ and h. On the other hand, the vertical component of the Coriolis acceleration depends
upon φ, VG, and aircraft’s ground track relative to true North, β t , – see, for example, Menke and Abbott
[8]. In addition, since an aircraft flying at fixed height is also following a circular path, VG provides an
additional centrifugal acceleration. Combining the two effects gives

gn − g = −2ωVGsinβtcosφ − V2
G

(r + h)
, (7)

where r is the Earth’s geocentric radius at sea level and ω is Earth’s angular velocity. This acceleration
component is sometimes referred to as the “Eötvös6 effect”.

For civil transport aircraft, ε is usually less than 5 degrees and so its influence is always small. In
addition, the climb gradient, θ , is typically less than 10 degrees and, to ensure passenger comfort, accel-
erations normal to the flight path are maintained at low levels. Consequently, θ is always a relatively

5Since the Earth is approximately ellipsoidal, this is the geodetic height.
6A Hungarian name pronounced “Urtvesh”.
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small angle and any acceleration normal to the flight path can be neglected without causing a significant
loss of accuracy.

Therefore, if the instantaneous mass of the aircraft, true airspeed, rate of climb, acceleration along
the flight path and lift-to-drag ratio are known, the total required thrust is given by

n.Fn

m(gSL)ISA

=
(

gn

(gSL)ISA

)((
cos θ

L/D

)
+ sin θ

)
+ 1

(gSL)ISA

(
dV∞

dt
− V∞

ṁf

m

)
, (8)

whilst the required lift is

L

m(gSL)ISA

≈
(

gn

(gSL)ISA

)
cos θ . (9)

Here, (gSL)ISA is the (constant) reference value for gravity at sea level in the International Standard
Atmosphere (ISA) [9].

As shown in Appendix A, relative to (gSL)ISA, the maximum possible variation of g due to latitude
changes is ± 0.25%, whilst, in current operations, the maximum variation of g relative to its value
at sea level due to altitude changes is about −0.5%. Hence, at the global level, deviations in g from
(gSL)ISA fall in the range +0.25% (sea level at the poles) to −0.75% (15,000m altitude at the equator). By
comparison, the vertical component of the Coriolis acceleration has values in the range ± 0.0357m/s2

(maximum at the equator), i.e. ±0.35% of (gSL)ISA, whilst the maximum centrifugal acceleration due to
flight speed is about −0.01m/s2, or −0.10% of (gSL)ISA. Therefore, taking gn to be equal to (gSL)ISA, as is
often the case in analytic work, introduces an error somewhere in the range +0.5% to −1.2%.

In general, the air through which the aircraft is travelling will not be still, i.e. there will be a wind.
However, if the wind is horizontal with speed, Vw, and direction, βw, measured relative to true North, and
both quantities are steady, then according to Galileo’s principle of independence, a frame of reference
that moves with the air mass, i.e. with speed, Vw, and direction, βw, relative to the ground, is also inertial.
Relative to this ‘wind fixed’ frame of reference, V∞ is still the airspeed, h is still the geometric height
above local sea level and g is unchanged. However, the very small Eötvös acceleration in Equation (7)
must always be evaluated relative to ground fixed axes and, if the aircraft heading is βh, VG and β t are
obtained from a solution of the vector wind triangle, see, for example, Huang and Cummings [10], i.e.

VG =
√(

V∞
cos θ

)2

+ V2
w − 2

(
V∞Vw

cos θ

)
cos (βh − βw) (10)

and

βt = βh + sin−1

(
Vw

VG

sin (βh − βw)

)
. (11)

Consequently, subject only to this small correction, Equations (8) and (9) are valid for a steady, uniform
wind. Nevertheless, during normal operations, significant wind velocity variations are to be expected,
in which case, a frame of reference moving with the wind speed will no longer be inertial. However, if
the horizontal wind has a component in the aircraft’s direction of travel, i.e. a tail wind, Vtw, where

Vtw = − Vwcos (βh − βw) , (12)

by analogy with the Coriolis acceleration, Equation (8) can be extended to include time varying, wind
strength by the introduction of an additional, inertial force, i.e.

n.Fn

m(gSL)ISA

=
(

gn

(gSL)ISA

)((
cos θ

L/D

)
+ sin θ

)
+ 1

(gSL)ISA

(
dV∞

dt
− V∞

ṁf

m

)

+ cos θ

(gSL)ISA

(
dVtw

dt
− Vtw

ṁf

m

)
. (13)

7Assuming flight in the ISA at the equator, travelling either due east, or due west, at 36,000 feet and with a Mach number 0.85.
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As described in Appendix B, the aircraft’s air data system uses impact pressure, pi, measured with
a Pitot tube, the local static pressure, p∞, and total temperature, (T0)∞ to determine the flight Mach
number, M∞, local static temperature, T∞, and, hence, true airspeed, V∞. However, whilst, as shown
in Appendix A, the true rate of climb, dh/dt, can be obtained from a knowledge of the variation of
p∞ and T∞ with time, the air data system alone cannot provide a value for h. Consequently, in oper-
ations, when an aircraft is above the ‘transition’ altitude,8 h is replaced by the non-dimensional flight
level, FL. By international agreement, using p∞ from the air data system, FL is defined as the geopo-
tential altitude, H, measured in feet, that the aircraft would have if it was operating in the International
Standard Atmosphere [9] divided by 100. The relationship between flight level and p∞ is also given in
Appendix A.

When the trajectory is obtained from a ground-based source, e.g. an air navigation service provider,
the information might be presented as values of ground speed, ground track and flight level at a series
of waypoints. In this situation, again using the wind triangle, the airspeed is given by

V∞cos θ = (
V2

G + V2
w + 2VGVwcos (βt − βw)

)1/2
, (14)

whilst, as shown in Appendix A, the true rate of climb is given by
1

(aSL)ISA

dh

dt
= 0.08957

(
(gSL)ISA

g

)(
T∞

(T∞)ISA

)
dFL

dt
(m/s) . (15)

Here wind speed, wind direction and temperature information would have to be obtained from a
meteorological service provider.

If the aircraft lift and drag coefficients have their usual definitions, i.e.

CL = L

(γ /2) p∞M2
∞Sref

and CD = D

(γ /2) p∞M2
∞Sref

, (16)

where air is taken to be an ideal gas, Sref is the reference wing area, γ is the ratio of specific heats, plus
a total thrust coefficient, CT , defined as

CT = n.Fn

(γ /2) p∞M2
∞Sref

. (17)

Then Equation (8) becomes

CT = CL

(
1

L/D
+ tanθ

)
+ CL

cos θ

(
(gSL)ISA

gn

)(
1

(gSL)ISA

(
dV∞

dt
− V∞

ṁf

m

)
+

cos θ

(gSL)ISA

(
dVtw

dt
− Vtw

ṁf

m

))
. (18)

This result is applicable to all phases of flight. Consequently, the total fuel consumed per unit time, ṁf ,
is given by combining Equations (1) and (18), i.e.

ṁf = nFnV∞
ηoLCV

=
(γ

2

) (CT

ηo

M3
∞

)(
p∞a∞Sref

LCV

)
. (19)

Further information on aircraft performance can be found in standard texts, e.g. Shevell [11] or
Young [12].

3.0 Estimating the overall engine propulsive efficiency
The model relating engine overall efficieny to net thrust, altitiude and Mach number has been fully
described in Poll and Schumann [6]. Therefore, only a summary will be presented here.

8The transition altitude is determined by the air traffic controller and it can range form 3,000 to 18,000 feet, depending upon
conditions. Below this level, pressure height is measured relative to sea level, i.e. the altimeter reference value is local static
pressure at sea level. Above it, the reference pressure is set to 1,013.25hPa, i.e. sea-level static in the ISA, and flight levels are
used.
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Figure 2. The variation of overall efficiency with thrust coefficient and Mach number for a civil aircraft
turbofan engine with a nominal bypass ratio of 8. Figure taken from Poll and Schumann [6].

The thrust coefficient for an individual engine is given by

Ct = Fn

(γ /2) p∞M2
∞Ae

. (20)

If the bypass and core flows are mixed at exit, Ae is the jet exit area. However, if the bypass and core
flows are separate, Ae is the sum of the engine core and bypass jet exit cross sectional areas. Hence, from
Equation (17), the total thrust coefficent is

CT =
(

n.Ae

Sref

)
Ct. (21)

The typical variation of ηo with Ct and M∞ is shown in Fig. 2. For operation at fixed Mach number,
ηo goes though a local maximum, (ηo)B, at a particular value of Ct , i.e. (Ct)ηB, and the locus of these
‘best’ points is given by the dashed line in Fig. 2. Poll and Schumann [6] have shown that, for a given
Mach number, if the values of ηo are normalised with (ηo)B and the corresponding values of Ct are
normalised with (Ct)ηB, the resulting curves are approximately independent of Mach number for Mach
numbers greater than 0.4 and almost the same for all engines, irrespective of the overall pressure and
bypass ratios.

Furthermore, since, from Equations (20) and (21),

Ct

(Ct)ηB

= CT

(CT)ηB

, (22)

this near-universal curve for individual engines is also applicable to the complete aircraft and, for

0.3 ≤ CT

(CT)ηB

< 1.8, (23)
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it may be represented to a good approximation, by

ηo

(ηo)B

= h0 ≈
(

1 − 0.43

(
CT

(CT)ηB

− 1

)2
)(

1 +�

(
CT

(CT)ηB

− 1

)2
)

. (24)

For M∞ greater than 0.4, � is zero and, for

0.2 ≤ M∞ ≤ 0.4, (25)

� ≈ 1.30 (0.4 − M∞) . (26)

If values of normalised overall efficiency are required for normalised thrust coefficients below 0.3, the
variation may be represented by a fourth order polynomial as described in Appendix C.

In addition, it has been shown that (ηo)B and (CT )ηB are functions of the Mach number, such that, for
Mach numbers greater than about 0.2,

(ηo)B

(ηo)DO

= h1 ≈
(

M∞
MDO

)η2

(27)

and
(Ct)ηB

(Ct)DO

= (CT)ηB

(CT)DO

= h2 ≈
(

1 + 0.55M∞
1 + 0.55MDO

)(
MDO

M∞

)2

. (28)

Here, η2 is a function of the bypass ratio, with

η2 ≈ 0.65 (1 − 0.035 (BPR)) (29)

and (ηo)DO, MDO, and (CT )DO are the ‘design optimum’ values.
The design optimum condition is the single combination of aircraft weight, flight level and Mach

number at which both the airframe lift-to-drag ratio and the engine’s overall efficiency have local max-
imum values when operating in a specified atmosphere, i.e. (ηo L/D) is an absolute maximum. As
described in Poll and Schumann [5], the design weight is set to 80% of the maximum permitted take-off
value, i.e. a value close to a typical mid-cruise condition, and the design atmosphere is taken to be the
International Standard Atmosphere [9]. The design optimum values are characteristic of the aircraft and
engine combination. Therefore, when the (ηo)DO, MDO, and (CT )DO, are known, the normalising values
(ηo)B and (CT )ηB for any other operating condition are obtained from Equations (27) and (28). These are
then used in Equation (24) to give the corresponding value of ηo.

Estimates of (ηo)DO, MDO, and (CT )DO for 53 different aircraft types and variants have been reported
previously by Poll and Schumann [4, 5, 6]. This list has now been extended to cover 67 aircraft and the
complete set of values can be found in Tables 1 and 2.

4.0 Estimating the lift-to-drag ratio for the clean configuration
The variation of an aircraft’s drag with lift is known as its drag polar. During the take-off, very early
climb, final approach and landing, the high lift devices are deployed and the undercarriage is lowered.
However, above about 3,000 feet, the aircraft is usually in the clean condition with high lift devices and
undercarriage fully retracted, but still travelling at low Mach number (M∞ <0.6). In this situation, when
the lift coefficient lies between 0.3 to 0.7, the polar may be represented, approximately, by the classical
two-term, low-speed form, i.e.

Cd = function (CL, Rac)≈ Cd0 + C2
L

π .AR.eLS

= Cd0 + KC2
L. (30)

Here, K is the lift-dependent drag factor, AR is the wing aspect ratio, defined as

AR = s2

Sref

, (31)
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Table 1. Principal characteristics of a range of turbofan engines powering civil transport aircraft. The characteristics are averages over all
engines appropriate to the aircraft type and the static thrust and fuel flow at flight idle are total aircraft values

First Nominal Nominal (F00)ISA (ṁf )max T/O (TET)MCC

ICAO Flight OPR BPR (kN) (kg/s) ((ṁf )SLS)FI MEC TREC (ηo)DO η1 (CT)DO (K)
A30B 1973 26 4.6 466 4.80 0.40 0.674 4.93 0.276 0.322 0.0350 1350
A306 1983 32 4.9 525 5.08 0.42 0.683 5.34 0.313 0.364 0.0307 1486
A310 1982 26 5.0 444 4.29 0.38 0.686 5.37 0.334 0.384 0.0329 1474
A313 1982 28 5.0 480 4.51 0.39 0.684 5.36 0.327 0.375 0.0329 1474
A318 2002 25 5.2 199 2.06 0.21 0.689 6.03 0.293 0.340 0.0309 1649
A319 1995 25 5.6 212 1.99 0.21 0.701 5.85 0.283 0.328 0.0316 1600
A320 1987 27 5.6 225 2.15 0.22 0.701 5.59 0.309 0.358 0.0347 1529
A321 1993 31 5.3 269 2.69 0.25 0.694 5.74 0.295 0.343 0.0359 1584
A332 1992 34 5.1 609 5.94 0.49 0.686 5.73 0.325 0.370 0.0250 1576
A333 1992 34 5.1 604 5.84 0.49 0.687 5.73 0.344 0.391 0.0258 1576
A338 2018 45 9.0 656 4.96 0.48 0.763 6.25 0.360 0.400 0.0229 1726
A339 2017 45 9.0 656 4.96 0.48 0.763 6.23 0.359 0.400 0.0239 1723
A342 1991 30 6.7 579 5.52 0.48 0.725 5.64 0.326 0.367 0.0268 1567
A343 1991 30 6.7 579 5.52 0.48 0.725 5.66 0.331 0.373 0.0281 1567
A345 2002 36 7.5 1036 8.79 0.92 0.740 5.67 0.324 0.362 0.0245 1649
A346 2001 37 7.5 1051 8.96 0.92 0.740 5.68 0.336 0.375 0.0258 1643
A359 2013 41 9.0 758 5.64 0.58 0.764 6.12 0.371 0.405 0.0225 1706
A35K 2016 49 8.0 873 7.01 0.65 0.749 6.17 0.364 0.400 0.0223 1719
A388 2005 38 7.9 1351 10.57 1.07 0.747 5.87 0.363 0.399 0.0216 1667
BCS1 2013 36 11.3 201 1.44 0.15 0.785 6.23 0.326 0.365 0.0304 1706
BCS3 2015 36 11.3 201 1.44 0.15 0.785 6.26 0.327 0.365 0.0316 1715
A20N 2014 34 11.6 256 1.77 0.18 0.787 6.25 0.326 0.363 0.0302 1711
A21N 2016 34 11.6 256 1.77 0.18 0.787 6.20 0.340 0.380 0.0328 1719
B712 1998 30 4.6 179 1.82 0.20 0.675 6.00 0.289 0.351 0.0376 1622
B722 1967 17 1.0 204 3.41 0.42 0.557 4.63 0.243 0.286 0.0328 1244
B732 1967 17 1.0 137 2.30 0.28 0.557 4.66 0.215 0.269 0.0359 1244
B733 1984 23 5.1 187 2.01 0.23 0.688 5.50 0.273 0.323 0.0384 1497
B734 1988 24 5.1 190 2.05 0.24 0.688 5.59 0.269 0.319 0.0377 1539
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Table 1. Continued.

First Nominal Nominal (F00)ISA (ṁf )max T/O (TET)MCC

ICAO Flight OPR BPR (kN) (kg/s) ((ṁf )SLS)FI MEC TREC (ηo)DO η1 (CT)DO (K)
B735 1989 23 5.1 187 2.01 0.23 0.688 5.69 0.255 0.302 0.0346 1549
B736 1997 23 5.4 190 1.88 0.20 0.695 5.90 0.289 0.335 0.0310 1615
B737 1997 26 5.2 214 2.18 0.21 0.691 5.90 0.279 0.323 0.0315 1615
B738 1997 28 5.1 233 2.43 0.22 0.688 5.90 0.287 0.333 0.0335 1615
B739 2006 28 5.1 233 2.43 0.22 0.688 6.10 0.282 0.327 0.0330 1672
B37M 2018 40 8.4 248 2.00 0.19 0.755 6.28 0.336 0.380 0.0305 1726
B38M 2016 40 8.4 248 2.00 0.19 0.755 6.26 0.338 0.383 0.0316 1719
B39M 2017 40 8.4 248 2.00 0.19 0.755 6.24 0.345 0.390 0.0331 1723
B742 1971 25 4.8 882 9.11 0.90 0.679 4.61 0.302 0.338 0.0259 1317
B743 1980 26 4.8 899 9.19 0.91 0.679 5.05 0.301 0.337 0.0253 1449
B744 1985 31 5.0 1021 9.79 0.82 0.684 5.30 0.318 0.356 0.0245 1508
B748 2010 43 8.0 1199 9.81 0.87 0.749 5.89 0.362 0.395 0.0224 1693
B752 1982 27 4.7 358 3.64 0.35 0.678 5.38 0.302 0.347 0.0280 1474
B753 1998 27 4.7 358 3.64 0.35 0.678 5.88 0.309 0.355 0.0306 1622
B762 1984 30 4.9 504 4.86 0.41 0.683 5.41 0.320 0.368 0.0272 1497
B763 1986 30 4.9 504 4.86 0.41 0.683 5.54 0.307 0.353 0.0240 1519
B764 1999 31 5.1 513 4.86 0.40 0.688 5.83 0.315 0.361 0.0278 1629
B77L 2005 41 7.2 1007 9.01 0.75 0.735 5.82 0.349 0.386 0.0239 1667
B772 1994 38 7.0 781 6.89 0.57 0.731 5.72 0.331 0.367 0.0242 1592
B77W 1994 42 7.1 1028 9.38 0.76 0.732 5.59 0.351 0.389 0.0264 1592
B773 1997 36 6.3 745 6.87 0.56 0.716 5.80 0.354 0.394 0.0266 1615
B788 2009 43 9.0 633 4.82 0.45 0.764 6.06 0.376 0.412 0.0238 1688
B789 2013 43 9.0 633 4.82 0.45 0.764 6.13 0.376 0.412 0.0239 1706
B78X 2017 46 8.9 689 5.33 0.47 0.762 6.19 0.365 0.400 0.0243 1723
E75S 2002 23 5.1 120 1.32 0.13 0.688 6.06 0.241 0.284 0.0339 1649
E75L 2002 23 5.1 120 1.32 0.13 0.688 6.06 0.241 0.284 0.0345 1649
E135 1995 17 4.8 66 0.72 0.09 0.680 5.92 0.226 0.273 0.0370 1600
E145 1995 19 4.7 74 0.82 0.10 0.678 5.92 0.242 0.292 0.0382 1600
E170 2002 23 5.1 120 1.32 0.13 0.688 6.06 0.241 0.284 0.0354 1649
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Table 1. Continued.

First Nominal Nominal (F00)ISA (ṁf )max T/O (TET)MCC

ICAO Flight OPR BPR (kN) (kg/s) ((ṁf )SLS)FI MEC TREC (ηo)DO η1 (CT)DO (K)
E190 2004 27 5.1 167 1.74 0.18 0.687 6.07 0.267 0.310 0.0338 1661
E195 2004 27 5.1 162 1.67 0.17 0.687 6.07 0.268 0.310 0.0349 1661
E290 2016 33 11.6 186 1.30 0.14 0.787 6.27 0.331 0.368 0.0292 1719
E295 2017 36 11.4 201 1.42 0.14 0.786 6.28 0.323 0.360 0.0312 1723
MD82 1981 20 1.7 185 2.62 0.27 0.583 5.44 0.245 0.299 0.0376 1462
MD83 1984 20 1.7 193 2.71 0.27 0.582 5.57 0.238 0.290 0.0379 1497
GLF5 1995 25 4.1 138 1.49 0.17 0.659 5.85 0.318 0.367 0.0293 1600
CRJ9 1999 23 5.1 121 1.33 0.13 0.688 5.96 0.261 0.304 0.0343 1629
DC93 1967 16 1.0 130 2.13 0.27 0.556 4.64 0.211 0.257 0.0343 1244
RJ1H 1987 13 5.1 124 1.43 0.18 0.688 5.68 0.218 0.274 0.0427 1529

https://doi.org/10.1017/aer.2024.141 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/aer.2024.141


The
AeronauticalJournal

13
Table 2. Principal characteristics of a range of turbofan powered civil transport aircraft; the design optimum conditions are those at which
(ηoL/D) has its maximum value for an aircraft with a mass equal to 80% of the maximum permitted take-off value cruising in the ISA

Sref s bf λω

ICAO (m2) (m) (m) (deg) ψ 0 ψ 6 MDO (Rac)DO (CL)DO (MTF)ac J1 J2 (FL)MO MMO

A30B 260.0 44.83 5.64 28.0 8.77 0.693 0.753 9.25E+07 0.548 0.712 0.074 0.868 390 0.82
A306 260.0 44.84 5.64 28.0 7.80 0.716 0.753 9.86E+07 0.519 0.721 0.076 0.871 410 0.82
A310 219.0 43.89 5.64 28.0 8.38 0.657 0.772 8.14E+07 0.558 0.744 0.073 0.869 410 0.84
A313 219.0 43.89 5.64 28.0 8.21 0.711 0.772 8.69E+07 0.564 0.738 0.075 0.870 410 0.84
A318 122.4 34.10 3.95 25.0 7.47 0.607 0.753 5.42E+07 0.564 0.754 0.075 0.871 410 0.82
A319 122.4 34.10 3.95 25.0 7.70 0.656 0.753 5.81E+07 0.569 0.755 0.075 0.871 410 0.82
A320 122.4 34.10 3.95 25.0 8.40 0.656 0.753 5.59E+07 0.590 0.750 0.073 0.869 410 0.82
A321 122.4 34.15 3.95 25.0 8.63 0.794 0.753 6.51E+07 0.606 0.740 0.074 0.869 391 0.82
A332 361.6 60.30 5.64 29.7 6.69 0.645 0.786 1.10E+08 0.528 0.762 0.076 0.872 410 0.86
A333 361.6 60.30 5.64 29.7 6.90 0.645 0.786 1.09E+08 0.535 0.761 0.076 0.872 410 0.86
A338 374.0 64.00 5.64 30.0 6.21 0.648 0.786 1.12E+08 0.530 0.781 0.078 0.874 415 0.86
A339 374.0 64.00 5.64 30.0 6.46 0.648 0.786 1.10E+08 0.539 0.779 0.077 0.873 415 0.86
A342 361.6 60.30 5.64 29.7 7.08 0.711 0.786 1.16E+08 0.551 0.760 0.077 0.872 415 0.86
A343 361.6 60.30 5.64 29.7 7.38 0.711 0.786 1.14E+08 0.561 0.757 0.076 0.872 415 0.86
A345 437.3 63.45 5.64 31.1 6.73 0.831 0.796 1.53E+08 0.512 0.762 0.078 0.874 415 0.86
A346 437.3 63.45 5.64 31.1 7.06 0.822 0.796 1.49E+08 0.523 0.759 0.077 0.873 415 0.86
A359 445.0 64.75 5.96 32.0 6.14 0.569 0.820 1.21E+08 0.493 0.791 0.078 0.874 431 0.89
A35K 465.0 64.75 5.96 32.0 6.18 0.625 0.820 1.34E+08 0.500 0.789 0.078 0.874 415 0.89
A388 845.0 79.80 7.14 30.0 6.13 0.620 0.820 1.95E+08 0.446 0.794 0.082 0.876 431 0.89
BCS1 115.0 32.50 3.51 26.0 7.34 0.576 0.754 4.88E+07 0.576 0.776 0.076 0.873 410 0.82
BCS3 115.0 32.50 3.51 26.0 7.72 0.641 0.754 5.35E+07 0.585 0.775 0.075 0.872 410 0.82
A20N 122.4 35.10 3.59 25.0 7.52 0.705 0.753 5.94E+07 0.598 0.786 0.076 0.873 410 0.82
A21N 122.4 35.27 3.95 25.0 8.08 0.835 0.753 6.60E+07 0.626 0.777 0.077 0.873 391 0.82
B712 92.8 28.40 3.40 25.0 8.72 0.748 0.700 5.12E+07 0.594 0.685 0.073 0.867 371 0.82
B722 157.9 32.92 3.76 32.0 7.90 0.554 0.770 6.49E+07 0.499 0.687 0.072 0.865 420 0.90
B732 99.0 28.35 3.76 25.0 8.41 0.669 0.700 5.02E+07 0.556 0.678 0.073 0.867 370 0.82
B733 102.0 28.90 3.76 25.0 9.20 0.700 0.729 5.39E+07 0.578 0.715 0.072 0.867 390 0.82
B734 102.5 28.90 3.76 25.0 8.90 0.774 0.729 5.86E+07 0.579 0.710 0.074 0.868 370 0.82
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Table 2. Continued.

Sref s bf λω

ICAO (m2) (m) (m) (deg) ψ 0 ψ 6 MDO (Rac)DO (CL)DO (MTF)ac J1 J2 (FL)MO MMO

B735 103.7 28.90 3.76 25.0 8.33 0.681 0.729 5.55E+07 0.550 0.721 0.074 0.870 370 0.82
B736 124.6 34.30 3.76 25.0 7.42 0.567 0.758 5.14E+07 0.564 0.759 0.075 0.871 410 0.82
B737 124.6 34.30 3.76 25.0 7.61 0.607 0.758 5.46E+07 0.567 0.758 0.075 0.871 410 0.82
B738 124.6 34.30 3.76 25.0 8.18 0.684 0.758 6.01E+07 0.581 0.754 0.074 0.870 410 0.82
B739 124.6 34.32 3.76 25.0 7.93 0.737 0.758 6.42E+07 0.585 0.749 0.075 0.871 410 0.82
B37M 121.9 33.26 3.76 25.0 7.59 0.700 0.763 6.22E+07 0.573 0.779 0.076 0.872 410 0.82
B38M 121.9 33.26 3.76 25.0 7.87 0.720 0.763 6.31E+07 0.581 0.777 0.075 0.872 410 0.82
B39M 121.9 33.26 3.76 25.0 8.06 0.770 0.763 6.50E+07 0.599 0.769 0.076 0.872 410 0.82
B742 511.0 59.64 6.50 37.5 7.02 0.687 0.810 1.58E+08 0.458 0.692 0.074 0.868 450 0.90
B743 511.0 59.64 6.50 38.5 6.88 0.698 0.810 1.62E+08 0.453 0.683 0.073 0.867 450 0.90
B744 547.0 64.44 6.50 37.5 6.69 0.685 0.810 1.62E+08 0.465 0.698 0.074 0.869 450 0.92
B748 594.0 68.40 6.50 37.5 6.25 0.669 0.830 1.72E+08 0.458 0.732 0.077 0.872 421 0.90
B752 189.0 38.06 3.76 25.0 7.10 0.623 0.772 8.01E+07 0.497 0.770 0.078 0.874 420 0.86
B753 189.0 38.06 3.76 25.0 7.59 0.673 0.772 8.20E+07 0.522 0.760 0.078 0.873 430 0.86
B762 283.3 47.57 5.03 31.5 6.96 0.657 0.772 1.02E+08 0.500 0.719 0.076 0.871 430 0.86
B763 283.3 47.57 5.03 31.5 6.30 0.582 0.772 9.73E+07 0.470 0.730 0.077 0.873 431 0.86
B764 283.3 51.92 5.03 31.5 7.20 0.748 0.772 1.05E+08 0.544 0.723 0.075 0.870 450 0.86
B77L 427.8 64.80 6.20 31.6 6.50 0.765 0.811 1.43E+08 0.519 0.772 0.078 0.873 431 0.89
B772 427.8 60.93 6.20 31.6 6.46 0.632 0.811 1.29E+08 0.495 0.767 0.078 0.874 431 0.89
B77W 427.8 64.80 6.20 31.6 7.16 0.774 0.811 1.40E+08 0.542 0.767 0.076 0.872 431 0.89
B773 427.8 60.93 6.20 31.6 7.07 0.659 0.811 1.29E+08 0.515 0.760 0.077 0.872 431 0.89
B788 377.0 60.12 5.77 32.2 6.38 0.563 0.815 1.06E+08 0.508 0.784 0.077 0.873 431 0.90
B789 377.0 60.12 5.77 32.2 6.48 0.627 0.815 1.16E+08 0.509 0.784 0.077 0.873 431 0.90
B78X 377.0 60.12 5.77 32.2 6.61 0.627 0.815 1.17E+08 0.513 0.782 0.077 0.873 411 0.90
E75S 83.0 25.00 3.00 22.5 7.85 0.560 0.733 4.09E+07 0.552 0.742 0.075 0.871 410 0.82
E75L 83.0 25.00 3.00 22.5 7.97 0.560 0.733 4.06E+07 0.556 0.741 0.075 0.871 410 0.82
E135 51.2 20.04 2.25 22.5 8.02 0.487 0.704 2.64E+07 0.562 0.709 0.074 0.869 370 0.78
E145 51.2 20.04 2.25 22.5 8.38 0.536 0.704 2.87E+07 0.570 0.706 0.073 0.868 370 0.78
E170 72.7 25.30 3.15 22.5 8.10 0.589 0.733 3.72E+07 0.598 0.744 0.074 0.869 410 0.82
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Table 2. Continued.

Sref s bf λω

ICAO (m2) (m) (m) (deg) ψ 0 ψ 6 MDO (Rac)DO (CL)DO (MTF)ac J1 J2 (FL)MO MMO

E190 86.0 27.71 2.74 22.5 7.90 0.599 0.758 4.28E+07 0.594 0.770 0.074 0.870 410 0.82
E195 92.5 27.73 3.00 22.5 8.13 0.569 0.758 4.29E+07 0.584 0.766 0.074 0.870 410 0.82
E290 110.0 33.72 3.00 22.5 6.99 0.552 0.758 4.59E+07 0.578 0.806 0.078 0.874 410 0.82
E295 110.0 35.12 3.00 22.5 7.52 0.602 0.758 4.72E+07 0.613 0.805 0.076 0.873 410 0.82
MD82 112.3 32.85 3.35 22.5 8.96 0.721 0.720 5.43E+07 0.612 0.715 0.072 0.866 370 0.84
MD83 112.3 32.85 3.35 22.5 8.86 0.772 0.720 5.77E+07 0.622 0.709 0.073 0.867 370 0.84
GLF5 105.6 28.50 2.50 25.0 6.70 0.406 0.772 3.83E+07 0.508 0.765 0.077 0.873 510 0.89
CRJ9 69.0 22.62 2.69 26.0 7.94 0.607 0.753 4.17E+07 0.550 0.737 0.074 0.869 410 0.85
DC93 93.0 28.44 3.35 24.0 7.95 0.606 0.733 4.58E+07 0.565 0.719 0.074 0.868 370 0.84
RJ1H 77.3 26.34 3.50 15.0 9.77 0.838 0.650 4.49E+07 0.637 0.682 0.074 0.869 350 0.73
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where s is the wingspan, eLS is the low-speed Oswald efficiency factor and Cd0 is the zero-lift drag
coefficient. As described in Poll and Schumann [4], Cd0 is related to the mean skin friction coefficient,
CF , by

Cd0 =ψ0Cac
F , (32)

where ψ 0 depends upon the aircraft geometry and, as shown in Poll and Schumann [3], the variation
of CF with Reynolds number at Mach 0.5 can be approximated by a simple power law with constant
coefficients, i.e.

Cac
F ≈ a

(Rac)
b = 0.0269

(Rac)
0.14 . (33)

Here, the aircraft flight Reynolds number, Rac, is defined as

Rac = lρ∞V∞
μ∞

= S1/2
ref

(
ρ∞a∞
μ∞

)
M∞ = S1/2

ref

(
γ p∞
μ∞a∞

)
M∞, (34)

where, l is a typical aircraft reference length, taken to be the square root of the reference wing area, a∞
the local speed of sound and μ∞ the dynamic viscosity.

As described in Refs (3) and (4), the Oswald factor is a function of Cd0 and aircraft geometry such
that, from Equations (26), (27) and (28) of Ref. (4),

eLS ≈ 1

1.03 + δ2 + π .AR.k1

, (35)

where

δ2 ≈ 2

(
bf

s

)2

(36)

and

k1 ≈ 0.80 (1 − 0.53cos (Λw))Cd0, (37)

with bf being the fuselage maximum width and Λw the wing quarter-chord sweep angle. Therefore,

K = 1

π .AR.eLS

≈ k1 +
(

1.03 + δ2

π .AR

)
. (38)

The zero-lift drag coefficient, Cd0, is the sum of the pressure, or form, drag and the surface skin fric-
tion drag. At low Mach numbers, the form drag increases with increasing Mach number, whilst the
skin friction drag decreases. Above a Mach number of about 0.5 these effects are approximately equal.
Consequently, Cd0 and, hence, K may be assumed to be independent of Mach number.

At higher Mach numbers, the drag polar is modified by the effects of compressibility and the general
form becomes

Cd = function (CL, M∞, Rac)≈ Cd0 + KC2
L + Cdw, (39)

where Cdw is the wave drag coefficient. If Cd0 and K are independent of Mach number, Cdw must capture
all the compressibility effects, up to and including the development of regions of supersonic flow and,
ultimately, the formation of shockwaves. When defined in this way, the wave drag coefficient is a function
of Mach number, lift coefficient and, to a lesser extent, Reynolds number – see Shevell [11].

As the flight speed increases, sonic conditions are eventually reached at the point on the wing where
the local static pressure is lowest. Further increases lead to the formation of a region of supersonic flow
bounded by the wing surface, a sonic interface9 in the region adjacent to the surface and a terminating
shockwave. Once this local supersonic zone is established, the terminating shockwave moves rearwards
and strengthens when either the Mach number, or the lift coefficient is increased. Whilst this zone is
confined to the front portion of the wing, the associated drag increase is small, being typically less

9The surface formed by all the points in the flow field where the local Mach number is unity.
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than about 10 drag counts10 and this variation is known as drag creep. However, when the terminating
shockwave moves onto the rear part of the wing, it strengthens. Consequently, the drag changes following
increases in M∞, or CL, become much larger and this more rapid variation is referred to as drag rise.

According to the Poll and Schumann [5] model, which is based upon ideas by Shevell [11], transition
from drag creep to drag rise is governed by the local Mach number at the wing crest. This is the point
on the aerofoil where the surface slope is parallel to the undisturbed freestream direction. The drag rise
begins when supersonic flow is established downstream of the crest and this occurs when the freestream
Mach number exceeds a threshold value known as the crest critical Mach number, Mcc. This quantity
depends, primarily, upon wing geometry and the lift coefficient, whilst the magnitude of the wave drag
is governed by the ratio of M∞ to Mcc. Hence, the variable controlling the wave drag is taken to be

X = M∞cos (Λw)

(MCC)
ac , (40)

where

(MCC)
ac = (MTF)

ac − 0.10

(
CL

cos2 (Λw)

)
. (41)

Here, (MTF)
ac is a constant aircraft characteristic that captures the aerofoil technology level and the

distribution of wing thickness-to-streamwise chord ratio across the span.
In the drag creep region,

(Cdw)creep ≈ cos3 (Λw)
(
j1(X − j2)

2
)

, (42)

where j1 and j2 are constant aircraft dependent characteristics. If X is less than j2, the wave drag is zero
and the drag creep region is deemed to have ended when X reaches the design optimum value, XDO,
where, from Equations (40) and (41),

XDO = MDOcos (Λw)

(MTF)
ac − 0.10

(
(CL)DO

cos2(Λw)

) . (43)

At larger values of X, i.e. in the drag rise region, an additional term is introduced to capture the effect
of strengthening shock waves. Hence,

(Cdw)rise ≈ cos3 (Λw)
(
j1(X − j2)

2 + j3(X − XDO)
4
)

, (44)

where j3 is also a constant and is currently taken to be 40. Values of j1 and j2 are given in Table 2.
At all flight conditions, the lift-to-drag ratio is given by

L

D
= CL

Cd
= CL(

Cd0 + KC2
L + Cdw

) . (45)

By way of illustration, the variation of L/D with drag coefficient and Mach number at a fixed total
mass for the A320 has been estimated using the Equations (30)–(45) with the input parameters given
in Table 2. The results are presented in Fig. 3. As expected, the maximum value of L/D and the
corresponding drag coefficient decrease as the flight Mach number increases.

5.0 The operational limits
Whilst the model is valid over a wide range of conditions, there are four principal performance factors
that can limit the achievable combinations of Mach number and flight level in normal operations.

101 drag count is equal to a change of 0.0001 in Cd.
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Figure 3. Approximate variation of lift-to-drag ratio for the A320 aircraft with drag coefficient and
Mach number operating at a total mass of 58,800kg.

5.1. Maximum lift limit
The first constraint is the lift limit, sometimes referred to as the ‘manoeuvre’ limit, which is linked to the
conditions at which wing buffeting11 is first encountered during a specified manoeuvre – usually a level
turn. For a given aircraft weight, the onset of buffeting defines an envelope of maximum achievable
flight level for straight and level flight as a function of Mach number. This envelope also has a local
maximum, i.e. at a given weight, there is an absolute maximum flight level and this is referred to as the
“aerodynamic” ceiling.

Starting immediately after take-off, the aircraft must stay above the minimum speed dictated by max-
imum usable wing lift. In straight and level flight at low speed, the wing stalls at a particular value of
the lift coefficient, (CL)stall, known as the 1g stall condition. However, the stall is preceded by buffeting
beginning at (CL)buff , which is about 90% of (CL)stall. In addition, to give the aircraft some margin for safe
manoeuvre in an emergency, it is a regulatory requirement that the maximum useable lift coefficient,
(CL)mu, in straight and level flight be set at a value that allows a 1.3g manoeuvre, e.g. a 40◦ level banked
turn, to be executed before buffet onset, i.e.

(CL)MU = (CL)buff

1.3
≈ (CL)stall

1.5
, (46)

Data given in Obert [13] suggests that, for aircraft in the clean configuration at low Mach number, (CL)stall

is about 1.4 ±0.3, whilst, from Table 2, the average value of (CL)DO is seen to be about 0.55. Hence,
at low speed, the ratio of (CL)mu to (CL)DO is about 1.8 ±0.4. Clean condition values are applicable
for flight above 3,000 feet (FL>30), since at lower altitudes high-lift devices are likely to be used and,
consequently, (CL)mu will be much higher.

At high speeds, as Mach number increases, the shock waves on the wing eventually become strong
enough to cause local, boundary-layer separation and the shock wave system itself may become unsteady.

11As an aerodynamic limit is approached, the first signs are usually weak, unsteady pressure variations in the flow. These are
sensed by the pilot as vibrations of the aircraft structure, which are described, qualitatively, as “buffeting”.
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Figure 4. An estimate of the normalised 1g buffet onset and 1.3g manoeuvre boundaries for a typical
civil transport aircraft in the clean condition. Data are taken from an FCOM and the centre of gravity
is 35% of the mean aerodynamic chord.

This also produces time varying forces that present as buffeting. Further increases in speed produce
major changes in the wing flow, eventually leading to a situation in which the aircraft can no longer
be controlled. This phenomenon is known as the high-speed stall and, for safety reasons, at each Mach
number, a maximum usable, lift coefficient is imposed such that, relative to straight and level flight,
and consistent with the low-speed stall, the aircraft must be able to execute a 1.3g level turn without
encountering any buffeting.

Typical 1g buffet onset and 1.3g manoeuvre boundaries are shown in Fig. 4. Here, the solid line
is a smoothed, empirical estimate of the typical manoeuvre boundary linking the low-speed limit of
(CL)mu/(CL)DO equal to approximately 1.8 and the high-speed limit based upon data taken from the charts
given in the Flight Crew Operating Manual (FCOM) of a typical civil transport aircraft. In general, the
boundary depends upon the location of the aircraft’s centre of gravity and an average value of 35% of the
mean aerodynamic chord has been assumed. More information can be found in Obert [13] Chapter 26 for
the low-speed stall and Chapter 28 for buffet onset at high speed. The data are normalised using (CL)DO

and MDO and, in this form, the curves are expected to be broadly similar for all the aircraft considered
here. The solid diamond symbol shows the flight condition for (ηoL/D)DO and the manoeuvre boundary
loops around it, leaving a clear margin of safety before the stall.

Using the definition of lift coefficient given in Equation (16), the variation of (p∞)min with Mach
number at the manoeuvre boundary is given by

(p∞)DO

(p∞)min

= 0.8

(
(CL)MU

(CL)DO

)(
MTOM

m

)(
M∞
MDO

)2

, (47)

whilst the static pressure at the design optimum condition is,
(p∞)DO

(pTP)ISA

= 0.80

(CL)DO

ψ6, (48)

where (pTP)ISA is the static pressure at the tropopause in the International Standard Atmosphere [9] and,
using the notation from Poll and Schumann [4],

ψ6 =
(

MTOM.g

(γ /2) (pTP)ISAM2
DOSref

)
. (49)

Values of ψ 6 are given in Poll and Schumann [5] and are also listed in Table 2.
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Figure 5. Variation of the minimum static pressure (maximum flight level) with Mach number for the
approximate manoeuvre boundary for two values of aircraft mass. Also shown is a typical cabin pressure
limit (FL 420), together with a typical maximum operational Mach number limit and an approximate
structural strength boundary ((VEAS)MO of 360 kt), plus an alternative ATM limit of 250 kt CAS below
10,000 feet.

Static pressure is linked directly to the flight level through Equations (A13) and (A14) in Appendix B,
i.e., if (p∞/(pSL)ISA) is greater than 0.223363,

FL = 1454.4302

(
1 −

(
p∞

(pSL)ISA

)0.190263
)

, (50)

otherwise

FL = 49.02022

(
1 − 4.24436ln

(
p∞

(pSL)ISA

))
. (51)

Relations for the approximate variation of normalised (CL)mu with normalised Mach number are given
in Appendix D and the form of the manoeuvre boundary, expressed as a normalised pressure versus
normalised Mach number, is given in Fig. 5. As the aircraft climbs, the Mach number for the onset of
the low-speed stall increases, whilst that for high-speed stall decreases. Eventually, a condition is reached
at which both begin at the same Mach number. The resulting flight level is an absolute maximum and
this is the aircraft’s aerodynamic ceiling. From Equation (D4), it is found that the Mach number at this
condition, (M∞)AC , is given by

(M∞)AC ≈ 1.035MDO (52)
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and (p∞)AC is

(p∞)DO

(p∞)AC

≈ 0.544

(
(CL)mu

(CL)DO

)
LS

(
MTOM

m

)
≈ 0.98

(
MTOM

m

)
. (53)

Clearly, the aerodynamic ceiling is strongly dependent upon the aircraft mass.

5.2. Maximum thrust limit
The next constraint is the thrust limit, sometimes referred to as the minimum available climb rate. This
is governed by the engine’s net thrust when it is operating at its maximum continuous climb rating.
The engine rating is usually determined by specifying a maximum value for the total temperature of the
mixture of air and the products of combustion at the entry to the engine’s turbine section, i.e. the turbine
entry temperature, or TET . As described in Ref. (6), the maximum continuous climb value, (TET )MCC ,
is about 0.92 times the maximum at take-off value, (TET )MTO. With the engine at maximum continuous
climb, the achievable rate of climb at a given Mach number decreases as the altitude increases and
the maximum useful operational altitude is deemed to have been reached when it drops to about 300
feet/minute. This is called the service ceiling for that Mach number.

From Equations (8) and (9), assuming small angles and neglecting small terms, when the airspeed is
constant, the residual available rate of climb is

dh

dt
≈ V∞

(n.Fn − D)

mgn

= M∞a∞
(CT − Cd)

CL

, (54)

With the engines at maximum continuous climb, the thrust coefficient is (CT )MCC and when the rate
of climb is 300 feet/min, the corresponding service-ceiling, lift coefficient, (CL)SC , is obtained using
Equations (39) and (54),

K (CL)
2
SC + 0.00516

M∞

(
(TTP)ISA

T∞

)1/2

(CL)SC − ((CT)MCC − (Cd0 + Cdw))= 0, (55)

where (TTP)ISA is the temperature at the tropopause in the International Standard Atmosphere. An exact
solution of this equation requires several iterations.

Sample calculations have been performed for values of m/MTOM equal to 0.9 and 0.7, with ambient
temperatures of ISA and ISA +20◦C. The results are given Figs 6 and 7. As expected, the thrust limited
boundaries exhibit maxima corresponding to the highest achievable service ceilings. Changing weight
has a major effect and increasing the ambient temperature reduces the service ceiling significantly.

Whilst the full calculation is complex, the exact solutions show that the static pressure at the service
ceiling is not particularly sensitive to the Mach number. Consequently, a reasonable approximate solution
is given by determining (CL)SC at the design optimum Mach number, MDO. As shown in Appendix E,
this has the form

(CL)SC

(CL)DO

≈
(

c1

(
(TET)MCC

T∞

)
+ c2

)1/2

− c3

(
(TTP)ISA

T∞

)1/2

, (56)

where the coefficients c1, c2 and c3 are constant and functions of the aircraft parameters at the design
optimum condition, as shown in Equations (E11), (E12) and (E13). The resulting values of static pressure
ratio are obtained from Equation (47), i.e.

(p∞)DO

(p∞)SC

≈ 0.8

(
(CL)SC

(CL)DO

)(
MTOM

m

)
. (57)

The service ceiling static pressure is proportional to the aircraft mass and, since, as indicated in
Equation (56), (CL)SC decreases as atmospheric temperature increases, it also increases as the atmo-
spheric temperature increases. Hence, the service ceiling flight level decreases as both mass and
atmospheric temperature increase.
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Figure 6. Variation of the minimum static pressure with Mach number for the thrust limited boundary
when m/MTOM is equal to 0.9 and for ISA ambient temperature and ISA+20◦C. Also shown is manoeu-
vre limit for m/MTOM equal to 0.9, plus the cabin pressure limit (FL 420), together with a typical
maximum operational Mach number.

Figure 7. The same Fig. 6, but for m/MTOM is equal to 0.7.
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5.3. Maximum permitted flight level
The third restriction is the maximum cabin pressure limit. This is a structural strength constraint that fixes
the maximum allowable difference between the internal cabin pressure and the external atmospheric
pressure. It takes the form of a maximum permitted flight level, FLmax, given in the Type Certificate
Data Sheet (TCDS), and, for civil transport aircraft, it is, typically, about FL 410. Once again, this can
be expressed as a ratio of static pressures, i.e. using Equations (47), (48) and (53),

(p∞)DO

(p∞)min

= 0.8
ψ6

(CL)DO

(
(pTP)ISA

(p∞)min

)
= 0.1412

ψ6

(CL)DO

EXP

(
FLmax

208.06

)
. (58)

Results for this limit are included in Figs 5, 6 and 7.
In these examples, when the ambient temperature has the ISA value, the service ceiling and the aero-

dynamic ceiling are close together. At the higher aircraft weight, as shown in Fig. 6, both ceilings are
below the cabin pressure limit and so the service ceiling is the greatest height that the aircraft can reach.
Conversely, at the lower aircraft weight given in Fig. 7, both the service and the aerodynamic ceilings
lie above the cabin pressure limit and so the maximum achievable flight level is determined by the cabin
pressure limit. However, when the ambient temperature is increased to ISA +20◦C, the service ceiling
determines the maximum achievable altitude at both weights.

5.4. Maximum speed limit
Finally, the fourth constraint is the maximum operational speed. This is also a structural strength con-
straint. At low altitudes, this is usually expressed as a maximum permitted value of the dynamic pressure,
(q∞)MO, which, as shown in Appendix B, is equivalent to a maximum value of the equivalent airspeed,
(VEAS)MO, i.e.

(q∞)MO = γ

2
(pSL)ISA

(
(VEAS)MO

(aSL)ISA

)2

= γ

2
p∞M2

∞. (59)

Therefore, at a given Mach number, there is a maximum permitted freestream static pressure, corre-
sponding to a minimum permitted flight level, where

(p∞)max = 2(q∞)MO

γM2
∞

= (pSL)ISA

(
(VEAS)MO

M∞(aSL)ISA

)2

, (60)

or, using Equation (48),

(p∞)DO

(p∞)max

≈ 0.8

(
ψ6M2

DO

(CL)DO

)(
pTP

pSL

)
ISA

(
(aSL)ISA

(VEAS)MO

)2( M∞
MDO

)2

. (61)

At high altitude, (VEAS)MO is replaced by a maximum operational Mach number, MMO. Constant equiv-
alent airspeed gives way to constant Mach number at the crossover flight level, (FL)CO, which is obtained
from Equation (61), i.e.

(p∞)DO

(p∞)CO

≈ 0.8
ψ6

(CL)DO

(
pTP

pSL

)
ISA

(
MMO(aSL)ISA

(VEAS)MO

)2

. (62)

Values of (VEAS)MO and MMO usually appear in the aircraft’s TCDS and, whilst there is a relationship
between the two, it is complex and beyond the scope of a simple representation. Nevertheless, data
presented by Jenkinson et al. [14] suggest that there is a rough correlation, with an uncertainty of about
± 10%,

(VEAS)MO

(aSL)ISA

≈ 0.57 (MMO + 0.10)) . (63)

Therefore, approximate values of (VEAS)MO can been obtained from Equation (63) using the values of
MMO given in Table 2.
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Finally, below 10,000 feet, there may be a limit on the calibrated airspeed, (VCAS)MO, imposed by
air traffic control. Typically, this would be 250 kt. The relation between calibrated airspeed and Mach
number is obtained by combining Equations (B1) and (B5) from Appendix B, which together with
Equation (48) gives the relationship between maximum static pressure (minimum flight level) and Mach
number to be

(p∞)DO

(p∞)max

≈ 0.8
ψ6

(CL)DO

(
pTP

pSL

)
ISA

⎛
⎜⎜⎜⎝
(

1 + (γ−1)
2

M2
DO

(
M∞
MDO

)2
) γ

(γ−1)

− 1

(
1 + (γ−1)

2

(
(VCAS)MO
(aSL)ISA

)2
) γ

(γ−1)

− 1

⎞
⎟⎟⎟⎠ . (64)

A sample maximum operational speed boundary is included in Fig. 5 and it is independent of both the
aircraft weight and the ambient temperature.

6.0 Determination of the fuel flow rate and engine overall efficiency in climb and cruise
For an aircraft of given total weight, the method’s principal output parameters are the total fuel mass-
flow rate and the engine overall efficiency. These quantities are obtained by applying the following
computational scheme.

The input parameters are aircraft type, mass, Mach number, flight level, rate of climb, time rate of
change of true airspeed and ambient temperature. With p∞ determined from the definition of flight level
and T∞ specified, sound speed, a∞, true airspeed, V∞, and dynamic viscosity,μ∞, follow. Lift coefficient
and Reynolds number are then given by Equations (16) and (34). Values of AR, δ2, CF , Cd0 and k1 are
obtained from Equations (31) to (37), followed by eLS and K from Equations (35) and (38).The value of
the crest critical Mach number, (MCC)

ac is found from Equation (41) and X from Equation (40), whilst
the wave drag coefficient comes from Equation (44). Values of the geometric parameters Sref , s, bf , and
Λw, are listed in Table 2 together with the derived coefficients ψ0, (MTF)

ac , (CL)DO, j1 and j2. Having
obtained Cdw, the estimate for L/D is obtained from Equation (45).

The estimation of ηo begins with the calculation of the total, net engine thrust using Equations (4) and
(13), with the thrust coefficient, CT , following from Equation (17). Using M∞, MDO, (ηo)DO, (CT )DO and
η2 from Equations (29), (27) and (28) give (ηo)B and (CT )ηB. These quantities are then used in Equation
(24) to give ηo. Values for the engine constants (ηo)DO, (CT )DO and BPR are given in Table 1 and MDO is
given in Table 2.

With the engine overall efficiency and the lift-to-drag ratio now determined, the fuel flow rate is given
by Equation (19).

7.0 Fuel flow rate estimate for ‘flight idle’ operation in descent
During the descent phase, the throttles may be set to the flight idle position. In this mode, the net thrust
is very low, possibly negative, and fuel is being used to keep the engine running at a safe minimum
speed. Under these conditions, the compressor characteristics may be very different from those in climb
and cruise and there may be variations in the various blade and engine bleed settings.

When developing the engine model, Poll and Schumann [6] made use of information given in
Jenkinson et al. [14], which includes results for the descent phase. These indicate that, when the flight
idle fuel flow rate is normalised with respect to its value at sea-level, static conditions, the result has a
strong dependence upon altitude, but only a weak dependence upon Mach number and nominal bypass
ratio. Since the engine is producing close to zero net thrust at this condition, unlike the other phases of
flight, there is no dependence upon aircraft weight. Curve fitting the data gives(

ṁf(
ṁf

)
SLS

)
FI

≈ 1 − 0.178

(
FL

100

)
+ 0.0085

(
FL

100

)2

. (65)
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Figure 8. Variation of normalised, flight-idle, fuel flow rate with altitude for three aircraft. Open sym-
bols are FCOM data. The solid line is the estimate from Equation (65) and the dashed lines show the
± 30% variation.

Information on descent phase fuel flow is given in the aircraft’s FCOM and, whilst these documents
are not generally available in the public domain, some manuals and several extracts can be found on the
internet. Fortunately, the ICAO Aircraft Engine Emissions Data Bank [15] lists fuel flow rates for the
flight idle throttle setting at sea-level, static conditions for a large number of engines and these values
are listed in Table 1. The combination of these data with Equation (65) yields an estimate of the flight
idle fuel burn rate at any flight level.

Comparisons of FCOM data for three aircraft, one single aisle (aircraft 1) and two twin aisle (aircraft
2 and 3) are presented in Fig. 8, together with the estimates based upon Equation (64) and the ICAO data.
The results exhibit a large degree of residual scatter, some of which is due to the difficulty of estimating
instantaneous fuel flow rates from the FCOM tables. Nevertheless, the altitude dependence is clearly
visible, as is the collapse achieved with the chosen normalising parameter.

Despite the complexity of the situation, this simplified expression produces estimates that are gener-
ally within 30% of the values derived from the limited FCOM data. This rather large uncertainty is offset
by the fact that, as indicted by the data given in Table 1, the fuel burn rate at flight idle is an order of
magnitude lower than that at take-off. Flight idle values should be used when the aircraft is descending
and the estimated fuel flow rate drops below that given by Equation (65).

8.0 Fuel flow rate estimates for take-off, initial climb-out and approach and landing
Below 3,000 feet, the aircraft is likely to have its flaps fully, or partially, deployed and the undercarriage
might be lowered. Clearly, this has a major effect on the drag and, since the method, in its current form,
only addresses the clean configuration, for completeness, some means of estimating fuel flow rate in
these other situations is required.

For all but the shortest flights, most of the fuel is consumed in the climb and cruise. Hence, high
accuracy in other phases of flight is less important and, perhaps, the simplest approach is the use the
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average landing and take-off (LTO) cycle specified for use with the ICAO Aircraft Engine Emissions
Data Bank [15]. This gives the following recommendations.

1. At take-off, the aircraft operates at the maximum available thrust for 0.7 minutes.
2. During the initial climb out, the engine thrust is reduced to 85% of the maximum available for

2.2 minutes.

and

3. During the final approach for landing, the engine thrust is set to 30% of the maximum available
thrust for 4.0 minutes.

If the engine type is known, the fuel flow rates can be read directly from the ICAO data base. However,
in many situations, the engine model will not be known. Therefore, average values for maximum take-
off thrust and corresponding fuel flow rates have been obtained for each aircraft type. This was done by
taking the mean values for all the engine types fitted to each aircraft. These results are listed in Table 1.

In addition, it was found that, relative to maximum take-off values, when the thrust level is reduced
to 85% and 30%, the fuel flow rate drops to 0.82±0.02% and 0.28±0.02%. Applying these factors gives
the approximate fuel for climb-out and approach and landing.

The relative importance of the fuel used in these stages of flight depends upon how the aircraft is
operated. For flights close to the maximum possible range, they represent about 5% of the total fuel
used. However, for very short flights this can increase to over 25%.

9.0 Engine deterioration in service
The performance of both airframe and engines varies with time due to in-service deterioration – see,
for example, Arrieta, Botez and Lasne [16]. In the case of the airframe, this is primarily the result
of dirt accumulation on the outer surface and erosion, or damage, to the paint covering. There is also
the possibility of rigging errors when major components, e.g. ailerons, are refitted following removal for
inspection, or repair. All these can result in increased drag. However, this penalty is expected to be small.
In the case of the engines, dirt is also a major issue, leading to a progressive reduction of component
polytropic efficiencies through surface contamination (fouling) and surface erosion. There is also the
progressive wearing of seals and bearings. These effects all lead to a steady increase in the rate at which
fuel is burned for a given thrust.

As discussed in Ref. 16, engine degradation rate depends upon the operational cycle and the operating
environment. Consequently, results for short haul and long haul are different. Airlines can take low-level
remedial action, such as core washing, whilst the engine is still in service, or the engine can have a major
overhaul. During its lifetime, an engine might undergo two, or three, complete overhauls and during
its lifetime an aircraft may need two, or more, sets of new engines. This whole process is driven by
airline economics. However, irrespective of the operational cycle, as indicated in Ref. 16, the maximum
acceptable increase in fuel consumption before a maintenance intervention is likely to be in the region
of 5%.

When the method is applied to a particular aircraft, it is unlikely that the degree of in-service dete-
rioration will be known. However, as noted above, this extra fuel use is likely to be between 0 to 5%.
Therefore, it is assumed that the method gives estimates that are representative of a nearly new aircraft
and that the mean, in-service deterioration is taken to be 2.5%. To capture this, a multiplier of 0.975 is
applied to the engine overall efficiency, i.e. the in-service overall efficiency is

(ηo)IS ≈ 0.975 (ηo) . (66)

This corrected value is used in Equation (19) to obtain the final estimate of the fuel consumption.
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Figure 9. Comparison between estimates for fuel flow rate and values obtained from the flight data
recorder on an Airbus A320-200 aircraft. Data are taken from 20 complete flights ≈2,200 points. The
solid line shows the mean variation, which has a slope of 0.91 and the dashed lines show the ± 15%
variation.

10.0 Comparison with flight data recorder information
The type of in-flight information required to test any performance model is commercially sensitive and,
consequently, examples rarely appear in the public domain. However, some years ago Swiss International
Airlines released a set of flight recorder data (FRD) from operations in 2008 and this has been used in
a number of studies, e.g. Randle et al. [17], Simone et al. [18] and, more recently, Hall et al. [19].
The aircraft involved are single examples of the Airbus A320-200, A330-200 and A340-300 and the
Boeing B757-300, B767-300 and B777-300 types, operating on different routes. There are 885 complete
flights covering the North Atlantic, the tropics and the Indian Ocean, with a wide range of operational
conditions, masses ranging from empty and to the maximum take-off values and ambient temperatures
between ±20 K relative to ISA.

The measurement accuracy of the data has been discussed by Vera-Morales and Hall [20], Randle
et al. [17] and Simone et al. [18]. They estimate that the fuel flow data are accurate to ±1 %, whilst the
estimated accuracies of FL, M∞, and T∞ to be ±0.3, ±0.01, and ±2K, respectively. In addition, the
instantaneous aircraft mass depends upon the input value take-off mass, whose accuracy is not known.
The data are also very noisy, exhibiting fluctuations in excess of ±10%. There could be many reasons
for this, including errors introduced during data processing, oscillations due to dynamic response to
turbulence and other perturbations such as minor pilot, or autopilot, control inputs.

Figures 9–14 show comparisons between the estimates for instantaneous fuel flow rate and the values
from the flight data recorder. In each case, 20 complete flights are shown and they have been filtered
using the performance boundaries described in Section 512. The results arrange themselves into broad
groups representing the climb, cruise and descent phases. It is also clear that, whilst the noise level is
significant, the majority of the data fall within ±15% of the mean line.

12When applying the manoeuvre and the minimum climb rate criteria, the low-speed value of (CL)mu/(CL)DO and the value
of TR from Equation (52) have both been increased by 20%. This reflects the maximum uncertainty in these parameters and
minimises the rejection of potentially valid data.
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Figure 10. As for Fig. 9, but for an Airbus A330-200, with ≈2,850 points and a slope of 1.00.

Figure 11. As for Fig. 9, but for an Airbus A340-300, with ≈3,850 points and a slope of 0.94.

The slope of the mean line depends, primarily, upon a combination of two factors. The first is the
accuracy of the model parameter values listed in Tables 1 and 2, whilst the second is the accuracy of the
assumed aircraft take-off mass. As can be seen from Equation (2), in steady, straight and level cruise,
(ηoL/D) is constant and, hence, the fuel flow rate is directly proportional to the aircraft’s instantaneous
mass. There is a stronger dependency on mass in the climb and a weaker dependency in the descent.
Nevertheless, numerical experiments on the data for complete flights show that the slope of the mean
line is almost directly proportional to the assumed value of the take-off mass.
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Figure 12. As for Fig. 9, but for a Boeing B757-300, with ≈2,100 points and a slope of 0.97.

Figure 13. As for Fig. 9, but for a Boeing B767-300, with ≈1,900 points and a slope of 0.91.

Whilst the FDR information includes take-off mass, its origin is unknown and its accuracy does
not appear to have been assessed. Take-off mass is an important parameter for aircraft performance.
However, in normal operations, aircraft weight is not measured directly before departure. Consequently,
the signed-off, take-off mass may not be exactly equal to the true take-off mass. There may be several
reasons for this mismatch, for example the passenger weight is estimated and the taxi-out fuel may not
all be used prior to take-off.
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Figure 14. As for Fig. 9, but for a Boeing B777-300, with ≈2,700 points and a slope of 1.00.

Notwithstanding the potential uncertainty relating to take-off mass, the overall agreement between
the estimates and the FDR values is good, demonstrating that, within reasonable uncertainty bounds,
the method works in all phases of flight.

When the estimates for the total amount of fuel used on each flight are compared, the mean deviations
relative to the FDR values are −10% for the A320, +1% for the A330, −2% for the A340, −1% for the
B757, −3% for the B767 and 0% for the B777. Once again, the total fuel used is directly proportional
to the assumed take-off mass13 and so these discrepancies are also due to a combination of errors in
the model parameter values and in the assumed take-off mass. Figure 15 shows the comparisons for the
total amount of fuel used on each of the 885 flights. The results have been normalised for each aircraft
so that deviations from the mean values can be determined. The residual RMS error is found to be less
than 2%, with just one point exhibiting an error of more than 10%.

Further improvements in the model will be possible if more flight data, with well characterised
accuracy, become available.

11.0 Conclusions
A performance model has been developed for an aircraft in the clean configuration that can be used in
climb, cruise, initial descent and holding. It is based upon previously published methods for the estima-
tion of optimum value (ηoL/D), using a simple relation for the wave drag, and a model for the engine
overall efficiency as a function of Mach number and thrust. The method can be used in situations where
both the aircraft trajectory and the variation of atmospheric temperature with atmospheric pressure and
the wind speed components are fully specified. Such data sets are becoming available to the research
community and they will be used to give improved insight into the impact of aviation on the environment.

To provide coverage in all phases of flight, a simplified model of the fuel flow rate in the flight idle
mode has been proposed, together with some approximate estimates of the fuel usage during take-off,
initial climb and approach and landing. However, since the fuel flow rates in climb and cruise are an

13As demonstrated in the classic Breguet range equation.
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Figure 15. Comparison of the estimated total trip fuel and the value obtained from the FDR for 885
flights. The data are normalised to remove any differences in the mean values. The dashed lines show
the ±5% variation.

order of magnitude greater than those at flight idle and the amount of fuel used in take-off, initial climb,
approach and landing is a small fraction of the total trip fuel, for all but the shortest of flights, the
accuracy requirement for these phases is lower than those for climb and cruise.

The operational boundaries imposed by buffet onset and the structural strength constraints of maxi-
mum cabin pressure differential and maximum dynamic pressure have been considered and approximate
relations have been developed. In addition, since the simplified engine model uses turbine entry tem-
perature as a throttle variable, the service ceiling can also be estimated and its dependence upon the
atmospheric static temperature is captured.

When applying the method, a number of airframe and engine specific characteristics must be known.
These have already been estimated for a range of aircraft and, as more data has emerged and the method
has developed, their accuracy has improved steadily and the number of aircraft in the data base has
increased. The latest values for 67 different aircraft and engine combinations are given in tabular form.

Estimates of the instantaneous, fuel flow rates and the total trip fuel per flight have been compared
with values from on-board, flight data recorders for six aircraft, covering single and twin aisle types,
operating on short, medium and long-range routes. The agreement demonstrates that the method works
in all phases of flight. The sensitivity of the estimates to the accuracy of model parameters and potential
improvements based upon more test data will be addressed in a subsequent publication.

The method was originally designed as a fully transparent, open-source, emissions estimation method
for use by the atmospheric science community to provide information for both individual aircraft and
fleets. However, it has now reached a stage where it can be also used by the aircraft performance com-
munity and the wider aerospace academic community to obtain general, though approximate, analytic
solutions to a range of problems that have previously required highly detailed airframe and engine
information and the application of numerical methods. Some of these will be addressed in future
work.
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Appendix A. The determination of climb rate and the relationship between flight level and the
geometric height above sea level
The variation of static pressure, p∞, with geodetic height, h, in any atmosphere is determined by the
hydrostatic equation, where

dp∞ = −ρ∞gdh. (A1)

Here, g is the local value of the acceleration in the vertical direction due to the combined effects of
gravity and centrifugal acceleration. It is a function of both latitude, φ, and h and may be expressed as

g =
(

gSL

(gSL)ISA

)(
g

gSL

)
, (A2)

where (gSL)ISA is equal to 9.80665m/s2 and gSL is the local vertical acceleration at sea level.
According to Newton’s law of gravitation,

g

gSL

= r2

(r + h)2 ≈ 1 − 2

(
h

r

)
, (A3)
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where r is the local geocentric radius at sea level, i.e. the distance from the point h(0,φ) to the centre
of the Earth14. Since the Earth is not a perfect sphere, rE depends upon the latitude and, if it is assumed
that the Earth is an ellipsoid,

r

rE

≈
√

(rP/rE)
2

1 − (
1 − (rP/rE)

2
)

cos2 (φ)
, (A4)

where rE , the equatorial radius, is 6,378.14km and rP, the polar radius, is 6,356.75km15. In addition,
the International Gravity Formula (the Somigliana-Pizzetti empirical relation) may be used to give an
estimate of the acceleration due to gravity at sea level as a function of latitude, i.e.(

gSL

(gSL)ISA

)
≈ 0.997316

(
1 + 0.00193185 sin2 (φ)√
1 − 0.00669438 sin2 (φ)

)
. (A5)

From Equation (A1), the rate of climb is related to the rate of change of static pressure such that
1

(aSL)ISA

dh

dt
= −

(
(gSL)ISA

gSL

)(
gSL

g

)(
RT∞

(gSLaSL)ISAp∞

dp∞
dt

)
. (A6)

All the quantities on the right side of this equation are available from the aircraft’s air data system.
From Equation (A1), the geodetic height above local sea level in a general atmosphere is given by∫ h

0

dh = h = −
∫ p∞

pSL

(
RT∞
gp∞

)
dp∞. (A7)

Since the integrand is a function of h, this is an implicit integral. However, the implicitness may be
removed by introducing the geopotential height, H, which is defined in terms of the work required to
raise a fixed mass to a height h, i.e.

H =
∫ h

0

g

gSL

dh =
∫ h

0

r2

(r + h)2 dh = rh

(r + h)
≈
(

1 −
(

h

r

))
h. (A8)

Up to the maximum heights likely to be reached by civil transport aircraft, H differs from h by less
than 0.25%.

Again, using Equation (A1),

H = − R

gSL

∫ p∞

pSL

(
T∞
p∞

)
dp∞ (A9)

and, in the special case of the International Standard Atmosphere [9],

HISA = − R

(gSL)ISA

(∫ p∞

pSL

(
T∞
p∞

)
dp∞

)
ISA

, (A10)

where the variation of T∞, with p∞ is specified and pSL is equal to 1.01325 bars. Using the results given
in reference 9, if (p∞/pSL) is greater than 0.223363,

HISA = 3.75422

(
γRTSL

gSL

)
ISA

(
1 −

(
p∞
pSL

)0.190263

ISA

)
, (A11)

otherwise

HISA = 0.126533

(
γRTSL

gSL

)
ISA

(
1 − 4.24436 ln

(
p∞
pSL

)
ISA

)
. (A12)

In operations, Equations (A11) and (A12) are used to obtain HISA from the value of p∞ provided by
the air-data system. This barometric equivalent, geopotential altitude is the value of the geopotential
height that the aircraft would have if it was operating in the ISA.

14Strictly speaking, the altitude used in Equation (A3) should be the geocentric height above local sea level and not the geodetic
height. However, the difference between the two is very small and can be ignored.

15These values are from World Geodetic System (WGS) 1984 Ellipsoidal Gravity Formula.
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By definition, flight level, FL, has no units and it is numerically equal to HISA when expressed in units
of feet and divided by 100. Hence, if (p∞/(pSL)ISA) is greater than 0.223363,

FL = 1454.43

(
1 −

(
p∞

(pSL)ISA

)0.190263
)

, (A13)

otherwise

FL = 49.0202

(
1 − 4.24436 ln

(
p∞

(pSL)ISA

))
. (A14)

It follows from Equation (A1) that the true rate of climb is given by
1

(aSL)ISA

dh

dt
= −

(
(gSL)ISA

gSL

)(
gSL

g

)(
RT∞
aSLgSL

)
ISA

(
T∞

(T∞)ISA

)(
1

p∞

dp∞
dFL

)
dFL

dt
, (A15)

which, noting the properties of the ISA, if h is in metres and t is in seconds
dh

dt
= 30.48

(
(gSL)ISA

gSL

)(
gSL

g

)(
T∞

(T∞)ISA

)
dFL

dt
(m/s) . (A16)

Since g varies with h, Equations (A15) and (A16) are still implicit. However, a good estimate is
obtained by either setting h equal to 30.48(FL) or by ignoring the vertical variation of g altogether.
Greater accuracy can always be achieved by iteration.

Appendix B. Pressure and speed information from the air data system
In-flight values of the freestream total pressure, p0, total temperature, T0, and the atmospheric static
pressure, p∞, as a function of time are provided by the aircraft’s air data system. The difference between
the total and static pressures is known as the impact pressure, pi, and, using the standard adiabatic and
isentropic flow relations, e.g. Shevell [11],

pi = p0 − p∞ = p∞

((
1 + (γ − 1)

2
M2

∞

) γ
(γ−1)

− 1

)
. (B1)

Hence, the Mach number is

M∞ =
√√√√ 2

(γ − 1)

((
pi

p∞
+ 1

) (γ−1)
γ

− 1

)
(B2)

and, since the atmospheric static temperature, T∞, is given by

T∞ = T0(
1 + (γ−1)

2
M2

∞
) , (B3)

the true airspeed, V∞, is

V∞ = M∞
√
γRT∞. (B4)

Another speed used in both aircraft performance and design is the calibrated airspeed, VCAS. This is
defined as the speed at sea level in the ISA that corresponds to a given impact pressure, i.e.

pi = p0 − p∞ = (pSL)ISA

⎛
⎝(1 + (γ − 1)

2

(
VCAS

(aSL)ISA

)2
) γ

(γ−1)

− 1

⎞
⎠ , (B5)

or

VCAS = (aSL)ISA

√√√√ 2

(γ − 1)

((
pi

(pSL)ISA

+ 1

) (γ−1)
γ

− 1

)
. (B6)
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The impact pressure is closely related to two other important quantities, namely the dynamic pressure,
q∞, and the equivalent air speed, VEAS. Using the definition of equivalent air speed, series expansion and
neglecting terms that are small compared to unity,

q∞ = γ

2
p∞M2

∞ = γ

2
(pSL)ISA

(
VEAS

(aSL)ISA

)2

= pi

f (M∞)
≈ pi(

1 + M2∞
4

+ (2 − γ ) M4∞
24

) . (B7)

This equation may be rearranged to give an approximate relation for Mach number, i.e.

M∞ ≈
√√√√2

((
2

γ

pi

p∞
+ 1

) 1
2

− 1

)
(B8)

and, using Equation (B5),
(

VCAS

VEAS

)2

= f (M∞)

⎛
⎝1 − 1

4

(
f (M∞)

(
VEAS

(aSL)ISA

)2
)

+ 1

10

(
f (M∞)

(
VEAS

(aSL)ISA

)2
)2

+ . . .

⎞
⎠ . (B9)

Appendix C. Extension of the relation between normalised engine overall efficiency and
normalised thrust to values below 0.3
For values of the normalised thrust coefficient ratio below 0.3, the variation is represented by a 4th order
polynomial passing through zero when the thrust coefficient ratio is zero and matching Equation (24)
for value, first derivative and second derivative when it is equal to 0.3. Therefore, let

ηo

(ηo)B

= h0 = H1

(
Ct

(Ct)ηB

)
+ H2

(
Ct

(Ct)ηB

)2

+ H3

(
Ct

(Ct)ηB

)3

. (C1)

Then, for

0 ≤ Ct

(Ct)ηB

≤ 0.3, (C2)

H1 = 6.560 (1 + 0.8244�) , (C3)

H2 = −19.43 (1 + 1.053�) (C4)

and

H3 = 21.11 (1 + 1.063�) . (C5)

Appendix D. Approximate 1.3g manoeuvre boundary
Using data taken from the FCOM of a typical jet transport aircraft, an estimate of the 1.3g manoeuvre
boundary for the aircraft in the “clean” condition and having the centre of gravity at 35% of the mean
aerodynamic chord is given by

(CL)mu

(CL)DO

≈
(
(CL)mu

(CL)DO

)
LS

(
1.00 + 0.089

(
M∞
MDO

)
− 0.603

(
M∞
MDO

)2
)

, (D1)

for

0 ≤ M∞
MDO

< 0.7, (D2)
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and

(CL)mu

(CL)DO

≈
(
(CL)mu

(CL)DO

)
LS

(
7.373 − 23.479

(
M∞
MDO

)
+ 27.713

(
M∞
MDO

)2

− 10.935

(
M∞
MDO

)3
)

, (D3)

for

0.7 ≤ M∞
MDO

≤ MMO

MDO

, (D4)

where, MMO is the maximum permitted operational Mach number and(
(CL)mu

(CL)DO

)
LS

= 1.8 ± 0.4. (D5)

This boundary should only be applied when the aircraft is above 3,000 feet, since, below this altitude
the aircraft is unlikely to be in the clean condition.

Appendix E. Approximate estimate of the Service Ceiling
From Equations (8) and (9), assuming small angles and neglecting small terms,

dh

dt
≈ V∞

(n.Fn − D)

mgn

= M∞a∞
(CT − Cd)

CL

. (E1)

At the aircraft’s service ceiling, the engines are operating at their maximum continuous climb rating,
(TET )MCC , and the rate of climb is equal to 300 feet/min. The corresponding lift coefficient, (CL)SC is
obtained by using the aircraft drag polar given in Equation (39) and rearranging (E1) to give

K (CL)
2
SC + 0.00516

M∞

(
(TTP)ISA

T∞

)1/2

(CL)SC − ((CT)MCC − (Cd0 + Cdw))= 0. (E2)

As shown in Ref. (6), net thrust is governed by the throttle parameter, TR, such that

Ct

(Ct)ηB

= CT

(CT)ηB

= h4 ≈ f (TR)≈ 1 + 2.50 (TR − 1) (E3)

where

TR = TET/(T0)∞
(TET/(T0)∞)ηB

≈
(

1

TREC

)
(TET/T∞)(

1 − 0.53(M∞ − MEC)
2
) (

1 + 0.2M2
∞
) , (E4)

and (
T0

T

)
∞

= 1 +
(
γ − 1

2

)
M2

∞. (E5)

Here, TREC and MEC are constants, whilst (CT )ηB is given by Equation (28). Hence, for any combina-
tion of speed and altitude, (TET )MCC , ambient air temperature and Mach number determine the value of
the maximum available thrust coefficient, (CT )MCC . Using Equations (28), (E3) and (E4),

(CT)MCC ≈ (CT)DO

(
1 + 0.55M∞
1 + 0.55MDO

)(
MDO

M∞

)2
((

2.5

TREC

)
((TET)MCC/(T0)∞)(

1 − 0.53(M∞ − MEC)
2
) − 1.5

)
. (E6)

Therefore, in a given atmosphere, the maximum available thrust coefficient is a function of Mach
number and FL only. Estimates for TREC , MEC and TETMCC are listed in Table 1.

Similarly, the drag coefficient of an aircraft of given weight in straight and level flight is a function of
Mach number and FL only. Therefore, the corresponding values for Cd0 and Cdw are obtained using the
method given in Section 4. With all the parameters specified, the value (CL)SC follows from an iterative
solution of Equation (E2) and examples of the full solution are given in Figs 6 and 7. The results show
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that the flight level at the service ceiling is not particularly sensitive to the Mach number. Therefore, a
reasonable estimate is obtained by assuming that the Mach number is equal to the MDO.

Neglecting terms that are small compared to unity, the approximate solution to Equation (E2) is

(CL)SC ≈
(
(CT)MCC − (Cd0 + Cdw)

K

)1/2

− 0.00516

2KMDO

(
(TTP)ISA

T∞

)1/2

. (E7)

From Equation (E6), also neglecting quantities that are small compared to unity,

(CT)MCC ≈ (CT)DO

((
2.5

TREC

(
1 + 0.2M2

DO

)
) (

(TET)MCC

T∞

)
− 1.5

)
. (E8)

In addition, since Cd0 and Cdw are only weakly dependent upon CL and (Cd)DO is equal to (CT )DO,

(Cd0 + Cdw)MDO
≈ (Cd0 + Cdw)DO = (CT)DO

(
1 −

(
K (CL)

2
DO

(Cd)DO

))
. (E9)

Hence,

(CL)SC

(CL)DO

≈
(

c1

(
(TET)MCC

T∞

)
+ c2

)1/2

− c3

(
(TTP)ISA

T∞

)1/2

(E10)

where

c1 = 2.5(CT)DO

K.TREC

(
1 + 0.2M2

DO

) , (E11)

c2 =
(

K (CL)
2
DO

(Cd)DO

)
− (CT)DO

K
, (E12)

and

c3 = 0.00258

K(CL)DOMDO

. (E13)

All the parameters in Equation (E10), except T∞, are given in Tables 1 and 2.

Cite this article: Poll D.I.A. and Schumann U. An estimation method for the fuel burn and other performance charac-
teristics of civil transport aircraft; part 3 full flight profile when the trajectory is specified. The Aeronautical Journal,
https://doi.org/10.1017/aer.2024.141

https://doi.org/10.1017/aer.2024.141 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.141
https://doi.org/10.1017/aer.2024.141

	Nomenclature
	Superscripts
	Subscripts
	Introduction
	Extension to the general case
	Estimating the overall engine propulsive efficiency
	Estimating the lift-to-drag ratio for the clean configuration
	The operational limits
	Maximum lift limit
	Maximum thrust limit
	Maximum permitted flight level
	Maximum speed limit

	Determination of the fuel flow rate and engine overall efficiency in climb and cruise
	Fuel flow rate estimate for "2018`flight idle"2019` operation in descent
	Fuel flow rate estimates for take-off, initial climb-out and approach and landing
	Engine deterioration in service
	Comparison with flight data recorder information
	Conclusions

