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A B S T R A C T

Building airtightness is important for enhancing energy efficiency and indoor air quality. Consequently, many 
regulations now mandate specific airtightness levels for new constructions, necessitating accurate measurements 
to ensure compliance. The conventional Ordinary Least Squares (OLS) regression, recommended by ISO 9972, is 
inaccurate, particularly under varying environmental conditions.

Thus, this study evaluates different regression techniques, including Ordinary Least Squares (OLS), Weighted 
Least Squares (WLS), and Weighted Line of Organic Correlation (WLOC) regression, to improve uncertainty 
estimates in building airtightness measurements. Analyzing over 6,000 blower door tests across 127 configu-
rations in six houses, this research compares the accuracy of these methods and introduces a second variant of 
Weighted Line of Organic Correlation (WLOC_2), which applies a simplified weighting procedure. Findings 
indicate that while all methods are similar in predicting the airflow at 50 Pa, WLS and WLOC_2 reduce prediction 
error by up to 6 percentage points at 4 Pa, where reference values are determined by averaging measurements 
taken at low wind speeds for each configuration. At 50 Pa, the OLS 95 % confidence interval covers the reference 
airtightness value for only 25 % of the data, compared to WLOC_2 with 42 % and WLS with 91 %. At 4 Pa, OLS 
includes only 21 % of measurements, while WLS overestimates uncertainty, covering all measurements, and 
WLOC_2 includes 82 % of the measurements within its confidence intervals. These results support incorporating 
weighted regression methods, which better account for variability at low pressures, into airtightness testing 
standards.

1. Introduction

Air permeability in buildings is a critical factor influencing energy 
efficiency [1], indoor air quality [2], and occupant comfort [3]. The ISO 
9972 standard [4] provides a detailed methodology for measuring the 
air permeability of buildings using the fan pressurization method. 
However, as the adoption of ISO 9972 increases, recent studies have 
identified key areas for improvement [5,6], including the evaluation of 
zero-flow pressure difference [7–10], placement of pressure probes 
[9,11,12], accurate estimation of building volume and area [13], and 
the conversion of measured airflows to standard conditions of pressure 
and temperature [14]. Addressing these areas is helping to enhance the 
standard’s real-world applicability.

Central to the application of ISO 9972 is the use of regression 

analysis to interpret the measured pressure and airflow data. Annex C of 
the standard recommends employing an Ordinary Least Squares (OLS) 
regression to the logarithms of the measured values. However, recent 
literature [15–18] has highlighted the limitations of OLS, particularly in 
accurately representing pressure/flow data at data extremes [19] or 
extrapolating to low pressures, leading to significant biases and large 
uncertainties at higher windspeeds [20,21]. This is a crucial issue 
because the envelope pressures associated with natural infiltration in 
buildings are often at low pressures (less than 5 Pa) [1,22], and low- 
pressure data often play a crucial role in energy permeance codes, 
such as in France [23,24] and California [25]. Moreover, OLS fails to 
propagate the uncertainty of pressure measurements, which results in 
the inability to accurately predict the uncertainty, as demonstrated in 
Ref. [19]. Besides the errors due to wind, other errors are introduced 
during the test. These can be for example operator errors, which can 
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include incorrect placement of the sample tube, improper installation of 
the blower door ring, unintentional air leakage caused by the blower 
door installation, or inadvertent changes in the leakage configuration 
(for instance, windows incompletely closed) [26]. Wind speed and di-
rection can fluctuate significantly throughout the test, leading to more 
substantial uncertainties in the results [27]. Finally, with increasing 
wind speed there is a systematic error arising from the model’s non- 
linearity, as it assumes that all leaks are treated as one single leak [10].

The fluctuations of wind speed and direction cause fluctuations of 
the building pressure difference. Pressure measurement points at low 
pressure therefore have a higher relative uncertainty. However, with 
OLS, smaller measurement points have a greater influence on the results 
than larger ones because the values are logarithmized before calculating 
the least squares fit. To limit this effect, the German National Annex to 
ISO 9972 [28] and the Canadian CAN/CGSB-149.10 standard [29]
proposed an alternative approach: the Weighted Least Square (WLS) 
regression.

Furthermore, Okuyama et al. [30] worked on an Iterative Weighted 
Least Squares (IWLS) approach, and Delmotte developed the Weighted 
Line of Organic Correlation (WLOC) as a more robust alternative to OLS 
[17]. WLOC would provide more reliable measurements at low pressure 
differences and better uncertainty estimation, which was supported by 
Prignon et al. [19] and Kim et al. [31] in small-scale studies conducted in 
Belgium and Korea. However, these studies were limited by their dataset 
size.

This paper seeks to validate these findings using a substantially 
larger dataset, which was already used by Kölsch and Walker [20] to 
analyze the variability in predicting pressure exponent and flow coef-
ficient using OLS and WLOC. Additionally, we aim to address the 

challenge of applying a well-defined weighting procedure for WLOC in 
the context of building air permeability measurements according to ISO 
9972. While the procedure itself is not difficult to apply, determining 
and quantifying the sources of uncertainty is challenging. In this paper, 
we propose a simplified procedure, compared to the literature [17,19], 
to facilitate the process. Therefore, our objectives are: 

1. Proposing a simplified uncertainty calculation to be included in the 
weighting scheme for the WLOC method.

2. Conducting a comprehensive comparison of uncertainty calculations 
for regression methods as proposed in two existing standards (OLS 
and WLS). This comparison will also incorporate the uncertainty 
calculation procedure in line with the “Guide to the expression of 
uncertainty in measurements” (GUM) [32] for the OLS and WLOC 
regression methods. Utilizing an extensive dataset of over 6,000 
blower door tests, we will assess each method’s ability to accurately 
predict airflow values and their capacity to estimate 95 % confidence 
intervals.

This paper is organized into several key sections following this 
introduction. First, the ’Methodology’ section details the dataset 
collected, including the specific configurations of the test houses and the 
criteria for data selection and filtering. It elaborates on the regression 
methods employed and the rationale behind their application to the 
study’s dataset. Subsequently, the ’Results and Discussion’ segment 
presents the findings from applying these regression techniques, 
focusing on their predictive accuracy at different wind speeds and 
pressure differentials. This section also examines the reliability of the 95 
% confidence intervals generated by each method, evaluating how well 

Nomenclature

Latin symbols
a Error of airflow measuring device (%)
b Error caused by pressure measurement (%)
C Air leakage coefficient (m3/(h Pan))
CI Confidence interval of the airflow rate (m3/h)
d Statistical error of the airflow rate (%)
e Error according to density correction (%)
e(Δp) Error at a pressure measurement Δp (Pa)
g Error due to valve characteristic (%)
g Weights according to WLS (–)
k Coverage factor (–)
N Total number of measurements (–)
n Pressure exponent (–)
p Pressure (Pa)
q Volumetric airflow rate (m3/h)
r Correlation coefficient (–)
s Overall uncertainty of the airflow rate at a given pressure 

difference (%)
s Standard error (–)
T Temperature (K)
T Student’s t-distribution (–)
U Expanded uncertainty of the airflow rate (m3/h)
u(z) Uncertainty of value z (unit of z)
v Wind speed at building level (m/s)
w Weights according to WLOC (–)
x Coordinates corresponding to ln(Δpi) (–)

y Coordinates corresponding to ln
(

qenv,i

)
(–)

Greek symbols
Δ(z) Difference in the value of z (unit of z)
μ(z) Mean of the value z (unit of z)

ρ Air density (kg/m3)
σ(z) Standard deviation of the value z (unit of z)

Subscripts
0 Zero-flow pressure difference
0 Standard conditions
1 Before measurement
2 After measurement
c Standard uncertainty
d Depressurization
e External
env Envelope
i The ith measurement
int Internal
L Leakage
m Measured
p Pressurization
r Reading
ref Reference value

Abbreviations
AHHRF Alberta Home Heating Research Facility
APD Absolute percentage difference
GUM Guide to the expression of uncertainty in measurements
IAQ Indoor air quality
ICC Intra-class correlation
MLM Multi-Level Modeling
MPME Maximum permissible measurement error
OLS Ordinary least squares regression
PD Percentage difference
WLOC Weighted line of organic correlation
WLS Weighted least squares regression
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they capture reference values derived from averaged low-wind-speed 
measurements, and providing insights into method’s efficacy under 
varying environmental conditions.

2. Methodology

2.1. Description of the data set

The data for this study was gathered at the Alberta Home Heating 
Research Facility (AHHRF), located in Edmonton, Alberta, Canada over 
a several-month period to capture a representative range of environ-
mental settings. This facility has six unoccupied test houses, each 
distinct in construction. The single-story design of these houses, 
encompassing a floor area of 6.7 m by 7.3 m and a wall height of 2.4 m 
with full basements, allows for comprehensive analysis and comparison. 
Further information about the facility and the data set can be found in 
Refs. [27,33].

Each of the six houses underwent multiple measurements in various 
configurations, resulting in a total of nearly 7500 tests. These configu-
rations resulted from the different construction of each test house 
combined with altering aspects like flue openings, sliding window 
states, or passive vent adjustments, reflecting 127 different test sce-
narios. Between 5 and 140 tests were performed for each configuration, 
and 39 % of these tests were in pressurization mode, while 61 % were in 
depressurization mode. Each configuration was defined for either pres-
surization or depressurization.

This dataset underwent rigorous filtering to remove any missing or 
erroneous data. Additionally, the filtering process adhered to the 
following criteria set by ISO 9972: 

• The absolute value of zero-flow pressure difference at the start and 
end of each test should not exceed 5 Pa.

• Each test must contain a minimum of five data points, with the 
lowest data point being at least 10 Pa or five times the zero-flow 
pressure difference measured at the start. Some data points might 
be removed from a test to comply with this requirement.

• The highest pressure point in each test should be at least 50 Pa.

After this filtering process, the dataset was narrowed down to 6197 
tests.

All data was collected using an automated fan pressurization mea-
surements system, that recorded indoor-outdoor pressure differences 
and corresponding airflow rates through the fan. This system was 
important in minimizing human-induced variability and ensuring 
consistent test conditions. Indoor-outdoor pressure differences were 
measured using pressure taps located on each wall of the houses, con-
nected to a pressure-averaging manifold, as recommended by the ASTM 
E779 standard [34]. Each pressure reading consisted of approximately 
150 individual measurements taken over 15 s, with the mean and 
standard deviation for each of these readings recorded. The pressure 
range covered in these tests was approximately 1 to 100 Pa, facilitating 
the acquisition of a complete characteristic of pressure difference to flow 
for each test. Airflow rates were measured using a laminar element 
flowmeter in-line with the fan and connected to the exterior through a 
flexible duct. Similar to the pressure readings, airflow measurements 
were collected over 15-second intervals.

Central to our study was accounting for the influence of external 
environmental factors, such as varying wind conditions, on airtightness 
measurement results. By conducting repeated measurements under a 
diverse array of environmental settings, our dataset provides a nuanced 
understanding of how such externalities can affect building air tightness 
metrics. These meteorological parameters were recorded using a mete-
orological station adjacent to the test site. This included tracking outside 
temperatures ranging from –32 ◦C to +34 ◦C and wind speeds from close 
to 0 m/s to more than 10 m/s in parallel with each pressure/airflow 
reading. The distribution of these outdoor temperatures and wind 

speeds within the dataset is shown in Fig. 1. The wind speed distribution 
of this data set follows a Weibull function with its peak at around 2 m/s, 
which is a classical distribution for atmospheric wind speeds [35].

2.2. Calculation procedures

It is assumed that the relationship between the airflow rate qenv and 
the pressure difference Δp can be expressed using a power-law equation 
[4,16]: 

qenv = CenvΔpn (1) 

Here, Cenv represents the flow coefficient under test conditions, while 
n is the pressure exponent. The flow coefficient, indicative of leak size, is 
a positive real number. The pressure exponent, typically ranging be-
tween 0.5 and 1.0, offers insights into the nature of pressure losses 
through leaks. A value of 0.5 signifies short leak paths, like orifices, with 
significant entry and exit pressure losses, whereas a value near 1.0 in-
dicates longer cracks where airflow is fully developed, with more pro-
nounced frictional losses [36]. For most buildings, the pressure 
exponent is around 2/3, reflecting a combination of these leakage 
characteristics [27].

To determine the values of the flow coefficient and pressure expo-
nent, the power law relationship is linearized by taking the natural 
logarithm of both sides of Eq. (1): 

ln(qenv) = ln(Cenv)+ n • ln(Δp) (2) 

In this linear form, the pressure exponent n represents the slope of 
the linear relation between ln(Δp) and ln(qenv), and ln(Cenv) the inter-
cept. Consequently, the specific values of Cenv and n are determined by 
finding the best fitting line. In this study, we evaluate the accuracy of 
three least squares analysis techniques in fitting this linearized series of 
measured pairs (Δpi, qenv,i).

At time i (with 1 ≤ i ≤ N, where N is the total number of readings), 
the measured pressure difference Δpm is the sum of the fan-induced 
pressure difference Δp and the zero-flow pressure difference Δp0. 
Since the zero-flow pressure difference cannot be measured during the 
test, it is assumed constant with a value equal to the average of readings 
obtained before (Δp0,1) and after (Δp0,2) the test. Consequently, under 
these assumptions, Δpi is given by: 

Δpi = Δpm,i −
Δp0,1 + Δp0,2

2
(3) 

The zero-flow pressure difference is the pressure difference between 
inside and outside caused by wind or stack effect when no artificial 
airflow is applied (e.g., by the blower door). The distribution of zero- 
flow pressure differences recorded in this filtered and the full dataset 
is illustrated in Fig. 2. The plots show how both the absolute mean 
pressure difference |μ(Δp0) | and its variability σ(Δp0) increase with 
rising wind speeds, and that the filtered results are generally lower, due 
to the removal of data with zero-flow pressure above 5 Pa.

The airflow through the building envelope, qenv,i, is determined by 
correcting the airflow reading qr,i with temperature at standard condi-
tions (T0 = 293.15K) and indoor/outdoor temperatures Tint/e depending 
on the pressurization (p) or depressurization (d) mode: 

qm,p,i = qr,i

̅̅̅̅̅
Te

T0

√

; qm,d,i = qr,i

̅̅̅̅̅̅̅
Tint

T0

√

(4) 

qenv,p,i = qm,p,i •
Tint

Te
; qenv,d,i = qm,d,i •

Te

Tint
(5) 

The correction performed in Eq. (4) is valid for classical blower door 
devices using orifices for airflow measurement. However, in the specific 
context of this database, a laminar flowmeter has been used. Therefore, 
for this study, the temperature correction is linear (instead of involving 
the square root of the temperature as in Eq. (4), Eq. (14), and Eq. (15)). 
Independent of the measuring principle, the airflow through the 
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measuring device has to be converted into the airflow through the 
building envelope according to Eq. (5).

After calculating Cenv and n according to the procedures described in 
the Appendix of this paper, we utilize the following procedure described 
in ISO 9972 for all investigated methods to calculate the leakage coef-
ficient CL from Cenv and the airflow rate qref at a specific reference 
pressure difference Δpref of 50 and 4 Pa: 

CL,p = Cenv

(
T0

Tint

)1− n

;CL,d = Cenv

(
T0

Te

)1− n

(6) 

qref = CLΔpref
n (7) 

Specifically, we introduce and compare five different procedures 
involving three regression techniques and associated calculations of the 
95 % confidence intervals (CI). The procedures are as follows: 

1. Ordinary Least Squares (OLS_1): This regression technique follows 
the full procedure described in ISO 9972 [4].

2. Ordinary Least Squares (OLS_2): This uses the same regression 
technique as OLS_1 but incorporates an uncertainty calculation in 
line with the “Guide to the expression of uncertainty in measure-
ments” (GUM) [32], based on equations derived by Delmotte [37].

3. Weighted Least Squared (WLS): This regression method adheres to 
the German national annex of ISO 9972 [28].

4. Weighted Line of Organic Correlation (WLOC_1): This technique 
employs a weighting scheme as proposed by Delmotte and Prignon 
et al. [17,19,37].

5. Weighted Line of Organic Correlation (WLOC_2): This approach in-
troduces a simplified weighting scheme.

Table 1 summarizes these methods and their respective approaches 

Fig. 1. Occurrence of outdoor temperatures (left) and wind speeds (right) in this dataset.

Fig. 2. Distribution of mean absolute zero-flow pressure differences (left) and their respective fluctuations represented by the standard deviation (right) at increasing 
wind speeds in this dataset (black) and the full dataset (blue).
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to uncertainty and confidence interval calculation.

2.2.1. Regression methods
The OLS regression method, outlined in Annex C of ISO 9972 

(Appendix 5.1.1 of this paper), seeks to minimize the sum of the squared 
residuals, which are the vertical distances between the measured values 
and the regression line. For this regression procedure, the pressure dif-
ference is defined as the independent variable and the air flow as the 
dependent variable. Thus, an underlying assumption is that the error in 
pressure difference can be neglected.

The methodology for WLS regression (Appendix 5.1.2) limits the 
impact of measurements at lower pressures, by using the square of the 
volume flow as a weight of pressure measurement data.

In contrast to OLS and WLS, where the slope and intercept of the 
regression are determined by minimizing the sum of squares of vertical 
differences, WLOC minimizes the sum of products of the weighted 
horizontal and vertical differences between the measured values and the 

predicted line (Appendix 5.1.3). This approach is adopted because both 
pressure and airflow uncertainties are non-negligible and unequal in 
reality, which make the regression according to WLOC more appro-
priate. Additionally, WLOC includes a weighting of each measurement 
point according to its uncertainty, giving less weight to points with 
higher uncertainty.

2.2.2. Calculation of confidence intervals
According to ISO 9972, an estimate of the confidence interval (CI) 

should be included in the data analysis for each derived quantity. 

However, only a method for calculating the statistical uncertainty is 
given in Annex C. Other uncertainties, such as errors of the measurement 
equipment are not considered. However, ISO 9972 clarifies that this 
statistical uncertainty derived from the regression analysis does not 

represent the total uncertainty of the measurement. The total uncer-
tainty also includes contributions from measurement equipment errors, 
environmental factors, and other systematic uncertainties.

As the procedure for calculating the 95 % CI in ISO 9972 does not 
align with the GUM, the uncertainty calculation was adapted in line with 
Refs. [32,37] as OLS_2. Consequently, the CI of qref is computed using 
the expanded uncertainty U, which is derived by multiplying the com-

bined standard uncertainty uc

(
qref

)
with a coverage factor k: 

CI
(

qref

)

GUM
= qref ± U

(
qref

)
= qref ± k • uc

(
qref

)
(8) 

It is a good choice to take k = 2 to define a CI of 95 %. The combined 

standard uncertainty, uc

(
qref

)
, is calculated using the propagation of 

uncertainty principle [32] based on Eq. (7):  

In contrast to the equations delineated by Delmotte [37], un-
certainties due to temperature measurements were neglected here for 
simplification, as it is assumed that they have a minor influence on the 
final results. To verify this assumption, we implemented the tempera-
ture correction proposed by Delmotte [37] in OLS_2 and WLOC_1 and 
observed no impact on the final results. The third term of the equation is 
the correlation coefficient as the uncertainty on n and Cenv are highly 
correlated. Thus, the standard uncertainties for pressurization and 
depressurization tests are:   

The standard uncertainties uc(nOLS) and uc
(
ln
(
Cenv,OLS

) )
, and the 

correlation coefficient r
(
nOLS, ln

(
Cenv,OLS

) )
for OLS_2 are given in 

Table 1 
Regression techniques and confidence interval calculation procedures.

Procedures OLS_1 OLS_2 WLS WLOC_1 WLOC_2

Calculation of uncertainty on pressure difference and air 
flow rate measuring point

not 
considered

not considered not considered According to Delmotte and 
Prignon et al.

As proposed in this 
paper

Regression Technique OLS OLS WLS WLOC WLOC
Calculation of uncertainty / confidence interval on the 

results
ISO 9972 In line with the 

GUM
Based on DIN EN ISO 
9972

In line with the GUM In line with the 
GUM

uc

(
qref,p

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

qref,p • ln
(

Δpref
Tint

T0

)

• uc(n)
)2

+
(

qref,p • uc(ln(Cenv) )
)2

+ 2 • q2
ref,p • ln

(

Δpref
Tint

T0

)

• uc(n) • uc(ln(Cenv) ) • r(n, ln(Cenv) )

√

(10) 

uc

(
qref,d

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

qref,d • ln
(

Δpref
Te

T0

)

• uc(n)
)2

+
(

qref,d • uc(ln(Cenv) )
)2

+ 2 • q2
ref ,d • ln

(

Δpref
Te

T0

)

• uc(n) • uc(ln(Cenv) ) • r(n, ln(Cenv) )

√

(11) 

uc

(
qref

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂qref

∂n
• uc(n)

)2

+

(
∂qref

∂ln(Cenv)
• uc(ln(Cenv) )

)2

+ 2 •
∂qref

∂n
•

∂qref

∂ln(Cenv)
• uc(n) • uc(ln(Cenv) ) • r(n, ln(Cenv) )

√

(9) 
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Appendix A.2.1.
The German national Annex of ISO 9972 presents a different 

approach for calculating uncertainties than Annex C of ISO 9972 (WLS). 
This calculation approach is based on a method developed in 2003 and 
described in Ref. [38], detailed in Appendix A.2.2 of this paper. In 
contrast to ISO 9972, this approach not only considers the statistical 
inaccuracies but also the errors of the measuring devices and wind- 
induced fluctuations in building pressure.

Originally, the method was not designed to calculate a confidence 
interval from the overall given uncertainty s (see Eq. (38)). Therefore, 
we assume the following equation to calculate the confidence interval 
(with a coverage factor k = 2): 

CI
(

qref

)

WLS
= qref ± k • s • qref (12) 

The general calculation procedure standard uncertainties uc(nWLOC)

and uc
(
ln
(
Cenv,WLOC

) )
for WLOC_1 and WLOC_2 is provided in Appendix 

A.2.3. The calculation of the CI for both is conducted according to the 
GUM and Eq. (8). The calculations of standard uncertainties of pressure 
difference uc(Δpi) and airflow uc

(
qenv,i

)
that were used for WLOC_1 are 

provided in Eq. (A.12), Eq. (A.14), and Eq. (A.15), given in Appendix 
5.1.3.

The simplified weighting scheme for WLOC_2 was specifically 
developed for this study using uncertainties of pressure difference u(Δpi)

and airflow u
(

qenv,i

)
to avoid some of the difficulties in quantifying 

some of the sources of uncertainty used in WLOC. We considered the 
standard deviation of the measurement (first term of Eq. (13)) to take 
into account pressure fluctuations during the test, the measurement 
device uncertainty according to ISO 9972 (second term of Eq. (13)), and 
the impact of the pressure variation along the building façade (third 
term of Eq. (13)), which is assumed to be in the order of magnitude of 
the zero-flow pressure difference measured before and after the test.

Thus, the uncertainty of the pressure difference u(Δpi) is expressed 
as: 

uc(Δpi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
(
Δpm,i

)
+ u2

(
Δpm,i

)
+
(Δp0,1 + Δp0,2

2

)2
√

(13) 

Here, σ
(
Δpm,i

)
represents the standard deviation of the pressure 

measurement for each station, and u
(
Δpm,i

)
is defined in Eq. (A.13). In 

this context, “station” means the series of measuring points at one 
pressure difference target. For the dataset considered, the maximum 
permissible measurement error (MPME) of pressure measurement de-
vice is specified as 0.5 Pa with a resolution of 0.25 Pa.

The WLOC_2 uncertainties of airflow u
(

qenv,i

)
for pressurization (p) 

and depressurization (d) are defined as: 

uc

(
qenv,p,i

)
= uc

(
qm,p,i

)
•

Tint

Te
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
(
qm,i
)
+

(

u
(
qr,i
)
•

̅̅̅̅̅
Te

T0

√ )2
√

•
Tint

Te

(14) 

uc
(
qenv,d,i

)
= uc

(
qm,d,i

)
•

Te

Tint
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
(
qm,i
)
+

(

u
(
qr,i
)
•

̅̅̅̅̅̅̅
Tint

T0

√ )2
√

•
Te

Tint

(15) 

Similar to the definition of the pressure difference uncertainty in Eq. 
(13), σ

(
qm,i
)

represents the standard deviation for each flow measure-
ment station, and u

(
qr,i
)

is the uncertainty of the flow measurement 
device, which is here 3 % of the airflow reading.

2.3. Analysis of the results

The analysis was undertaken to assess the effectiveness of the 
different procedures, including regression methods and their associated 
uncertainty calculation procedures, in accurately predicting air leakage 

rates and their calculated uncertainty. It focuses on two pivotal pressure 
points, 50 Pa and 4 Pa, which were selected due to their significance in 
air permeability standards and their role in extrapolating airflows across 
varying environmental conditions.

The 50 Pa measurement holds particular importance in building 
codes and standards, often serving as a baseline for pass/fail assessments 
[39,40]. On the other hand, accurate evaluation of real-world airflows, 
important for considerations such as energy consumption and indoor air 
quality (IAQ), requires extrapolation from this standardized pressure 
point to lower pressures [2,41,42]. This extrapolation step is critical but 
can introduce considerable errors in airflow estimation, making it an 
area of particular interest for this analysis.

The first step in our analysis involved establishing reference airflows 
for each regression method for all 127 house configurations at both 4 Pa 
and 50 Pa reference pressures. Each reference was calculated by aver-
aging airflow values obtained from tests conducted at wind speeds 
below 1 m/s for each house configuration at both 4 Pa and 50 Pa. When 
no tests were available below 1 m/s, we selected the test with the lowest 
wind speed measurement. These reference values, derived at near-calm 
conditions are our best estimate of the ‘true’ airflow values that we can 
compare to measurements at other conditions. It is important to note 
that the true values are unknown, and that the reference values repre-
sent our best estimates of the true values that are undisturbed by 
weather effects.

For each regression method, we compared the airflow values (qmeas) 
for all the tests and for each house configuration to the reference airflow 
(qref), at both 4 Pa and 50 Pa. The percentage difference (PD) was 
calculated as follows: 

PD =
qmeas − qref

qref
• 100 (16) 

A value closer to zero indicates that the predicted airflow rate closely 
approximates the reference airflow rate. By quantifying the deviation 
between the predicted airflow and the reference value, these metrics 
provide a comprehensive measure of the accuracy of each regression 
method in approximating the ‘true’ airflow under varying wind 
conditions.

As part of our analysis, we conducted validation of the 95 % confi-
dence intervals computed for each regression method against the 
established reference values. For each test we determined the 95 % 
confidence interval of the airflow at both 50 Pa and 4 Pa pressure dif-
ferences. A regression method was considered more accurate and 
dependable if its reference value fell within its calculated confidence 
interval 95 % of the time across various house configurations and test 
conditions.

In this study, we conducted 127 repeatability tests across 6 different 
houses, leading to a hierarchical structure in the data. This nested data 
architecture suggests the potential need for advanced analytical tech-
niques, such as Multi-Level Modeling (MLM) [7]. We assess the necessity 
of MLM by computing the intra-class correlation (ICC) and the design 
effect [43] based on the standard deviation of airflow values at 4 Pa and 
50 Pa. Both calculated ICCs (< 0.05) and the design effect (close to 1) 
show that the results present in the following section do not depend on 
the tested house.

3. Results and discussion

This section shows the findings of the comparative analysis of all five 
regression methods.

3.1. Predictive capability of regression methods

Fig. 3 assesses the difference of the efficacy for the five regression 
methods in predicting airflow at the two distinct pressure differences: 
50 Pa (q50) on the left and 4 Pa (q4) on the right side. The key difference 
between the two lies in their sensitivity to airflow and pressure 
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variations caused by wind and other environmental factors. While q50 is 
calculated through interpolation, q4 is an extrapolation, making q4 more 
sensitive to fluctuations at low pressure measurement points, particu-
larly due to the increased variability introduced by environmental 
conditions at lower pressures. The horizontal axis denotes wind speed, 
ranging from 0 m/s to 10 m/s, while the vertical axis displays the Per-
centage Difference (PD) between the measured and the reference airflow 
value. The data points represent the average PDs for measurements 
taken within each 1 m/s increment of wind speed.

As OLS_2 uses the same regression method as OLS_1, the results are 
overlaying in the graphs. In Fig. 3, all regression methods demonstrate at 

50 Pa a similar ability to predict the reference airflow, each displaying a 
comparable mean PD that does not exceed − 6%, even at higher wind 
speeds. This consistency indicates that the choice of regression method 
has a minimal impact on the accuracy of airflow predictions at 50 Pa 
relative to the reference value. Additionally, the error bars remain 
similar across each regression method.

For both pressure differences, up to approximately 3 m/s, the mean 
PD lies around zero, indicating that wind-induced errors do not seem not 
to introduce any bias at these lower wind speeds. Errors appear 
randomly distributed around zero, indicating that other sources of 
random error are dominant. However, as wind speed increases beyond 3 

Fig. 3. Mean values for increasing wind speeds of the percentage difference (PD) for calculated airflows at pressure differences of 50 Pa (left) and 4 Pa (right) and a 
reference value at these pressures with error bars representing the standard deviation.

Fig. 4. Probability for all regression methods that the calculated airflows at 50 Pa (left) and 4 Pa (right) fall into the 95 % confidence interval for the entire data set 
for increasing wind speeds.
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m/s, a clear trend towards a higher negative PDs, emerges, particularly 
for q4, highlighting wind as a dominant source of error. The negative 
bias indicates an underestimation of the leakage flow rate due to the 
systematic error caused by the model assumption as described in the 
introduction (all leaks are considered as a single leak). The error at high 
wind speed is approximately 4 percentage points higher for OLS and 
WLOC_1 compared to WLS and WLOC_2 for q4.

Beyond these effects induced by wind, conducting both pressuriza-
tion and depressurization tests is advisable to account for potential 
differences in air leakage characteristics under various pressure condi-
tions. These differences can be influenced by the valving of leaks, which 
may behave differently under pressurization compared to depressur-
ization. Averaging results from both types of tests can help mitigate 
these biases, as supported by findings in reference [27].

Moreover, as indicated in Fig. 1, a larger number of tests is conducted 
at lower wind speeds (around 2 m/s), with test frequency declining as 
wind speeds increase. This trend indicates that results from higher wind 
speeds may be inherently more uncertain and should be approached 
with increased caution in their interpretation.

It is important to note that while improving airtightness estimation 
by reducing prediction errors enhances regulatory compliance, this 
study does not aim to assess the energetic or IAQ impact of airtightness 
improvements. The energy implications of airtightness have been widely 
discussed in existing literature, where Bracke et al. [44] demonstrated 
that an improvement in air permeability from approximately 16 to 5 
m3/

(
m2h

)
at 50 Pa can result in a 31 % to 35 % reduction in heat loss. 

Furthermore, Leprince et al. [45] showed that reducing air permeability 
from 3 m3/

(
m2h

)
to 1.2 m3/

(
m2h

)
at 4 Pa can decrease energy con-

sumption by 13 % to 37 %, depending on the ventilation system, leading 
to an annual savings of 6 to 17 kWh/m2.

3.2. Evaluation of the 95 % confidence interval

The 95 % confidence interval for each test, as calculated using pre-
viously described methods, estimates the probability that the ’true’ 
airflow rate falls within this range. According to the Guide to the 
Expression of Uncertainty in Measurement (GUM) [32], a two-sided 95 
% confidence interval is defined as the span between two limits 

calculated from observed values. This span is expected to cover the 
population parameter (in this case, the airflow rate) with a probability of 
95 %.

It is important to understand that the limits of this confidence in-
terval are not static but vary across samples, reflecting the inherent 
variability in the data. However, within the framework of the German 
national annex of ISO 9972 and the specific calculation method 
employed by Weighted Least Squares (WLS), there is no explicit recog-
nition or definition of a “95 %” confidence interval. The level of confi-
dence traditionally associated with statistical intervals is not stated. In 
this analysis, we have assumed that the confidence interval calculated in 
Eq. (12) corresponds to a 95 % confidence interval, aligning with stan-
dard statistical practices.

Fig. 4 evaluates the effectiveness of each regression method by 
showing the proportion of times the calculated airflows for each 
configuration falls within the calculated confidence intervals, expressed 
as a percentage. The dashed grey line represents the 95 % confidence 
interval.

In our analysis at 50 Pa, the WLS regression method shows generally 
high coverage, in particular approaching 100 % at higher wind speed (>
5.5 m/s), suggesting that the confidence interval may be overly 
generous. The other regression methods, however, do not achieve 95 % 
coverage at any wind speed. Among these, the WLOC_2 performs the 
best, providing a coverage of 65 % at low wind speeds (0.5 m/s), with 
diminishing coverage as wind speed increases, but improving again for 
wind speeds above 2.5 m/s. While still covering less than 40 % of the 
data, the method prescribed by ISO 9972 (OLS_1) performs slightly 
better than OLS_2.

For airflows at 4 Pa, WLS maintains nearly 100 % coverage across all 
wind speeds, indicating that the confidence interval may be too large at 
low reference pressure differences. WLOC_2 significantly improves its 
coverage for these conditions, covering approximately 95 % of data 
points at low wind speeds (0.5 m/s) and maintaining over 80 % coverage 
at higher wind speeds. WLOC_1 also shows high data coverage at low 
wind speeds (nearly 95 %), but this decreases substantially with 
increasing wind speed. In this scenario, OLS_1 exhibits the lowest per-
formance, underscoring the limitations of ISO 9972 under these testing 
conditions.

Fig. 5. Total percentage per type of regression if mean values of calculated airflows at 50 Pa and 4 Pa fall into the 95 % confidence interval.
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Fig. 5 presents the overall percentage of data points where the mean 
values of the calculated airflows at both 50 Pa and 4 Pa fall within the 
designated 95 % confidence intervals, showing the relative performance 
of each regression method across the entire dataset.

As previously highlighted in Fig. 4, WLS demonstrates high overall 
coverage, achieving 91 % for airflows at 50 Pa and full coverage at 4 Pa. 
Among the other regression techniques, WLOC_2 shows the best per-
formance, maintaining coverage above 80 % when extrapolating the 
flowrate at low pressure. However, its effectiveness reduces when the 
airflow is calculated at 50 Pa, where coverage stays below 50 %. This 
variation in coverage suggests that the method underestimates the 
actual uncertainty.

One reason the uncertainty calculation might fail to cover the 95 % 
confidence interval is the presence of a systematic error that increases 
with wind speed, as shown in Fig. 3. This error arises from the model 
itself. When correcting the data of this database for the average sys-
tematic error according to wind speed (Fig. 3), the coverage has changed 
only negligibly, not to an extend that would alter the conclusion of this 
article. This systematic error depends on the distribution of leaks, which 
is unknown. Therefore, it is impossible to correct for this systematic 
error a priori. Although this error is systematic for a given building, it is 
in fact random because we cannot know or control the exact leakage 
distribution in a given building. An alternative approach could be to 
incorporate this model-induced error into the uncertainty calculation, 
which can be based on previous research [9,44].

The lines in Fig. 6 illustrate the relative size of the confidence in-
tervals as a function of wind speed for each regression method. The 
relative size of the confidence intervals is defined as the size of the 
confidence interval as a percentage of the calculated airflow. This metric 
allows for the comparison of uncertainty across different regression 
methods, normalized by the magnitude of the measured airflow. It 
provides a clearer understanding of how the uncertainty scales with the 
airflow. The Figure also includes an ‘observed’ uncertainty, represented 
by single dots, which is derived by calculating twice the standard de-
viation of the airflows for each repeatability scenario, and the average 
wind speed. These results are then averaged for each wind speed bin for 
each regression method to provide an estimate of the actual observed 
airflow uncertainty in the underlying tests. This comparison between 

calculated and observed uncertainties offers a deeper insight into the 
precision and reliability of each regression method under varying 
environmental conditions. It is important to notice that the ‘observed’ 
uncertainty of the confidence interval is twice as large what was found in 
previous repeatability studies, as summarized in Ref. [46].

In the 50 Pa scenario, the relative size of the WLS confidence interval 
lies below 10 % for wind speeds below 3 m/s with a strong increase with 
wind speed of around 70 % at 9.5 m/s. At 4 Pa, the relative confidence 
interval size strongly increases even more with the wind speed. These 
significant increases are primarily attributed to the dynamic pressure 
component delineated in Eq. (A.25), which amplifies this factor at 
increasing wind speeds.

It is important to acknowledge that WLS is specifically designed for 
estimating uncertainties at pressures around 50 Pa. Its application at 
lower pressures, such as 4 Pa, is not optimized, which may lead to po-
tential inaccuracies when operating outside its ideal pressure range. 
Despite this, the ’observed’ uncertainties illustrate that WLS consistently 
overestimates the real underlying uncertainty across both pressure 
scenarios. This effect might be even more pronounced in other repeat-
ability studies with smaller expanded uncertainty [46].

Compared to WLS, all other methods tend to underestimate the 
’observed’ uncertainty. The OLS methods display a slight increase in the 
confidence interval size with wind speed, but still underestimate the 
’observed’ uncertainty by approximately 10 % at 50 Pa and up to 20 % 
at 4 Pa. This underestimation suggests a tight range of predicted values; 
however, as previously discussed, this precision does not necessarily 
translate to accuracy in capturing the ’observed’ values.

At 4 Pa, WLOC_2 demonstrates a trend in confidence interval size 
that aligns more closely with increasing wind speed and the ’observed’ 
uncertainty, albeit still slightly underestimating the ’observed’ uncer-
tainty. WLOC_1, meanwhile, shows only minimal adaptation of the 
confidence interval in response to changes in wind speed at both 
pressures.

Within this dataset, the correlation coefficient r
(
nWLOC,

ln
(
Cenv,WLOC

) )
as used in Eq. (9), shows a strong negative correlation 

between the pressure exponent and the flow coefficient. This negative 
correlation contributes significantly to the third part of the equation, 
becoming more substantial with increasing airflow rates. Consequently, 

Fig. 6. Confidence interval size (both sides) for each regression method relative to the corresponding calculated airflow (lines) and estimation of’observed’ un-
certainty (single dots) for airflows at pressure differences of 50 Pa (left) and 4 Pa (right).
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this results in a reduced size of the airflow rate uncertainty and, thus, 
smaller confidence intervals.

4. Conclusion and outlook

In this study, we conducted a comprehensive evaluation of over 
6,000 test series across 127 testing scenarios to assess the reliability and 
accuracy of three different regression analysis methods and different 
approaches for estimating measurement uncertainties in building 
airtightness testing under varying climatic conditions. Our analysis 
particularly focuses on the variance of results influenced by wind 
speeds.

The findings reveal that the OLS and WLOC_1 regression methods 
seem slightly less effective in providing reliable airflow rate estimates 
than WLS and WLOC_2, especially when the reference pressure is at 4 Pa 
and wind speeds exceed 4 m/s. At 50 Pa, the 95 % confidence interval 
for OLS covered the reference airtightness value in only 25 % of the data, 
while WLS covered 91 % and WLOC_2 42 %. At 4 Pa, the OLS interval 
covered only 21 %, while WLOC_2 achieved 82 %, and WLS covered 100 
%, although it consistently overestimated uncertainty.

A key observation is the systematic variation in measured air flow 
rates under different wind conditions. Data indicate that higher wind 
speeds consistently result in lower air flow rates than those measured 
under calmer conditions, highlighting the significant impact of wind on 
air leakage measurements. For instance, wind speeds above 4 m/s led to 
airflow rates at 4 Pa that deviated by up to 6 percentage points 
compared to those derived under calm conditions, further underscoring 
wind’s role in increasing measurement error.

Regarding error estimation, our analysis suggests that all methods, 
except WLS, tend to underestimate the actual uncertainty involved, 
which is consistent with expectations given that none of them can 
consider all sources of error. While WLS provided the broadest confi-
dence intervals, it was overly conservative in its estimates at lower 
pressures, particularly at 4 Pa. This suggests that in practice, pressure 
fluctuations from wind may be less severe as WLS predicts, given that 
most building envelopes have wind pressure coefficients significantly 
lower than 1. However, the procedure, as described in DIN EN ISO 9972 
is not designed for calculating confidence intervals and the method 
chosen in this paper is an attempt to approximate these intervals. The 
WLOC_2 method seems to provide a notable improvement in error es-
timates over the OLS_1, as currently prescribed by ISO 9972, in partic-
ular at low pressure differences. Nonetheless, there is still room for 
enhancement, particularly in integrating additional sources of error, 
such as model-induced systematic error, in uncertainty calculation.

A limitation of this study is that the analysis relied solely on real- 
world building configurations where the ‘true’ values of airtightness 

are inherently unknown and can only be estimated under optimal con-
ditions. Although the dataset is extensive, it includes only one building 
topology, which limits the generalizability of the results. Expanding this 
analysis to multi-story residential buildings and commercial structures, 
which may exhibit different leakage dynamics and airflow patterns, 
would improve applicability. Moreover, while results were obtained 
under a wide range of wind conditions, perfect environmental control 
was not achievable.

Future research could address this limitation by validating these 
findings under controlled laboratory settings, as suggested by Mélois 
et al. [47]. Controlled settings would enable the isolation of specific 
variables, like wind speed, to better quantify their effects on airtightness 
measurements. The uncertainties presented here could be evaluated for 
taller structures that may be more sensitive to wind effects. Further 
research should also examine the practical effects of uncertainties at low 
pressures, such as 4 Pa, on IAQ and energy modeling.

Additionally, this study underscores significant implications for the 
standardization of building airtightness testing. Although the weighting 
procedure of WLOC could benefit from further refinement, the perfor-
mances of the WLS and WLOC_2 regression methods suggest they should 
be considered for future inclusion in standards such as ISO 9972, given 
their respective advantages. However, the uncertainty estimation ac-
cording to wind should be adapted for WLS. The WLOC_2 approach, with 
its improved uncertainty calculation procedure, and WLS both provide 
flexibility and enhanced reliability in testing procedures. Adopting these 
advanced regression techniques and integrating comprehensive uncer-
tainty calculations will be important for improving the predictive ac-
curacy of airtightness tests, particularly as construction and standards 
get tighter and tighter.
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Appendix A. Regression methods and uncertainty calculation

A.1 Calculation of regression

A.1.1 Ordinary least squares (OLS)

For the regression, xi = ln(Δpi) serves as the independent, and yi = ln
(

qenv,i

)
is the dependent variable (based on Eq. (2)). OLS minimizes the 

standard deviation for the logarithms of the measured values. The pressure exponent for OLS is determined as: 

nOLS =
sxy,OLS

s2
x,OLS

(A.1) 

where sx is the standard deviation of x, and sxy is the covariance between x and y, defined as: 

sx,OLS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1
(xi − x)2

√
√
√
√ (A.2) 
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sxy,OLS =
1

N − 1
∑N

i=1
(xi − x)(yi − y) (A.3) 

With x and y being the mean values of xi and yi respectively. The flow coefficient is then calculated as: 

Cenv,OLS = exp(y − nOLS • x) (A.4) 

A.1.2 Weighted least squares (WLS)
The calculation of the pressure exponent n and the flow coefficient Cenv follows a similar process to OLS, with modifications in the calculation of sx 

and sxy, now incorporating the weight gi = q2
env,i: 

sx,WLS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1
gi(xi − x)2

∑N

i=1
gi

√
√
√
√
√
√
√
√

(A.5) 

sxy,WLS =
1

N − 1

∑N
i=1gi(xi − x)(yi − y)

∑N
i=1gi

(A.6) 

Here, x is the weighted mean calculated as: 

xWLS =

∑N
i=1gixi
∑N

i=1gi
(A.7) 

y and sy are calculated similarly.

A.1.3 Weighted line of organic correlation (WLOC)
In WLOC, the pressure exponent is determined not according to Eq. (17), but as ([17,48]): 

nWLOC =
sy,WLOC

sx,WLOC
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
wi •

∑N

i=1
wiyi

2 −

(
∑N

i=1
wiyi

)2

∑N

i=1
wi •

∑N

i=1
wixi2 −

(
∑N

i=1
wixi

)2

√
√
√
√
√
√
√
√

(A.8) 

The weights wi are calculated using the combined standard uncertainties uc of xi and yi: 

wi =
1

uc(xi) • uc(yi)
(A.9) 

where uc(xi) and uc
(
yi
)

are calculated as: 

uc(xi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

dln(Δpi)

dΔpi

)2

u2
c (Δpi)

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

c (Δpi)

Δp2
i

√

(A.10) 

uc(yi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

dln
(
qenv,i

)

dqenv,i

)2

u2
c
(
qenv,i

)

√
√
√
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

c
(
qenv,i

)

q2
env,i

√

(A.11) 

Prignon et al. [49], utilized for WLOC_1 in this paper, define the standard uncertainties of pressure difference Δpi as: 

uc(Δpi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
(
Δpm,i

)
+

u2
(
Δp0,1

)
+ u2

(
Δp0,2

)

4
+

⎛

⎜
⎜
⎝

0.11 + 0.98 •
σ(Δp0,1)+σ(Δp0,2)

2
1.35

⎞

⎟
⎟
⎠

2
√
√
√
√
√
√
√ (A.12) 

where u
(

Δpm,i

)
and u

(
Δp0,1/2

)
are the uncertainties of the pressure measurement device used to measure the pressure stations and zero-flow pressure 

difference. In case the maximum permissible measurement error (MPME) is provided for the device, u
(

Δpm,i

)
can be expressed as: 

u
(
Δpm,i

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

MPME
̅̅̅
3

√

)2

+

(
Resolution

̅̅̅̅̅̅
12

√

)2
√

(A.13) 

u
(

Δp0,1/2

)
is calculated similarly. σ

(
Δp0,1/2

)
are the standard deviations of the zero-flow pressure difference measurements before and after the test.

The standard uncertainties of airflow qenv,i for pressurization (p) and depressurization (d) are defined as: 
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uc

(
qenv,p,i

)
= uc

(
qm,p,i

)
•

Tint

Te
= u
(
qr,i
)
•

̅̅̅̅̅
Te

T0

√

•
Tint

Te
(A.14) 

uc
(
qenv,d,i

)
= uc

(
qm,d,i

)
•

Te

Tint
= u
(
qr,i
)
•

̅̅̅̅̅̅̅
Tint

T0

√

•
Te

Tint
(A.15) 

where u
(

qr,i

)
is then calculated in a similar way as u

(
Δpm,i

)
in Eq. (29). For simplification, the uncertainties due to temperature measurements are 

neglected in these equations.
The flow coefficient using WLOC is then calculated as: 

Cenv,WLOC = exp

(∑N
i=1wiyi − nWLOC •

∑N
i=1wixi

∑N
i=1wi

)

(A.16) 

A.2 Calculation of uncertainty and confidence intervals

A.2.1 Ordinary least squares as described ISO 9972
To compute the 95 % confidence interval of the airflows at specific pressure differences (e.g., 50 Pa and at 4 Pa), the standard deviation around the 

regression line for a given value xref = ln
(

Δpref

)
is required. This is calculated as: 

sy,OLS
(
xref
)
= uc(nOLS)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N − 1

N
s2
x,OLS +

(
xref − x

)2
√

(A.17) 

The standard uncertainty of uc(nOLS) is given by: 

uc(nOLS) =
1

sx,OLS

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s2
y,OLS − nOLS • sxy,OLS

N − 2

√

(A.18) 

sy,OLS is calculated similarly to sx,OLS as given in Eq. (18). Additionally, the standard uncertainty of ln
(
Cenv,OLS

)
is given by: 

uc
(
ln
(
Cenv,OLS

) )
= uc(nOLS) •

̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
xi

2

N

√
√
√
√
√

(A.19) 

The correlation coefficient of OLS, r
(
nOLS, ln

(
Cenv,OLS

) )
, is given by: 

r
(
nOLS, ln

(
Cenv,OLS

) )
= −

∑N
i=1xi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N •
∑N

i=1
xi

2

√ (A.20) 

Finally, the 95 % confidence interval is derived from the two-sided confidence limits of a student’s t-distribution, T(0.95,N): 

CI
(

qref

)

OLS
= qref • exp

(
± sy,OLS

(
xref
)
• T(0.95,N)

)
(A.21) 

A.2.2 Weighted least squares as described in DIN EN ISO 9972
The overall uncertainty s (in percentage) of the airflow at a given pressure difference Δpref is defined as: 

s = max
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2 + b2 + e2
√

, d
)
+ g (A.23) 

In this equation, the maximum value of the statistical error d and the errors due to the measurement devices is chosen as the overall uncertainty. 
Here: 

• a represents the percentage error due to the airflow measurement device. In this study, a = 0.03 is used, but other values can be provided by 
calibration certificates.

• b is the error from the pressure measurement as given in Eq. (39). Instead of the measured pressure exponent n, a standard value of n = 0.65 is used. 
The error in the building pressure measurement combines the actual pressure measurement error and the error in measuring the natural pressure 
difference. 

b = n •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e
(

Δpref

)2
+ e(Δp0)

2
√

Δpref
(A.24) 
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Here, e
(

Δpref

)
is the error in Pascals at the pressure measurement (here, 0.5 Pa). Δpref is the reference pressure (50 Pa or 4 Pa). However, this 

method has been evaluated in the German national annex only for 50 Pa and was adapted accordingly. e(Δp0) is the error according to the zero- 
flow pressure difference measurement, calculated as (with wind speed v and air density ρ): 

e(Δp0) = max
(⃒
⃒
⃒
Δp0,1 − Δp0,2

2

⃒
⃒
⃒,

1
2
•

ρ
2
v2
)

(A.25) 

• d is the percentage error of the airflow, calculated similarly to the confidence interval in Annex C of ISO 9972: 

d =
exp
(
sy,WLS

(
xref
)
• T(0.95,N)

)
− exp

(
− sy,WLS

(
xref
)
• T(0.95,N)

)

2
(A.26) 

• e is the percentage error according to density correction, which is 2 % if the actual barometric pressure is used for density correction of the 
measurement values. If a simplified correction is used, this value is 5 %. A value of 2 % has been considered in this paper.

• g is the percentage error due to a possible valve characteristic. If measurements are performed at over- and under-pressure, this value is 0. If only 
over- and under-pressure measurements are performed, this value is 7 %. Here, 0 % is considered.

A.2.3 Weighted line of organic correlation

The 95 % CI for WLOC is calculated according to Eq. (8) utilizing the combined standard uncertainty uc

(
qref

)
as defined in Eqs. (10) and (11). To 

obtain these values, the standard uncertainties uc(nWLOC) and uc
(
ln
(
Cenv,WLOC

) )
, along with the correlation coefficient r

(
nWLOC, ln

(
Cenv,WLOC

) )
are 

required.
First, the slope uncertainty uc(nWLOC) is determined as: 

uc(nWLOC) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
∂nWLOC

∂xi

)2 1
u2

c (xi)
+

(
∂nWLOC

∂yi

)2 1
u2

c (yi)

√
√
√
√ (A.27) 

where: 

∂nWLOC

∂xi
= nWLOC •

(∑N
j=1wjxj

)
wi −

(∑N
j=1wj

)
wixi

Δx
(A.28) 

∂nWLOC

∂yi
= nWLOC •

(∑N
j=1wj

)
wiyi −

(∑N
j=1wjyj

)
wi

Δy
(A.29) 

and: 

Δx =
∑N

i=1
wi

∑N

i=1
wix2

i −

(
∑N

i=1
wixi

)2

(A.30) 

Δy =
∑N

i=1
wi

∑N

i=1
wiy2

i −

(
∑N

i=1
wiyi

)2

(A.31) 

Next, the intercept uncertainty uc
(
ln
(
Cenv,WLOC

) )
is calculated as: 

uc
(
ln
(
Cenv,WLOC

) )
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(∂ln
(
Cenv,WLOC

)

∂xi

)2 1
u2

c (xi)
+

(∂ln
(
Cenv,WLOC

)

∂yi

)2 1
u2

c (yi)

√
√
√
√ (A.32) 

where: 

∂ln
(
Cenv,WLOC

)

∂xi
= nWLOC •

(

−
wi

∑N
i=1wi

−

( ∑N
i=1wixi

)2
wi

Δx •
∑N

i=1wi
+

( ∑N
i=1wixi

)
wixi

Δx

)

(A.33) 

∂ln
(
Cenv,WLOC

)

∂yi
=

wi
∑N

i=1wi
−

( ∑N
i=1wixi

)
wiyi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δx • Δy

√ +

( ∑N
i=1wixi

)(∑N
i=1wiyi

)
wi

( ∑N
i=1wi

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δx • Δy

√ (A.34) 

Finally, the correlation coefficient r
(
nWLOC, ln

(
Cenv,WLOC

) )
is defined as: 

r
(
nWLOC, ln

(
Cenv,WLOC

) )
=

u2
c
(
nWLOC + ln

(
Cenv,WLOC

) )
− u2

c (nWLOC) − u2
c
(
ln
(
Cenv,WLOC

) )

2uc(nWLOC)uc
(
ln
(
Cenv,WLOC

) ) (A.35) 
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where: 

uc
(
nWLOC + ln

(
Cenv,WLOC

) )
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
∂nWLOC

∂xi
+

∂nWLOC

∂yi

)2 1
u2

c (xi)
+

(
∂Cenv,WLOC

∂xi
+

∂Cenv,WLOC

∂yi

)2 1
u2

c (yi)

√
√
√
√ (A.36) 

Data availability

Data will be made available on request.
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[20] B. Kölsch, I.S. Walker, Improving air leakage prediction of buildings using the fan 
pressurization method with the Weighted Line of Organic Correlation, Build. 
Environ. 181 (2020) 107157, https://doi.org/10.1016/j.buildenv.2020.107157.
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