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The nonlinear Schrödinger equation (NLSE) in one spatial dimension has stationary solutions similar to those
of the linear Schrödinger equation (LSE) as well as more exotic solutions such as solitary waves and quantum
droplets. Here, we present a newly discovered conformal duality which unifies the stationary and time-dependent
traveling-wave solutions of the one-dimensional cubic-quintic NLSE, the cubic NLSE and LSE. Any two systems
that are classified by the same single number called the cross ratio are related by this symmetry. Notably, the
conformal duality can also be adapted in Newtonian mechanics and serves as a powerful tool for investigating
physical systems that otherwise cannot be directly accessed in experiments. Further, we show that the conformal
symmetry is a valuable resource to substantially improve NLSE parameter estimation from noisy empirical data
by introducing an optimization afterburner. The new method therefore has far reaching practical applications for
nonlinear physical systems.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is ubiquitous
in physics, where it plays a key role in plasma physics [1–3],
hydrodynamics [4–6], degenerate quantum gases [7,8], and
light propagation in nonlinear fiber optics [9–12]. Understand-
ing the possible solutions of the NLSE and estimating its
experimental parameters reliably [13–17] is therefore of great
importance for a large variety of purposes whether they are
application-oriented or fundamental. In this article we point
out a conformal duality between different classes of solu-
tions and even different orders of the NLSE. This conformal
mapping provides a unified picture of the cubic- and the
cubic-quintic NLSE and even establishes a direct link to the
linear Schrödinger equation. In this way, our method provides
a systematic classification of the complete solution spaces
of these equations. Moreover, the conformal duality can be
applied to substantially improve NLSE parameter estimation
from noisy experimental data.

The linear Schrödinger equation typically features os-
cillating and constant-amplitude solutions which have their
counterparts in the NLSE. However, there also exist solutions
which are uniquely nonlinear such as solitary waves [18–24]
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which are of broad interest in physics [25–29]. Consider-
ing (multiple) higher-order self-modulating terms like in the
cubic-quintic NLSE drastically expands the solution space
allowing, for instance, for bright and dark soliton pairs [30]
and solitons with power law tail decay [31]. Although the
different polynomial NLSEs have been studied in great detail
[32–41] there exists so far no unified theory linking their
solution spaces.

In this work, we identify a large family of conformal dual-
ities for the one-dimensional time-independent cubic-quintic
NLSE. These dualities allow us to establish conformal maps
between different solutions of the cubic-quintic NLSE and
even to conformally reduce the cubic-quintic to the cubic
NLSE and the linear Schrödinger equation, highlighting that
the lower-order equations essentially are conformal limiting
cases of the cubic-quintic NLSE. Conformal dualities are of
particular interest in physics [42–44] with famous instances
being the Kramers-Wannier duality in statistical mechanics
[45] and the Montonen-Olive duality in quantum field theory
[46]. Further, for some nonlocal NLSEs a special conformal
symmetry of the time coordinate has been discussed in a dif-
ferent context [47,48]. The novel insights into the conformal
duality of NLSEs presented in this article can directly be ap-
plied to the determination of physical parameters from noisy
experimental data. By conformally transforming the density
distributions in a nonlinear way we avoid fitting routines to
getting trapped in local minima and barren plateaus [49,50] to
find the global best parameters more reliably. This approach
is of immediate interest for the study of one-dimensional
Bose-Einstein condensates [51–54] described by higher-order
Gross-Pitaevskii equations [19,22,55–59] featuring two-and
three-body contact interactions, and offers great potential
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usage also for other physical systems like for instance in
nonlinear fiber optics. The article is structured as follows: In
Sec. II we present a classification scheme for density solu-
tions of the cubic-quintic NLSE based on the roots and the
discriminant of a quartic polynomial containing all relevant
physical parameters. Next, in Sec. III we introduce the confor-
mal duality and explain how various mappings and reductions
of the NLSE can be achieved depending on the transformation
coefficients of the underlying Möbius transform. Finally, we
demonstrate in Sec. IV that the conformal symmetry serves as
a valuable resource in parameter estimation, enhancing con-
ventional methods. Technical and methodical details on the
conformal duality of the NLSE are discussed in Appendix A.
Some analytical examples of the conformal mapping are
shown in B whereas a complete overview of generally allowed
mappings can be found in Appendix C. Further details on the
applicability of the conformal symmetry to parameter estima-
tion are given in Appendix D.

II. CLASSIFICATION OF SOLUTIONS

In the following section, we introduce three distinct classes
of solutions for the cubic-quintic NLSE, cubic NLSE, and
LSE. These classes are defined based on the sign of the dis-
criminant of a quartic polynomial that arises from applying
the amplitude-phase decomposition to the wave function. In
the subsequent section, these classes then play a pivotal role
in categorizing and analyzing the conformal mappings.

We consider the dimensionless local and time-independent
cubic-quintic NLSE(

−1

2

d2

dx2
+ a3|ψ |2 + a4

2
|ψ |4

)
ψ = a2ψ (1)

in one spatial dimension of coordinate x, where ψ = ψ (x)
is the complex-valued wave function and a2, a3, and a4 are
constants. Note, the indices j of the coefficients aj are chosen
such that they directly correspond to the exponents of the dif-
ferent powers of σ of the polynomial P(σ ) defined in Eq. (3).
By omitting position-dependent potentials, we focus on the
homogeneous case with either box or periodic boundary
conditions.

The amplitude-phase representation ψ ≡ √
σ exp(iφ)

casts Eq. (1) into the differential equations [30,33,35](
dσ

dx

)2

= P(σ ) (2)

for the density σ = σ (x) with the quartic polynomial

P(σ ) ≡ 4

3
a4 σ 4 + 4a3 σ 3 − 8a2 σ 2 − 16a1 σ − 4a0 (3)

and

dφ

dx
= ±

√
a0

σ
(4)

for the phase φ = φ(x). Here a0 and a1 are constants of
integration and the different signs in Eq. (4) refer to the two
possible directions of the flow induced by the phase gradient.

Obviously, the order of the polynomial P = P(σ ) directly
depends on the leading nonlinearity in Eq. (1) yielding a cubic
or quartic polynomial in the case of the cubic (a4 = 0) or

cubic-quintic NLSE, while the polynomial is quadratic for the
linear Schrödinger equation (a3 = a4 = 0).

The stationary solutions of Eq. (1) are in general deter-
mined [35] by the polynomial P, defined by Eq. (3), and its
discriminant

� ≡ a6
4

∏
j �=k

(σ j − σk ) (5)

given by the roots σ j of P. Depending on the sign of �,
three classes of solutions can be identified: (i) simple complex
conjugated roots (� < 0), (ii) multiple roots (� = 0), or (iii)
only simple roots (� > 0) of P.

In order to discuss the roots σ j of P it is convenient to
introduce the tuple notation (r4, r3, r2, r1), where every en-
try rm denotes the number of roots at order m. For instance
(0, 0, 0, 4) labels a polynomial with four simple real roots as
displayed in Fig. 1(a), while a polynomial with two simple
real roots and two simple complex-conjugated roots as shown
in Fig. 1(d) is labeled by (0, 0, 0, 2 + 2C ).

The explicit solutions of the stationary NLSE are obtained
by direct integration of Eqs. (2) and (4) in the region between
two neighboring real roots. Consequently, oscillatory solu-
tions of Eq. (2) occur between two neighboring simple real
roots which define the minimum and maximum density of the
oscillation as displayed by the three closed phase-space orbits
in Fig. 1(b) which originate from the polynomial in Fig. 1(a).

Complex conjugate roots with finite imaginary parts can
therefore not be the turning points of such solutions, but
instead deform the resulting orbits spanned between other real
roots as illustrated in Fig. 1(e). Due to the finite order of P,
there is only one oscillatory orbit possible for the polynomial
shown in Fig. 1(d).

For polynomials with a multiple root [shown in Fig. 2(b)
for the case (0,0,1,2)], solitonic and other more exotic solu-
tions emerge. In fact, the multiple root acts as a bifurcation
point for the phase-space trajectories separating the two other
solution classes [30]. Moreover, there always exists a constant
amplitude solution at the density value of the multiple root.

Finally, the outer density regions which are restricted by
only one real root typically lead to unbounded solutions. For
instance, the light orange shaded region of the polynomial
displayed in Fig. 2(c) yields such an unbounded solution.

Consequently, the sign of the discriminant � and thus the
nature of the roots of P not only determine the character and
shape of the resulting solutions, but also the total number of
different solutions for a given set of parameters. Indeed, ac-
cording to Eq. (2) physically meaningful real solutions require
P(σ ) > 0 between the roots considered, in addition to any
restrictions set by the boundary conditions of the system under
study, while for P(σ ) < 0 complex density solutions emerge.
Hence, this approach enables a straightforward and systematic
classification of all possible stationary and time-dependent
traveling wave solutions of higher-order NLSEs.

III. CONFORMAL DUALITY

In this section, we first introduce the conformal duality of
the cubic-quintic NLSE (III A), showing that this symmetry
jointly applies to the density and phase gradient of any solu-
tion. Next, we examine how the mapping works and discuss
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FIG. 1. Conformal mapping between two realizations of the
cubic-quintic NLSE with discriminant � > 0 (a)–(c) and � < 0
(d)–(f). (a), (d) Polynomials P(σ ) and P̃(σ̃ ), defined by Eq. (2), with
four simple roots σ j (a) or two simple and two complex roots σ̃ j

(d), respectively. (b), (e) Oscillating phase-space trajectories corre-
sponding to real (blue) and complex (red) solutions determined by
P in (a), (d). The two cases (a)–(c) and (d)–(f) are related by a
conformal transformation, Eq. (6), which maps the positions of the
roots, the polynomials, and the corresponding phase-space orbits into
each other. (c), (f) Complex density plane of P and P̃ shown in (a),
(d) illustrating the positions of the roots σ j and σ̃ j (black dots) as well
as the argument of the phase of the density σ (color map). The lines
of constant real and imaginary part of the density σ form a square
grid (c) which is mapped into a grid of circles (f) by the conformal
transformation due to changing the sign of �. The roots σ j are thus
mapped from a straight line (c) to a circle (f) with counterclockwise
orientation starting from the first real root. Likewise, the cloverleaf-
shaped boundary Q shown in (c) is the inverse image of the square
boundary shown in (f) while the center of the angle-shaped region in
(f) corresponds to the point at infinity in (c).

how it connects the LSE, the cubic NLSE, and the cubic-
quintic NLSE (III B). Finally, we show that the conformal
symmetry also extends to Newtonian mechanics (III C).

A. Möbius transformation

In the phase space (σ, σ ′) with σ ′ ≡ dσ/dx, the differ-
ential equation Eq. (2) constitutes an elliptic curve. A key
characteristic of elliptic curves is the possibility to transform
their underlying algebraic equation by rational transforma-
tions [60], see Appendix A 1. In the case of the NLSE the
Möbius transformation can be adapted to the differential

FIG. 2. Conformal reduction from the cubic-quintic (b) to the
cubic NLSE (c) and the linear Schrödinger equation (a). Exemplary
polynomials P (green) and −P (orange), Eq. (2), with (a) two simple
roots (black dots), (b) two simple roots σ3, σ4 and one double root
σ1,2 (encircled black dot), or (c) one simple and one double root. By
moving the roots σ4 (or σ1,2) to infinity the cubic-quintic NLSE can
be reduced to the cubic NLSE or the linear Schrödinger equation,
respectively. The green (soliton solutions) and orange (oscillating
solutions) fillings show which of the density regions (and corre-
sponding solutions) are mapped into each other featuring similar
characteristics. The light shaded green and orange areas in (a) and
(c) illustrate unbounded solutions.

equation Eq. (2) leading to the conformal map

σ (x) = A σ̃ (x̃) + B

C σ̃ (x̃) + D
(6)

of the densities σ and σ̃ with the generally complex-valued
coefficients A, B,C, D. In contrast to the mapping of elliptic
curves with algebraic variables, the additional spatial coordi-
nate x follows the affine transformation

x = x0 + (AD − BC)x̃, (7)

where x can become complex-valued and x0 is a constant.
Furthermore, the gradient of the phase, determined by Eq. (4),
also exhibits a conformal symmetry

dφ

dx
= ±√

a0
D dφ̃

dx̃ ± √
ã0 C

B dφ̃

dx̃ ± √
ã0 A

(8)

with the very same coefficients A, B,C, D as in Eq. (6). More
details on the conformal symmetry of the density and phase
gradient can be found in Appendices A 2 and A 3.

The combination of Eqs. (6) and (8) provides the complete
conformal mapping of any of the two differential equations in
Eqs. (2) and (4) and their respective solutions with the same
real-valued cross ratio

k2 ≡ σ4 − σ3

σ4 − σ2

σ2 − σ1

σ3 − σ1
∈ (0, 1). (9)

As a result, the conformal symmetry unifies the solutions of
the one-dimensional cubic-quintic NLSE, the cubic NLSE
and LSE.

In Eq. (9) we consider a4 > 0. However, when applying
the conformal transformation, the mapping of the roots results
in a cyclic permutation of their numerical order. This cyclic
permutation rule facilitates the transition from one generic
analytic solution to another. Similarly, the formula for the
cross ratio is directly adjusted by the permutation, which
becomes significant when a transformation changes the sign
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of a4. More information and details regarding the cross ratio
can be found in Appendix A 4.

By definition the conformal character of the Möbius trans-
formation will preserve angles in the complex density plane
by mapping every straight line of constant density into another
line or circle of constant density, and vice versa, see Figs. 1(c)
and 1(d). Furthermore, the cross ratio is also preserved un-
der time-dependent Galilean transformation of any solution.
Therefore, the conformal symmetry applies to traveling-wave
solutions of the NLSE such as solitary waves subjected
to a velocity boost. This effect is a direct consequence of
the Galilean covariance of the NLSE itself, as discussed in
Appendix A 5.

B. Conformal mapping and reduction of the NLSE

Depending on the choice of the transformation coefficients
different scenarios can be realized. Indeed, the conformal
map, Eq. (6), directly relates different quartic polynomials
with each other and therefore their solution spaces. In this
case the ratio A/C must not match the value of any of the
roots as this point will be mapped to infinity. Real-valued
coefficients A, B,C, D connect different polynomials within
a given solution class, while complex coefficients enable us to
change the solution class corresponding to a change of sign
of �. Figure 1 shows an intriguing example of the latter case,
where a (0, 0, 0, 4)-polynomial is mapped to one classified by
(0, 0, 0, 2 + 2C ). Despite the fact that the graphs of the poly-
nomials P and P̃ (a),(d) and their phase-space orbits (b),(e)
appear quite distinct in Fig. 1, they are intimately connected as
shown by the density maps (c),(f). Here, the conformal charac-
ter of the transformation manifests itself by transforming the
straight line connecting all four simple roots in Fig. 1(c) to
a circle which passes again through all (now partly complex)
roots in Fig. 1(f). In the same way, the rectangular boundary
of the density plot in Fig. 1(f) is mapped into the cloverleaf-
shaped boundary displayed in Fig. 1(c).

Moreover, as depicted in Fig. 2, it is possible to confor-
mally reduce the cubic-quintic NLSE to either the cubic NLSE
or the linear Schrödinger equation by mapping either a simple
root or a double root to infinity. In these cases, the ratio
A/C must match the value of the roots to be moved. As a
consequence, the overall degree of the polynomial is reduced
by one (simple root moved) or two (double root moved).
Analogously, the linear Schrödinger equation with an energy
eigenvalue of zero is obtained by removing a triple root. Note,
the cross ratio in case of a multiple root by construction either
is k2 = 0 corresponding to the trigonometric limit or k2 = 1
the hyperbolic limit.

By reducing the degree of the polynomial, the solution
space changes based on Eq. (6) and as illustrated in Fig. 2:
(i) one unbounded solution vanishes because the root consti-
tuting its minimum or maximum density has been removed,
(ii) a bound solution becomes unbound since it is now only
restricted by one root, and (iii) the remaining solutions get
transformed, but keep their main characteristics as their roots
retain their order.

The case shown in Fig. 2 highlights two prominent soli-
tonic solutions, namely the flat-top soliton [19] [green shaded
area in (b)] and the elementary bright soliton [61] [green

shaded area in (c)], which are both governed by a hyperbolic
cosine in the denominator of their density profile. By the
transformation from the cubic-quintic to the cubic NLSE only
the prefactor in front of the hyperbolic cosine gets changed
such that both solutions are quite similar, see Appendix B for
more details.

Likewise, the oscillatory solution in the cubic-quintic case
[orange area in Fig. 2(b)] governed by a cosine in the de-
nominator as well changes its prefactor when transformed.
However, in this case the corresponding solution of the cubic
case [light orange area in Fig. 2(c)] becomes unbound due to
the now different prefactor and has thus completely changed
its character by the transformation.

The solutions of the green and orange regions in Fig. 2 are
also interconnected by a transformation that maps a real po-
sition coordinate x to a purely imaginary position x̃ changing
the functional dependency from a hyperbolic sine (green) to
a trigonometric sine (orange). Effectively, this transformation
thus flips the overall sign of the polynomial from P to −P.
In this way all the solutions of the cubic and cubic-quintic
NLSE as well as the linear Schrödinger equation are funda-
mentally connected. For a complete list of allowed mappings
see Appendix C.

C. Connection to Newtonian mechanics

The conformal symmetry can also be adapted to the dy-
namics of classical particles in Newtonian mechanics. In this
analogy the nonlinear self-modulating terms correspond to
anharmonic conservative potential contributions and the con-
formal duality applies to the solutions of the corresponding
Newton equation. Indeed, it is well-known that the NLSE
formally constitutes a classical Hamiltonian system for the
density σ with the Hamiltonian function [62]

H(σ ′, σ ) ≡ 1
2σ ′2 + U (σ ) (10)

with the potential U = U (σ ). Here, the density σ will be
analogous to the classical position coordinate, while the spa-
tial coordinate x corresponds to time coordinate in classical
mechanics.

When considering the potential

U (σ ) ≡ − 1
2 (P(σ ) + 4a0) (11)

one can recover [30] Eq. (2) when the energy of H is set to
−2a0. The conformal map, Eq. (6), now allows us to transform
the Hamiltonian, Eq. (10), of a classical particle and conse-
quently its underlying equations of motions. Thus, we can
map a double-well problem to another double-well problem
[63], or reduce the leading order of the effective dual potential
from quartic order to cubic, quadratic, linear or even constant
order by either mapping a simple, double, triple or quadruple
root of the potential to infinity.

As a result, soliton solutions, as shown in Fig. 2, in
our classical mechanics analogy correspond to an oscillation
with infinitely long period where the particle in phase space
approaches a bifurcation point similar to a mathematical pen-
dulum, where the angular coordinate approaches the unstable
fixed point at π radians. Analogously, unbounded solutions
are the counterpart of scattering states of the correspond-
ing classical potentials. Hence, the ideas and concepts for
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FIG. 3. Transformation-enhanced fitting of oscillating (a), (b)
and solitonic (c), (d) solutions of the cubic-quintic NLSE. (a), (c)
Synthetically generated noisy densities σ (x) and the results of fit-
ting them directly (blue) or in conformal space (red) indicating the
improved accuracy of the conformal fit with respect to the original
density (black). (b), (d) Minimal loss function value as a function of
fitting the data over several epochs. The standard fit (blue) applies
a new random initial guess for the fit parameters every epoch, but
does not improve further after 10s of epochs. Starting from 100
epochs (black square) the process is enhanced by an afterburner
utilizing random conformal maps, Eq. (6), of the density and fitting
the transformed data in the conformal space (red) yielding better loss
function values even undercutting the value of the true parameters
(black dashed line) after few additional epochs.

treating physics problems of classical particles in anharmonic
potentials have a direct correspondence to those required for
the NLSE.

IV. PARAMETER ESTIMATION

In the following section we demonstrate that the confor-
mal symmetry introduced in Sec. III is a valuable resource
in parameter estimation. By constructing an optimization
afterburner that uses randomized group transformation we
significantly enhance the performance of search algorithms.
As discussed above, solutions of the NLSE within a given
solution class, introduced in Sec. II, can be transformed into
one another through real-valued transformation coefficients.
The overall functional form of the solution will then be pre-
served, as long as there is no reduction to a lower-order NLSE.
Hence, extracting the underlying physical parameters a0 to a4

of the quartic polynomial in Eq. (3) of one particular solution
enables us to reconstruct the parameters of the dual solution
if the transformation coefficients A, B,C, D in Eq. (6) are
known. We exploit this mapping symmetry to improve the
determination of physical parameters from experimental data.

Figure 3 shows two examples of synthetically generated
noisy data sets and the results of fitting them to their known
analytical functions. Even when repeating the fitting process
several times with different initial conditions a given fitting
routine might get stuck in local minima of the loss func-
tion landscape (blue steps) instead of finding more truthful
values (black dashed line) [64]. This behavior is due to the
complexity of the parameter space with four (solitonic so-
lution) or five (oscillatory solution) free parameters in each
case and the additional noise which can render a reliable
parameter estimation of the already highly nonlinear problem
quite challenging as multiple distinct parameter sets yield
quite similar fitting results. To overcome this problem, we
apply the conformal map, Eq. (6), with random transformation
coefficients A, B,C, D to the noisy data and fit the density
distribution again in the conformally transformed space. The
extracted fitting parameters can then be transformed back to
the original space and are compared with the results obtained
without transformation. Details on the method can be found
in Appendix D 1. Figure 3 clearly shows that our conformal
fitting process can substantially improve the results already
after a few epochs (red steps). For more details about the
fitting results see Appendix D 2.

The conformal transformations are changing the loss func-
tion landscape such that local minima vanish or get moved
while the global minimum gets more pronounced and its
location is approximately kept the same. This prevents the
optimization search from getting trapped in local minima
and barren plateaus. In essence, we are using the conformal
transformations as an optimization afterburner. To the best of
our knowledge, this strategy of using group transformations
to improve the performance of search algorithms has not been
used before in the literature. In this case we are using the
group associated with Möbius transformations. However, the
general concept of applying group transformations as a search
optimization afterburner should have plenty of applications
across many branches of physics and machine learning.

We have tested our method for a large variety of scenarios
and observed an improvement in most cases. In no cases
did we find that the new approach performed more poorly
than the original search. Consequently, our conformal fitting
afterburner is a powerful tool for parameter estimation of the
NLSE and is applicable to a large variety of physical systems.

V. CONCLUSION

In summary we have provided a unified picture of the
NLSE by establishing a conformal duality between the solu-
tion spaces of the cubic-quintic and cubic NLSE as well as the
linear Schrödinger equation. Our results apply to stationary
and time-dependent traveling-wave solutions of the NLSE and
remain valid even under time-dependent Galilean transforma-
tions. We therefore expect our findings to have a wide variety
of applications that include the dynamics of solitons and their
dual counterparts, mode structures in nonlinear fiber optics,
hydrodynamic wave-dynamics, and the interplay of two- and
effective three-body interactions in quasi-one-dimensional
(1D) Bose-Einstein condensates as utilized for atomtronics
devices [65,66]. In addition, our algebraic-geometric classi-
fication scheme can straightforwardly be extended to even
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higher-order NLSEs such as the cubic-quintic-septic NLSE
[67] to search for new physics in the form of exotic solutions
that require strong nonlinearities of this kind.

Although we have considered only 1D NLSEs in this
article, some results can nevertheless be generalized to
higher dimensions. In particular, the conformal symmetry
also applies to solitary waves and other solutions governed
by higher-dimensional NLSEs, such as the Gross-Pitaevskii
equation with and without a quartic self-modulating term, as
long as the excitations considered are quasi-1D in character
while they propagate in multidimensional spaces. Further-
more, nonuniform trapping problems are included in our
theory when, e.g., considering a local density approximation.
Similarly, for slowly varying potentials, such as a shallow
harmonic trap, the conformal symmetry can be applied ap-
proximately. Besides the application in cold atom physics and
Newtonian mechanics other nonlinear structures, e.g., nonlin-
ear optical fibers used for light propagation, are frequently
governed by dual power law NLSEs. Here, the spatial and
time coordinate of the NLSEs are exchanged which results
in a differential equation which is second order in time and
first order in the spatial coordinate. Thus, the conformal du-
ality can be applied also in this context and establishes a
duality between time-dependent densities as well as phase
gradients. This duality is accompanied by an affine transfor-
mation for the time coordinate instead of the spatial coordinate
as presented in Eq. (7). Consequently, the application of the
conformal symmetry extends broadly, encompassing time-
dependent systems, higher dimensional problems as well as
trapping related challenges.

Finally, we have demonstrated that the conformal duality
is a valuable resource to substantially improve parameter es-
timation of noisy experimental data by smoothing the loss
function landscape and connecting its disconnected sectors to
find the true parameters more reliably. This direct application
of the conformal duality has far reaching consequences for
the treatment of nonlinear systems in future experiments and
numerical optimization.
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APPENDIX A: TECHNICAL DETAILS ON THE
CONFORMAL DUALITY

In this Appendix we derive the transformation of the gradi-
ent of the phase from the Möbius transformation of the density
and further provide more insights into the transformation of
the differential equations with quartic, cubic, and quadratic
polynomial dependency in the density. In addition, the cross
ratio of the transformation is discussed in more detail.

1. Transforming elliptic curves

Since the differential equation in Eq. (3) constitutes an el-
liptic curve in phase space we first discuss the transformation
behavior under fractional linear transforms of elliptic- and
hyperelliptic curves. A common way to define elliptic- and
hyperelliptic curves is to introduce the relation

Y 2 = P(X ) (A1)

between the algebraic variables X and Y with the polynomial

P(X ) ≡
N∑

n=0

αnX n (A2)

of order N with coefficients αn. Note, that for elliptic curves
N = 3, 4, while for hyperelliptic curves N > 4 [68].

A key feature of elliptic or hyperelliptic curves is the pos-
sibility to transform them into other elliptic or hyper-elliptic
curves by rational transformations [60]. For instance the
birational transformations

X = AX̃ + B

CX̃ + D
(A3)

and

Y = Ỹ

(CX + D)
N
2

(A4)

connect both algebraic variables X and Y with the correspond-
ing new variables X̃ and Ỹ through the coefficients A, B,C,
and D.

2. Density and phase gradient

In the case of the NLSE discussed here we identify the
variables X and Y with σ and σ ′ ≡ dσ/dx such that the
transformation of the density is given by the relation

σ (x) = A σ̃ (x̃) + B

C σ̃ (x̃) + D
(A5)

being of linear fractional type.
In contrast, the transformation of the derivative of the

density σ ′ is of nonlinear fractional type as is the mapping
between the algebraic variables Y and Ỹ , Eq. (A4). Nev-
ertheless, in case of the NLSE the transformation of σ ′ is
self-consistently obtained by differentiation of Eq. (A5)

dσ (x)

dx
= dx̃

dx

AD − BC

(C σ̃ (x̃) + D)2

dσ̃ (x̃)

dx̃
(A6)

= 1

(C σ̃ (x̃) + D)2

dσ̃ (x̃)

dx̃
, (A7)

where we have used the linear coordinate transformation x =
x0 + (AD − BC)x̃ between x and x̃ in the second step.

The origin of the Möbius transformation of the phase
gradient

dφ

dx
= ±

√
a0

σ
(A8)

is rooted in its reciprocal dependence on the density σ . Indeed,
by inserting the conformal map of the density, Eq. (A5), into
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Eq. (A8) and dividing both the numerator and denominator by
the density σ̃ we immediately obtain the transformation

dφ

dx
= ±√

a0
D dφ̃

dx̃ ± √
ã0 C

B dφ̃

dx̃ ± √
ã0 A

, (A9)

of the phase gradient, where
√

ã0 is the flux in the transformed
system. Thus, the phase gradient also transforms according to
a Möbius transform with the same coefficients A, B,C, D used
for the density.

Consequently, the transformations Eqs. (A5) and (A9) of
the density and gradient of the phase together enable a com-
plete conformal mapping of the complex field ψ = √

σ eiφ of
the NLSE.

3. Polynomial equation of the density

The stationary solutions of the NLSE are governed by the
differential equation (2) which features a polynom P(σ ) of
fourth order on the right-hand side. In order to analyze this
equation it is convenient to consider the factored form(

dσ

dx

)2

= a4 (σ − σ1)(σ − σ2)(σ − σ3 )(σ − σ4 ), (A10)

where σ j are the roots of P.
By applying the transformations Eqs. (A5) and (A7) the

transformed differential equation is given by(
dσ̃

dx̃

)2

= a4((A − σ1C)σ + B − σ1D)

× ((A − σ2C)σ + B − σ2D)

× ((A − σ3C)σ + B − σ3D)

× ((A − σ4C)σ + B − σ4D)

= ã4 (σ̃ − σ̃1)(σ̃ − σ̃2)(σ̃ − σ̃3)(σ̃ − σ̃4) (A11)

with

ã4 ≡ a4 C4

(
A

C
− σ1

)(
A

C
− σ2

)(
A

C
− σ3

)(
A

C
− σ4

)
,

(A12)

the new roots

σ̃ j ≡ Dσ j − B

−Cσ j + A
, (A13)

and A/C �= σ j . In general the conformal character of the trans-
formation maps straight lines to circles and vice versa such
that the new and original roots will always lie on a straight
line or a circle in the complex density plane. By choosing a
specific set of coefficients A, B,C and D Eq. (A11) can be
used to relate any two solutions of the cubic quintic NLSE
with the same cross ration k2 as illustrated in Fig. 1.

Moreover, the quartic polynomial can conformally be re-
duced to a cubic polynomial, describing the cubic NLSE, by
mapping one of the roots to infinity as shown in Fig. 2. In
this case A/C needs to be equal to the value of the root to
be mapped. If, for instance, the first root σ1 is mapped to
infinity (A/C = σ1) the resulting differential equation can be

written as (
dρ

dx̃

)2

= ã3(ρ − ρ1)(ρ − ρ2)(ρ − ρ3) (A14)

= ã3ρ
3 + ã2ρ

2 + ã1ρ + ã0 (A15)

with

ã3 ≡ a4C
2

(
A

C
− σ2

)(
A

C
− σ3

)(
A

C
− σ4

)
(BC − AD).

(A16)

Here we have introduced the density ρ the of the cubic NLSE
as to distinguish between the various cases.

In the case that the quartic polynomial, Eq. (2), exhibits
a vanishing discriminant �, multiple roots might emerge. If
one of the roots is a double root, the degree of the polynomial
can be reduced by two, giving rise to a simple parabola cor-
responding to the linear Schrödinger equation. By choosing,
e.g., A/C = σ1,2 we obtain a conic curve(

dλ

dx̃

)2

= e2 (λ − λ1)(λ − λ2) (A17)

= e2λ
2 + e1λ + e0 (A18)

describing the stationary states of the linear Schrödinger
equation, where

e2 ≡ a4

(
A

C
− σ3

)(
A

C
− σ4

)
(BC − AD)2 (A19)

and the density is labeled by λ.

4. The cross ratio

The cross ratio is a conformal invariant. In the mathematics
literature [69], the cross ratio is sometimes also called the an-
harmonic ratio of four colinear or concyclic complex numbers
z1, z2, z3, and z4 and is typically defined as

(z1, z2; z3, z4) = z3 − z1

z3 − z2

z4 − z2

z4 − z1
≡ 
. (A20)

Actually, this definition is not unique as the value will be
unaltered for pairwise interchange of all points. Furthermore,
all other possibilities of partitioning the four points can even-
tually be related to the cross ratio 
 defined in Eq. (A20).

For instance, the solutions of the “W”-shaped graph of
the polynomial P shown in Fig. 1(a) employ a cross ratio or
elliptic modulus given by the relation

k2 ≡ σ4 − σ3

σ4 − σ2

σ2 − σ1

σ3 − σ1
= 
 − 1



. (A21)

Similarly, the solutions of a “M”-shaped graph use the
relation

k′2 = σ3 − σ2

σ4 − σ2

σ4 − σ1

σ3 − σ1
= 1 − k2 = 1



(A22)

often referred to as the complementary elliptic modulus [68].
When employing a Möbius transform with A/C ∈ (σ3, σ4) the
“W”-shaped graph is mapped to a “M”-shaped graph. The
roots get cyclically permuted in this process. More precisely
this map changes the largest root of the original polynomial to
the smallest root of the resulting polynomial thereby assuring
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the equivalency of the two cross ratios presented. In case of
a multiple root of the polynomial P, the cross-ratio employed
in solutions given in terms of Jacobi elliptic functions, will
either correspond to the trigonometric limit where k2 = 0 or
the hyperbolic limit with k2 = 1.

5. Galilean invariance of the NLSE

a. Time-dependent nonlinear Schrödinger equation

Here, we discuss the Galilean covariance of the cubic-
quintic NLSE by showing that any Galilean transformation
leaves the underlying equation of motion invariant. We con-
sider a solution ψ (x, t ) of the time-dependent cubic-quintic
NLSE

i
∂

∂t
ψ (x, t )

=
(

−1

2

∂2

∂x2
+ a3|ψ (x, t )|2 + a4|ψ (x, t )|4

)
ψ (x, t )

(A23)

in the rest frame F described by the coordinates x and t .
Applying a boost with the dimensionless velocity u introduces
the moving frame F ′ with coordinates x′ and t ′ which are
related to the rest frame via

x = x′ + ut ′, (A24)

t = t ′. (A25)

To obtain the wave function ψ ′(x′, t ′) in the boosted frame F ′
we consider the transformation

ψ (x, t ) = ψ ′(x′, t ′) exp

(
iux′ + i

u2

2
t ′
)

(A26)

of the wave function ψ (x, t ) in the rest frame with a phase
containing the boost velocity and the additional kinetic energy
due to the boost in the moving frame F ′.

Next, we will show that the Galilean transformation of the
wave function and coordinates leaves the NLSE in Eq. (A23)
formally unchanged. For this purpose, we consider the trans-
formations of the derivatives in Eq. (A23) which are given by

∂

∂t
= ∂

∂t ′ · ∂t ′

∂t
+ ∂

∂x′ · ∂x′

∂t
= ∂

∂t ′ − u
∂

∂x′ (A27)

and

∂

∂x
= ∂

∂x′
∂x′

∂x
+ ∂

∂t ′
∂t ′

∂x
= ∂

∂x′ . (A28)

By substituting these derivatives into Eq. (A23) and also
inserting the transformation law for the wave function,
Eq. (A26), we obtain the differential equation

i

(
∂

∂t ′ − u
∂

∂x′

)
ψ ′(x′, t ′) exp

(
iux′ + i

u2

2
t ′
)

=
(

−1

2

∂2

∂x′2 + a3|ψ ′(x′, t ′)|2 + a4|ψ ′(x′, t ′)|4
)

× ψ ′(x′, t ′) exp

(
iux′ + i

u2

2
t ′
)

, (A29)

describing the evolution of the boosted wave function
ψ ′(x′, t ′) in the moving frame F ′.

By performing the partial derivatives on both sides of the
equation and factoring out the global phase factor exp(iux′ +
i u2

2 t ′) the differential equation in the moving frame reduces to

i
∂

∂t ′ ψ
′(x′, t ′) =

(
−1

2

∂2

∂x′2 + a3|ψ ′(x′, t ′)|2

+ a4|ψ ′(x′, t ′)|4
)

ψ ′(x′, t ′). (A30)

The fact that Eqs. (A23) and (A30) have the same form proves
the Galilean invariance of the cubic-quintic NLSE.

b. Consequences for stationary solutions

In order to derive the impact of the velocity boost on
stationary solutions, we start with the usual ansatz

ψ (x, t ) = ψ (x, 0) exp (−ia2t ) (A31)

for the time-independent wave function ψ (x, 0) in the rest
frame F with eigenvalue a2 determined by Eq. (1).

Applying the transformation, Eq. (A26), to both the time-
dependent and time-independent wave functions in Eq. (A31)
yields the relation

ψ ′(x′, t ′) = ψ ′(x′, 0) exp

(
−i

(
a2 + u2

2

)
t ′
)

, (A32)

where we have also used the relation t = t ′, Eq. (A25).
Inserting this result into the time-dependent NLSE in

the boosted frame, Eq. (A30) allows us to obtain the time-
independent NLSE in the boosted frame for ψ ′ = ψ ′(x′, 0)(

−1

2

∂2

∂x′2 + a3|ψ ′|2 + a4|ψ ′|4
)

ψ ′ = a′
2ψ

′, (A33)

where

a′
2 ≡ a2 + u2

2
. (A34)

Consequently, the boost to the moving frame adds a velocity-
dependent term to the eigenvalue a′

2 of the stationary solution.
This is just the kinetic energy associated with the Galilean
boost.

In the main text, we show that any two stationary solutions
with the same cross ratio can be converted into each other
using conformal transformations. This fundamental result can
now be extended to traveling wave solutions. We simply take
the dual stationary solutions and perform Galilean boosts to
produce the desired traveling waves.

APPENDIX B: APPLYING THE CONFORMAL DUALITY
TO EXEMPLARY SOLUTIONS

In this Appendix we provide explicit expressions for the
conformal reduction of typical oscillating solutions as shown
in Fig. 1 and of the solitonic solutions shown in Fig. 2. In this
context we also present the involved analytical solutions of
the NLSE.
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a. Oscillating solutions

As a first application of the conformal duality of the NLSE
we show how typical oscillating solutions of the cubic and
the cubic-quintic NLSE are connected via the transforma-
tion, Eq. (A5). For this purpose we consider the real-valued
solution

ρ(x2) = (ρ2 − ρ1) sn2 (κ2x2, k) + ρ1, (B1)

which oscillates between the density values ρ1 and ρ2

corresponding to the roots of a cubic polynomial P(ρ)
with an “N”-shaped graph. Here sn refers to the Ja-
cobi elliptic sine function with κ2 = a3

√
ρ3 − ρ1/2 and

k2 = (ρ2 − ρ1)/(ρ3 − ρ1).
We now demonstrate the conformal duality between this

solution and another solution for a quartic polynomial P(σ ).
By applying the solution of the cubic NLSE, Eq. (B1), to the
transformation Eq. (A5), and choosing A/C = σ1 < 0, to pull
a root from infinity, we obtain the solution

σ (x3) = σ2η − σ1 sn2 (κ3 x3, k)

η − sn2 (κ3 x3, k)
, (B2)

of the cubic-quintic NLSE. Here, η = σ3−σ1
σ3−σ2

> 1 and κ3 =
κ2/(AD − BC) such that the solution given by Eq. (B2) os-
cillates between the densities σ2 and σ3 corresponding to the
roots of a quartic polynomial P(σ ) with a “W”-shaped graph.
Direct integration of the quartic polynomial of the cubic-
quintic NLSE yields exactly the same solution as given by
Eq. (B2) proving the validity of the conformal transformation.

The mapping coefficients of this conformal reduction are
given by

A ≡ σ1

ρ2 − ρ1
, B ≡ −σ2η − σ1

ρ1

ρ2 − ρ1
, (B3)

C ≡ 1

ρ2 − ρ1
, D ≡ η − ρ1

ρ2 − ρ1
. (B4)

The coordinates are related via the linear map x3 = (AD −
BC)x2 + const., where in this example the constant is set to
zero for simplicity.

b. Solitonic solutions

Here, we provide the explicit transformations of the confor-
mal reduction shown in Fig. 2. For the bright soliton solutions
we naturally need a focusing or attractive nonlinearity with
ã3 < 0 while the flat-top soliton likewise requires a focusing
cubic nonlinearity a3 < 0 and a defocusing quintic nonlinear-
ity a4 > 0. The analytical solutions for all orange and green
shaded areas in Fig. 2 given by Eqs. (B8) and (B10), sorted
according to the appearance in the figure from left to right,
are given by

λ(x1) = (λ2 − λ1) sin2 (κ1x1) + λ1, (B5)

λ̃(x̃1) = (λ2 − λ1) sinh2 (κ1x̃1) + λ1, (B6)

ρ(x2) = ρ0
1

1 + cos (2κ2x2)
, (B7)

ρ̃(x̃2) = ρ0
1

1 + cosh (2κ2x̃2)
, (B8)

σ (x3) = σ0η
1

1 + √
1 − η cos (2κ3x3)

, (B9)

σ̃ (x̃3) = σ0η
1

1 + √
1 − η cosh (2κ3x̃3)

, (B10)

where κ1 ≡ √|e2|, ρ0 ≡ 4ã2/ã3, κ2 ≡ √|ã2|, σ0 ≡
−3a3/2a4, κ3 ≡ √|a2|, and η ≡ −8a2a4/3a2

3 < 1. Again
λ refers to the density of the linear Schrödinger equation, ρ

corresponds to the density of the cubic NLSE, and σ gives
the density of the cubic-quintic NLSE.

Now the transformation coefficients A, B,C, D, Eq. (A5),
of the conformal reduction from the cubic-quintic to the cubic
NLSE, connecting the solutions σ (x3) and ρ(x2) or σ̃ (x̃3) and
ρ̃(x̃2), can be determined. For the particular set of solutions
given by Eqs. (B8) and (B10) the phase is independent of
position as they require a root at the origin such that the coeffi-
cient a0 = 0 in Eq. (2). As a consequence, the transformation
coefficient B needs to be zero by construction in order to
conformally relate theses solutions. In addition, this transfor-
mation requires AD = κ2

κ3
> 0 and A/C = σ0(1 + √

1 − η) =
σ4. Ultimately, the transformation coefficients are thus
given by

A ≡
√

κ2

κ3

√
ρ0σ0η√

1 − η
, B ≡ 0, (B11)

C ≡
√

κ2

κ3

√
ρ0

σ0

1

1 + √
1 − η

√
η√

1 − η
,

D ≡
√

κ2

κ3

√√
1 − η

ρ0σ0η
. (B12)

As the roots of the polynomial P and −P are identical the
transformation coefficients for the conformal reduction from
σ (x3) to ρ(x2) (orange shaded areas in Fig. 2) are formally
identical to those required for the reduction from σ̃ (x̃3) to
ρ̃(x̃2) (green shaded areas in Fig. 2). Hence, the coefficients
given by Eqs. (B11) and (B12) apply to both cases.

Finally, in order to connect the solutions of a polyno-
mial P to those of the inverse polynomial −P one can for
instance employ the coefficients A = D = (1 + i)/

√
2, B =

C = 0 which formally do not change the densities according
to Eq. (A5), but instead yield the coordinate transformation
x = ix̃. By transforming back to a real coordinate x̃ the imag-
inary unit is absorbed in the functional dependency of the
density inducing the change from a trigonometric function to
a hyperbolic function. In this way the conformal partnering
of the trigonometric oscillating solution σ (x3) and the resting
droplet solution σ̃ (x̃3) given by Eqs. (B8) and (B10) can be
realized.

APPENDIX C: LIST OF POSSIBLE TUPLES FOR THE
POLYNOMIAL OF THE CUBIC-QUINTIC NONLINEAR

SCHRÖDINGER EQUATION

In this Appendix we give an overview of all possible
polynomials of the cubic-quintic NLSE and how they can be
reduced to those of the cubic NLSE and the linear Schrödinger
equation.
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TABLE I. Overview of all tuples of the cubic and cubic-quintic NLSE as well as the linear Schrödinger equation and their conformal
relations for real transformation coefficients A, B,C, D. The table is organized similar to Fig. 2 and the tuples are grouped by the sign of the
discriminant �. By removing a single or a multiple root through conformally mapping it to infinity the cubic-quintic tuples in most cases can
be mapped to a cubic NLSE tuple (right column) or a linear Schrödinger equation tuple (left column). Note, cubic-quintic tuples with either
� = 0 or � �= 0 are also conformally related if the cross ratio k2 is the same and in general complex coefficients are considered like detailed
in the main part.

Linear Cubic-quintic Cubic Discriminant �

(0,0,0,4) �→ (0,0,0,3) � > 0
(0, 0, 0, 2 + 2C ) �→ (0, 0, 0, 1 + 2C ) � < 0

(0, 0, 0, 4C ) �→ (0, 0, 0, 1 + 2C)
(0,0,0,2) �→ (0,0,1,2) �→ (0,0,1,1)
(0, 0, 0, 2C ) �→ (0, 0, 1, 2C )
(0,0,1,0) �→ (0,0,2,0) � = 0

(0, 0, 2C, 0)
(0,0,0,1) �→ (0,1,0,1) �→ (0,1,0,0)
(0,0,0,0) �→ (1,0,0,0)

In the main part we introduce the tuple notation (r4, r3,
r2, r1), where every entry rm denotes the number of roots
at order m to discuss the roots σ j of the quartic polyno-
mial P classifying the possible solutions of the cubic-quintic
NLSE. In Table I we detail the complete set of tuples
of the cubic-quintic NLSE and the possible conformal re-
ductions to the cubic NLSE and the linear Schrödinger
equation. Note, all mappings preserve the cross ratio k2.
If the discriminant � �= 0 the cross ratio is given by k2 ∈
(0, 1) while for � = 0 the cross ratio is either k2 = 0 or
k2 = 1. When mapping a single or double complex root to
infinity can result in single complex roots without a corre-
sponding complex conjugated root like the following reduc-
tions (0, 0, 0, 2 + 2C ) �→ (0, 0, 0, 1 + 2C ), (0, 0, 1, 2C ) �→
(0, 0, 1C, 1C ) or (0, 0, 1C, 0) �→ (0, 0, 2C, 0).

APPENDIX D: TRANSFORMATION-ENHANCED
CONFORMAL FITTING

In this Appendix we discuss the two methods we use
to fit different synthetic density solutions of the cubic-
quintic-NLSE created by adding Gaussian noise: the standard
approach and the conformal afterburner optimization. In ad-
dition, the results of the example cases displayed in Fig. 3 are
presented in more detail.

1. Method

Our fitting method consists of two parts: (i) the algorithm
that is used to actually perform the fit yielding results for the
parameters of the model function and (ii) the way the initial
conditions for each fit are generated including how the density
distribution is transformed in each epoch of the conformal
fitting. While for the first part we use a standard nonlinear
least-squares convergence criterion to search for the minimum
of the loss function, the second part actually contains the novel
approach that enables our conformal afterburner to improve
the results of the standard fit.

a. Convergence criterion

Independent whether we fit the data in the original space
(standard approach) or in the conformally transformed space

(conformal fit), we utilize the same fitting routine and conver-
gence criterion to obtain values for the free parameters of the
solution of the cubic-quintic-NLSE. For the 1D cubic-quintic-
NLSE studied here nonlinear least-squares fitting has proven
to yield reliable and good results for all possible scenarios.
Hence, the goal in each epoch is to minimize the loss function

L(θ) = log10

(
SSR (θ)

NData

)
, (D1)

where SSR refers to the sum of squared residuals. As usual
the sum of squared residuals is given by

SSR (θ) =
NData∑
i=1

(yi − σ (θ, xi ))
2 (D2)

with (xi, yi ) being the ith of total NData data points from the
data set {(xi, yi )} and σ (θ, xi )) is one of the considered so-
lutions of the cubic-quintic-NLSE with up to five different
parameters θ = (κ, σ1, σ2, σ3, σ4)T evaluated at xi. For each
set of initial conditions, the fitting routine thus searches for
a minimum of the loss function and yields values for θ and
SSR(θ) which can be compared with previous epochs.

For the search algorithm that updates the set of parameters
θ during a single epoch to find optimal values any suitable
solver can be applied in general. We have tested several
possible implementations and found that our method works
independent of the choice of the solver.

b. Standard fitting procedure

In the standard approach we try to find the optimal set
of parameters to a given density distribution in the original
space by varying the initial guesses within a plausible range
using a uniform distribution for the initial fit parameters in
each epoch. Considering different sets of initial conditions
is important as even slight changes in the initial conditions
can lead to quite different convergence results as the loss
function in our case can exhibit a plethora of different minima,
nonsmooth behavior and saddle points.

After each epoch the newly obtained results are compared
with the best results so far and the parameters yielding the
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TABLE II. Comparison of the fitting parameter results of the standard and conformal method with the true values in case of the oscillating
solution as displayed in Fig. 3(a). The loss function value L(θ∗) at the found minimum θ∗ and the coefficient of determination R2 of the fit are
also listed.

κ σ1 σ2 σ3 σ4 k2 L(θ∗) R2

True values 31.21 0.1000 1.950 2.000 4.000 0.9500 −1.60 0.943
Standard fit 33.64 1.762 1.827 3.863 2.423 ×106 0.9690 −1.44 0.917
Conformal fit 31.40 −0.3968 1.937 1.990 3.961 0.9522 −1.61 0.944

smallest loss function are recorded. This procedure is contin-
ued for a total of M standard epochs.

c. Conformal afterburner fitting procedure

In order to verify that the solution found by the standard
fitting approach is indeed optimal or if there exists yet a better
solution, we apply our conformal afterburner fitting approach
after a certain number of standard epochs M. For that purpose
we take the parameter set θ∗ = (κ∗, σ ∗

1 , σ ∗
2 , σ ∗

3 , σ ∗
4 )T with the

smallest loss function value L(θ∗) obtained by the standard
approach as an initial guess for the first afterburner epoch.

However, the conformal fit is not performed with the origi-
nal density distribution, but we first transform the density σ (x)
to the dual space by applying the conformal map defined in
Eq. (6) with randomized coefficients An, Bn,Cn, Dn in each
epoch n. To enable a reliable fitting of the transformed density
and a better comparison of the results in different epochs, we
ensure that the minimal and maximal density values σmin/max

are always mapped to the standard form values σ̃min/max by the
Möbius transform

σ̃min/max = Dnσmin/max − Bn

−Cnσmin/max + An
. (D3)

Here we have the freedom to choose the minimal and max-
imal density values σ̃min/max in the dual space. In both cases
presented in this paper we have chosen them to keep the
same values as in the original problem σmin/max though other
values are generally allowed. This prescription determines
two of the transformation coefficients An, Bn,Cn, Dn while the
remaining two coefficients can be chosen randomly and in our
examples are continuously uniformly distributed in a range of
a to b with a < b indicated by the operator U(a, b). Thus, in
every afterburner epoch n a set of transformation coefficients
An, Bn,Cn, Dn is generated according to the relations

An = U (a, b), (D4)

Bn = U (a, b), (D5)

Cn = −Bn
σmax − σmin

σminσmax (σ̃max − σ̃min)

− An
σmaxσ̃min − σminσ̃max

σminσmax (σ̃max − σ̃min)
, (D6)

Dn = Bn
σmaxσ̃max − σminσ̃min

σminσmax (σ̃max − σ̃min)

+ An
σ̃minσ̃max(σmax − σmin)

σminσmax (σ̃max − σ̃min)
, (D7)

and is applied to map the original experimental density data
{(xi, yi )} to the dual space using Eq. (6). Subsequently, all

eligible model functions σ̃ (θ̃, x̃) are fitted to the conformally
transformed data set {(x̃i, ỹi )}n by minimizing the dual-space
loss function L̃(θ̃) which is defined in the same way as
in the original space, Eq. (D1). Naturally, the optimized
dual-space parameter set θ̃

∗
n is then back-transformed to the

original space with the corresponding transformation coef-
ficients (An, Bn,Cn, Dn). In addition, we evaluate the loss
function L(θ) at these back-transformed values to stay truthful
to the original problem at the end of each afterburner epoch
and to enable a reliable comparison of the fitting results with
the ones obtained from the standard approach.

While in the first afterburner epoch we take the transformed
best result θ̃ from the standard reference approach as an initial
guess, in all subsequent epochs we will update the initial
guess whenever there is a further descent in the original loss
function L(θ) due to the conformal afterburner. Therefore,
we stick with the original result of the reference method in
case the afterburner does not lead to an improvement. These
iterative optimization of the initial guess further enhances
the conformal fitting method. However, when applying the
same iterative optimization of initial guesses to the standard
method one will most likely get stuck in the same minimum
or descend marginally further into the very same minimum
within precision bounds because the randomization of the loss
function landscape is missing in the standard method.

2. Example fitting results

In this section, we present the results of the fitting param-
eters obtained by the standard approach and the conformal
afterburner method compared to the true unbiased values as
presented in Fig. 3.

a. Oscillating solution

For the example of an oscillating solution shown in Fig. 3
a we have chosen the parameters displayed in the first row
of Table II to create synthetic data with the density varying
between σ3 and σ4. To resemble experimental data we added

TABLE III. Comparison of the polynomial coefficients for the
noisy oscillating solution. The coefficients were derived from the true
values and the results of the standard and conformal fitting method
displayed in Table II by using Vieta’s formulas.

a4/103 a3/103 a2/104 a1/104 a0/103

True values −1.00 8.05 −2.05 1.76 −1.56
Standard fit −8.89 ×10−7 2.15 −1.61 3.68 −26.8
Conformal fit 0.82 6.12 −1.33 0.62 −4.95
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TABLE IV. Comparison of the fitting parameter results of the
standard and conformal method with the true values in case of the
dark soliton solution as shown in Fig. 3(b). The loss function value
L(θ∗) at the found minimum θ∗ and the coefficient of determination
R2 of the fit are also listed.

κ σ1 σ2 σ34 k2 L(θ∗) R2

True values 0.3163 1.99999 2 4 1 −1.46 0.962
Standard fit 0.6948 1.787 1.787 3.9067 1 −1.16 0.926
Conformal fit 0.2776 1.954 1.954 4.027 1 −1.47 0.963

11% of the density amplitude as Gaussian noise for each
data point. As shown in Table III the underlying (0, 0, 0, 4)
polynomial has a negative leading coefficient a4.

In this example the standard fitting approach gets stuck as
it finds the density corresponding to a (0, 0, 0, 4) polynomial
with positive leading coefficient to be optimal, see Table II.
During the fit the value of the fourth root σ4 is increased
further and further by the solver until the desired tolerance
is met. Ultimately there is no way for the solver to transition
to the true polynomial employing the standard method. This
effect is observed for all tested random initial conditions.

This fundamental problem is easily resolved by the con-
formal afterburner which randomly rearranges the roots but
keeps the cross ratio k2 constant. Since the range between σ3

and σ4 can get very large due to the results from the standard

1 2 3 σ

P (σ)

true polynomial
standard fit parameters
conformal fit parameters

FIG. 4. Comparison of the quartic polynomials corresponding
to the NLSE parameter estimations for the case of an oscillating
solution. The coefficients are as found in Table III. The solid black
curve corresponds to the true values of the polynomial which was
used to create noisy empirical data in the first place. The results of a
conventional least-squares minimization with bounded randomized
initial guesses yields the parameter estimate corresponding to the
blue dashed curve. The conformal afterburner optimizes the result
of the standard method and gives a more robust parameter estimate
resulting in the red dotted curve, much closer to the true polynomial.
The light shaded gray, red, and blue areas illustrate the considered
solution between two neighboring roots of the polynomial.

TABLE V. Comparison of the associated polynomial coefficients
for the noisy dark soliton solution. The coefficients were derived
from the true values and the parameter estimates of the standard and
conformal method, see Table V, by using Vieta’s formulas.

a4 a3 a2 a1 a0

True values 0.10 −1.20 5.20 −9.60 6.40
Standard fit 0.43 −4.89 19.9 −34.2 20.9
Conformal fit 0.072 −0.86 3.69 −6.75 4.44

method, the ratio of random transformation coefficients A/C
will most likely fall into this interval even when considering
only very few afterburner epochs. As detailed in the main part,
the conformal transformation maps the point A/C to infinity
and everything right of this point to the left of σ1 changing the
labeling of the roots in the dual space. This effective cyclic
permutation of the roots is due to the protectively extended
real density line of the conformal mapping often also referred
to as compactification of the real line. Therefore, σ4 is mapped
to σ̃1 + O(1) making the fitting problem more accessible for
the solver by changing the spacing, the order of the roots and
the density model.

As a result, the conformal afterburner optimization con-
verges to a solution very close to the true un-noisy parameters
as shown in Table II. Consequently, the physical parameters
can be estimated much more accurately with the conformal

2 3 4 σ

P (σ)

true polynomial
standard fit parameters
conformal fit parameters

FIG. 5. Comparison of the quartic polynomials corresponding
to the NLSE parameter estimations for the case of an dark soliton
solution. The coefficients are as found in Table V. The solid black
curve corresponds to the true values of the polynomial which served
as a model to create noisy empirical data in the first place. The
conventional least-squares minimization with bounded randomized
initial guesses results in a parameter estimate corresponding to the
blue dashed curve. The conformal afterburner optimizes the result
of the conventional method and provides a more robust parameter
estimate as can be seen from the red dotted curve. The light shaded
gray, red, and blue areas illustrate the considered solution between
two neighboring roots of the polynomial.
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fitting compared with the standard approach as illustrated
by the comparison of the coefficients of the corresponding
polynomial shown in Table III which are obtained by applying
Vieta’s formulas to the found fitting parameters. In Fig. 4 the
resulting polynomials, Eq. (3), are displayed highlighting the
difference between the standard approach and the conformal
afterburner in comparison with the true values.

b. Dark soliton solution

As an example for a solitonic solution we choose the anti-
flat-top dark soliton displayed in Fig. 3 which is determined
by a (0, 0, 1, 2) polynomial with a positive leading coefficient
a4. It features a minimum density given by σ2 and a maximum
density of σ34. The synthetic data is created by adding 8% of
the density amplitude as Gaussian noise for each data point.

As can be seen from Table IV the standard fit gets stuck
in a local minima, see in Fig. 3(d), and fails to find the roots
properly. The conformal method notably optimizes the result
of the standard fit finding an estimate much closer to the true
values. The corresponding coefficients, Table V, of the quartic

polynomials are visualized in Fig. 5 and are calculated from
the fitting parameters with Vieta’s formulas.

c. Implementation specifics

Since the fitting problem is noisy and highly nonlinear
we use the Nelder-Mead implementation of the ”scipy” min-
imizer. Every epoch n here consists of at most 1000 internal
solver iterations if the prescribed tolerance is not met before.
Gradient-based solvers like the limited memory Broyden-
Fletcher-Goldfarb-Shanno bounded algorithm does not work
well in this case even when the analytical formulas for the gra-
dients of the loss function ∇θL(θ) are provided to the routine.
This effect is due to the various local minima, non smoothness
and saddle points of the loss function. For example, there
always will be a plateau for the derivative of the density with
respect to one of the roots as can be seen, e.g., from Eq. (B2).
Nevertheless, we have confirmed that the conformal fitting
approach works independent of the specific implementation
used for the solver. Even for solvers with a relatively poor
performance in the original space we observed huge improve-
ments when fitting in the conformally transformed space.
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