

on the basis of a decision

Overview of EnMAP processor and calibration activities

Miguel Pato^{1,*}, Peter Schwind¹, David Marshall Ingram¹, Martin Bachmann², Birgit Gerasch¹ **EnMAP Ground Segment / PCV Team**

2nd EnMAP User Workshop Munich, 02.04.2025

¹ German Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany ² German Aerospace Center (DLR), German Remote Sensing Data Center, Oberpfaffenhofen, Germany

* Miguel.FigueiredoVazPato@dlr.de

EnMAP mission: requirements and fact sheet

https://www.enmap.org/

EnMAP specification	VNIR	SWIR
Spectral range	420 – 1000 nm	900 – 2445 nm
Number of spectral bands	91	133
Spectral sampling distance	6.5 nm	10 nm
Spectral full width at half maximum	6 – 11 nm	7 – 11 nm
Spectral accuracy	0.5 nm	1 nm
Spectral stability	0.5 nm	
Spectral smile	<0.2 pix	
Signal-to-noise ratio	>500 (at 495 nm)	>150 (at 2200 nm)
Radiometric accuracy	<5%	
Radiometric stability	<2.5%	
Geometric accuracy	1 pix (30 m) with GCPs, otherwise 100 m	
VNIR/SWIR co-registration	0.2 pix	
L2A AOT, WV, BOA (land, water)	see Storch et al 2023	
Orbit type, altitude and inclination	Sun-synchronous, 653 km, 97.96°	
Orbit period and repeat cycle	1.6 h, 398 revolutions in 27 days	
Local time descending node	11:00 h ± 18 min	
Revisit time	4 days (±30° off-nadir tilt) 21 days (±5° off-nadir tilt)	
Ground sampling distance	30 m (at nadir; sea level)	
Swath width	30 km (2.63° across track)	
Swath length	1000 km / orbit; 5000 km / day	
Product size	30 km x 30 km	

In-orbit calibration type	Mechanism	Frequency
Relative radiometric (lamp)	white spectralon	1x / week
Absolute radiometric (Sun)	Sun diffuser	1x / 2 months
Spectral	doped spectralon	1x / fortnight
Linearity	focal plane LEDs	1x / month
Deep space	dark sky	1x / month
Dark frames	closed shutter	before/after imaging

EnMAP processing and calibration

- In-flight calibration to update calibration tables
- Complex processing chain under continuous improvement to generate EnMAP products:
 - L0: raw data (internal only)
 - L1B: top-of-atmosphere radiances
 - L1C: orthorectified top-of-atmosphere radiances
 - L2A: orthorectified bottom-of-atmosphere reflectances (L2A land and L2A water)
- User products annotated with quality control and instrument monitoring information

EnMAP processing and calibration

Processor change log: https://www.enmap.org/data/doc/EnMAP_processor_changelog.pdf

- Overview of most important changes since launch
- Important go-to resource for users
- You can always reprocess your old data to benefit from improvements

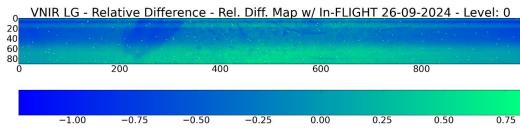
Selected highlights:

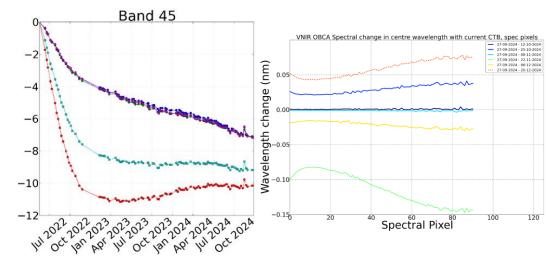
Calibration: spectral and radiometric performance

Processing and data quality: geometry, atmospheric correction

Instrument monitoring:
Moon observations

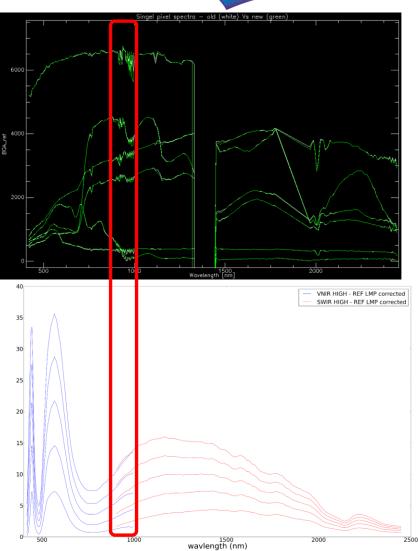
EnMAP processor change log


EnMAP processor version	Date	Description
01.00.01	08.04.2022	First processor version at launch.
01.01.00	11.07.2022	Fixed matching for datatakes covering multiple UTM
		zones.
		Fixed processing of scenes in antimeridian.
		Fixed border effect due to adjacency correction in
		L2A land products.
		Fixed bands filled with NaN in some L2A products.
01.01.01	10.08.2022	Removed L2A quality rating from L0 overall quality rating.
01.01.09	30.09.2022	Activated dehaze functionality in L2A processing.
01.01.11	24.11.2022	Fixed units of L2A water products.
01.02.00	28.03.2023	Improved co-registration accuracy.
		Implemented interpolation of VNIR radiometric and RNU coefficients to reduce effect of VNIR degradation.
		Implemented across-track destriping of L1B products.
		Adapted spectral regions for interpolation in L2A processing.
		Flag scenes with sun elevation angle of 0° or below
		(i.e., night scenes) as low quality.
01.03.00	02.05.2023	Improved geolocation accuracy in along-track direction.
		Prepared quality control configuration for update of EnMAP SWIR bands (active since 05.07.2023).
01.03.03	25.07.2023	Filled gaps in DEM over Azerbaijan and Armenia.
		Switched from MODIS to Copernicus for ozone and
		land surface temperature values used in L2A.
		Fixed very high reflectances over snow in L2A products.
01.04.00	25.09.2023	Re-activated adjacency correction over water in L2A water products (unintentionally de-activated in
01.04.01	10.01.2024	V01.01.11).
01.04.01	10.01.2024	Fixed peaks in snow spectra at 590 nm and 647 nm in L2A products.
01.04.02	15.03.2024	Fixed spectral noise in water spectra below 500 nm in L2A water products.
01.05.00	09.09.2024	Writing new metadata entries viewingAzimuthAngle and viewingZenithAngle.
		Fixed adjacency correction around clouds in L2A products.
		Implemented SWIR dark signal correction at L1B level
		(active since 18.11.2024).
01.05.02	03.12.2024	Taking the water vapor of adjacent tiles into account
		for the selection of radiative transfer LUTs. This
		should result in less inconsistencies between
		neighboring L2A tiles from the same datatake.


Spectral and radiometric performance

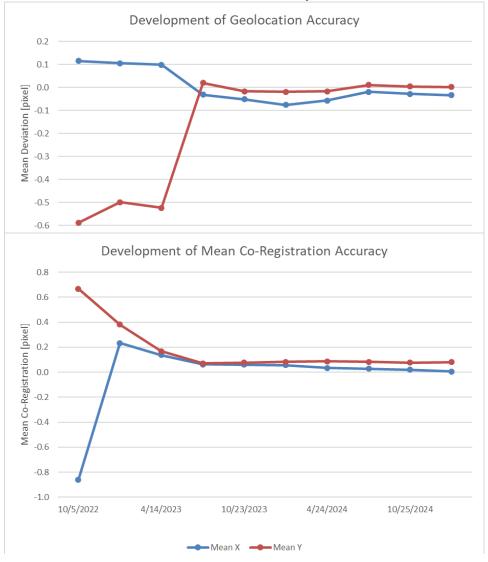
Highlight: Continuous monitoring of sensor performance with regular in-orbit calibration

- Fast VNIR sensor degradation during first year slowed down by Mar 2023 but with differences across focal plane
- SWIR sensor very stable since launch
- Good spectral stability (<0.5 nm) for both VNIR and SWIR, last spectral update from Feb 2023
- Dark signal remarkably stable since launch
- VNIR/SWIR mismatch in overlapping spectral region under investigation (see next slide)


VNIR/SWIR mismatch in overlapping region

Highlight: Intercomparison between VNIR and SWIR to help fix calibration issues

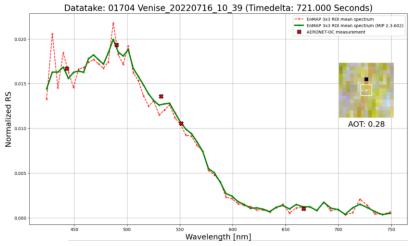
- Systematic differences between VNIR and SWIR radiances create zig-zag pattern in Earth L1C/L2A spectra at 900–1000 nm
- Effect also present in calibration data, but more obvious in Earth due to water absorption feature and interleaved VNIR/SWIR bands
- Root cause likely related to VNIR linearity at low signal levels
- In-depth analysis using Earth, Moon and in-orbit calibration data in progress with the final goal of developing correction



Geometrical performance

Highlight: Excellent geolocation and co-registration accuracies

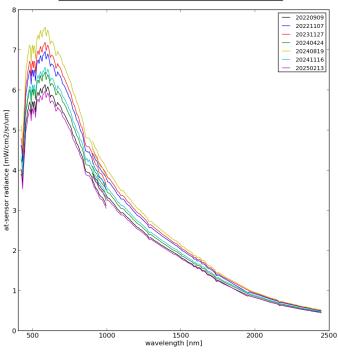
- Detailed analysis led to fix of attitude processing (Aug 2022)
- Boresight calibration (Sep 2022) and geometric calibrations (Nov 2022, Feb 2023) performed
- Bug fixes in processor versions V01.02.00 (Mar 2023) and V01.03.01 (May 2023)
- Excellent geometrical performance since May 2023:
 - Geolocation: RMSE ~ 0.4–0.5 px (req: 1 px)
 - Co-registration: RMSE ~ 0.1 px (req: 0.2 px)
- Reprocessing of past L0 products finished, users should make sure that "archivedVersion" >= V01.03.01 to get best possible geometrical performance



Atmospheric correction

Highlight: Fixing of small inconsistencies in L2A products reported by users

- Fixed high reflectance in blue (processor version V01.03.03, Jul 2023) and features at 590 nm and 647 nm (V01.04.01, Jan 2024) in snow spectra
- Re-activated adjacency correction (V01.04.00, Sep 2023) and fixed spectral noise below 500 nm (V01.04.02, Mar 2024) in water spectra
- Fixed adjacency correction artifacts around clouds (V01.05.00, Sep 2024) and reflectance differences between tiles (V01.05.02, Dec 2024) in land spectra
- Users may simply re-order their products from the catalog to benefit from improvements

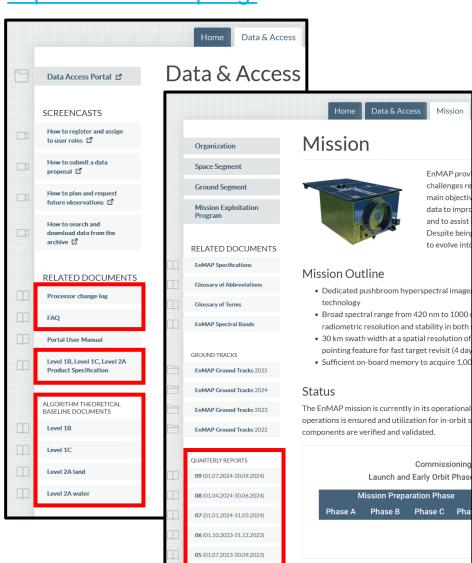

Moon observations

Highlight: Regular Moon observations for calibration purposes

- Seven Moon observations acquired since launch and commitment to perform frequent observations
- Moon data used for analysis of straylight, dark signal and VNIR/SWIR mismatch
- Mid-term goal to use Moon data for alternative radiometric validation and Sun diffuser monitoring with help of lunar model experts
- Moon is complementary calibration target useful for monitoring and provides back-up to Sun calibrations if ever needed for a mission extension

Outlook: 3 years in space

- After 3 years in space, EnMAP passed mid nominal life and enters mature phase with deep knowledge of instrument performance.
- EnMAP data products delivered to users meet all requirements and in some cases exceed expectations.
- Continuous improvements and user feedback ensure high quality of EnMAP data.
- All in-orbit calibration facilities and both VNIR and SWIR instruments working nominally and stable.
- We expect to operate EnMAP for many years and count with your user feedback!

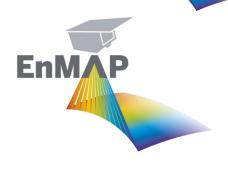

A word to EnMAP users

EnMAP

https://www.enmap.org/

- Lots of information can be found directly on the website:
 - Processor change log
 - Frequently Asked Questions (FAQ)
 - Product specification
 - ATBDs
 - Mission Quarterly Reports (MQR)
- Your feedback on EnMAP data is important and welcome.
- Thank you for helping improve EnMAP products!

Acknowledgements



https://www.enmap.org/

This research was supported by the DLR Space Agency with funds of the German Federal Ministry of Economic Affairs and Climate Action on the basis of a decision by the German Bundestag (50 EE 0850, 50 EE 1923 and 50 EE 2108).

Useful links:

- Tasking orders and catalog browsing: https://planning.enmap.org/
- Mission quarterly reports: https://www.enmap.org/mission/
- ICDs, ATBDs, FAQ, change log:
 https://www.enmap.org/data_access/

EnMP

Home Data & Access Mission Science & Applications Tools Events & Education