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Abstract 11 

Efficiently managing complex disasters relies on having a comprehensive understanding of 12 

the situation at hand. Immediately after a disaster strikes, it is crucial to quickly identify the 13 

most impacted areas to guide rapid response efforts and prioritise resource allocation 14 

effectively. Utilising early-stage estimations of impacted regions, derived from indicators such 15 

as building distribution, hazard zones or geo-social media reports, can aid in planning data 16 

collection initiatives to enhance situational awareness. Consequently, there is a need to 17 

improve the availability and accuracy of early-stage impact indicators and to integrate them 18 

into a coherent spatial and temporal analysis framework that enables identification of disaster-19 

affected areas. In this study, a method is proposed that is tailored to quickly identifying disaster 20 

hotspots, especially in situations where detailed damage assessments or very high-resolution 21 

satellite images are not readily available. The approach leverages the H3 discrete global grid 22 

system and uses a log-linear pooling method coupled with an unsupervised hyperparameter 23 

optimization routine to fuse information on flood hazard extracted from medium-resolution 24 

satellite images with disaster-related data from Twitter and freely available supplementary 25 

geospatial data on exposed assets. The performance of the method is evaluated by comparing 26 

its outcomes against detailed damage assessments conducted during five real-world flood 27 

disasters. The results indicate that it is possible to determine the areas most affected by a 28 

flood solely based on readily available proxy information. Code and test data are available 29 

from: https://github.com/MWieland/h3h 30 
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1 Introduction 34 

Effective and efficient management of complex disaster situations relies heavily on 35 

comprehensive situational awareness. The lessons learned from recent disasters such as the 36 

2021 floods in Western Germany underscore the paramount importance of timely 37 

geoinformation for safeguarding communities (Holzheimer et al. 2022). In the response phase, 38 

it is essential to quickly identify the most affected areas in order to guide rapid response 39 

actions and to decide where to focus limited resources. Commonly, this is an iterative process 40 

with continuous updates whenever new or more accurate information becomes available. 41 

While initial estimates of disaster impacts may be based on fuzzy and incomplete information, 42 

they are still relevant for providing an initial situational picture before more detailed and 43 

spatially refined damage assessments become available. Early-stage estimates of most 44 

severely affected areas based on indirect proxy information (e.g., population distribution, 45 

hazard zones, etc.) can be used to plan data acquisition campaigns to improve the situational 46 

awareness and hence the general understanding of where to focus further efforts in a targeted 47 

and efficient manner.  48 

A plethora of studies exists that target damage assessment from multi-temporal remote 49 

sensing images (Adriano et al. 2021; Zheng et al. 2021; Wiguna et al. 2024). These 50 

approaches provide detailed per-building assessments and are almost exclusively based on 51 

very high-resolution aerial or satellite images (with ground sampling distance <=1m) that have 52 

been acquired on-demand over specifically targeted areas (Voigt et al. 2016). Similarly, the 53 

rapid damage mapping protocols employed by the Copernicus Emergency Mapping Service 54 

(EMS) (Ajmar et al. 2017) are built on the premise that a preliminary selection of the most 55 

impacted regions has already been conducted before initiating the rapid mapping activation. 56 

However, particularly in the initial phase of a disaster, this assumption is often improbable, 57 

leading to delays between the onset of a disaster and the availability of map products. This 58 

raises the fundamental question: How can the most likely affected areas be detected before 59 

initiating on-demand satellite data acquisitions and planning aerial or in-situ surveys? 60 

A viable solution is to analyse remote sensing images from systematically acquiring satellites 61 

such as Landsat, Sentinel-1 or Sentinel-2 (with ground sampling distance between 10 and 30 62 

m)  (Aimaiti et al. 2022). Putri et al. (2022) conclude that damage grading can only be 63 

accurately achieved using higher spatial resolution images. Hence, studies based on medium-64 

resolution imagery commonly focus on the large-scale delineation of the hazard extent (Chini 65 

et al. 2021; Martinis et al. 2022; Krullikowski et al. 2023). Although high accuracies are being 66 

reported for flood hazard delineation and systematically acquiring satellite missions enable 67 

timely product delivery, solely focusing on hazard assessment for prioritisation is inadequate. 68 

In order to identify areas that require rapid response actions, one must also consider the 69 

elements at risk, such as buildings and population. In addition, not all disaster impacts can 70 

directly be observed from the top-view of remote sensing data.  71 

Geo-social media data, i.e., social media posts containing a geographic reference such as a 72 

GNSS position or a location mention, can complement this by providing ground-level 73 

information. This can involve both text and image content, which can offer information about 74 

the start, course and aftermath of an event. A major advantage of the data is its high temporal 75 

resolution, which is characterised by a constant data stream and its near real-time availability 76 
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(Fohringer et al. 2015). Most of the research focuses on the automatic extraction of topics 77 

from social media posts. Traditionally, keyword-based methods were employed for this 78 

purpose. Later, strategies based on supervised classification or unsupervised topic modelling 79 

were proposed. For the latter, Latent Dirichlet Allocation (LDA) (Zhou and Chen 2014; Resch 80 

et al. 2018; Havas and Resch 2021) was often used. With the recent surge of deep-learning 81 

methods, more complex methods have become more frequent. In this context, Convolutional 82 

Neural Networks (CNN) (Huang et al. 2020), Bidirectional Encoder Representations from 83 

Transformers (BERT) (Adwaith et al. 2022), and Graph Neural Networks (GNN) (Papadimos 84 

et al. 2023) have become popular. Classification tasks generally range from simple binary 85 

categorisation  (Hanny et al. 2024) to more complex cases, such as relevance classification 86 

of textual content (Powers et al. 2023; Blomeier et al. 2024). While there is a clear focus on 87 

textual data, there is also a considerable amount of research on automated image analysis 88 

from social media, also in the disaster management context (Barz et al. 2021; Kamoji and 89 

Kalla 2023). However, the structural and content-related diversity of the data still poses 90 

methodological challenges. In the case of disaster management, a potential problem is data 91 

scarcity in affected areas (Guo et al. 2023). 92 

The fusion of multiple modalities from remote sensing, social media and other geodata is still 93 

a largely unsolved research problem. Havas et al. (2017) propose a conceptual approach 94 

towards leveraging information based on remote sensing, geo-social media and 95 

crowdsourcing to support disaster management in near real time. A central research question 96 

in this context is how information layers with different semantic meaningfulness, spatial 97 

resolutions and temporal delays can be merged (Li et al. 2017). While several studies fuse 98 

multi-modal data to improve landcover classifications (Cao et al. 2020) or flood hazard 99 

delineation (Rosser et al. 2017; Huang et al. 2018), only few studies aim at identifying disaster 100 

impacts.  (Florath et al. 2024) combine Twitter (now officially X) data with hurricane trajectories 101 

in an Extremely Randomized Tree regression approach to estimate the impact areas of two 102 

hurricanes. Wang et al. (2018) propose an information fusion approach from remote sensing 103 

and social media for the identification of very large floods. For this, they homogenise their data 104 

using the Least effort and Maximum Entropy principle and test their methodology on the 2013 105 

Boulder flood. Liu et al. (2021) propose a method called geographic optimal transport to align 106 

spatial representations of remote sensing-derived indices and keyword-filtered Twitter data. 107 

Yang et al. (2022) superimpose SAR imagery with posts from Sina Weibo to identify disaster 108 

affected areas.  109 

Geostatistical methods, such as composite indicators, have been used to fuse geospatial 110 

information layers, and particularly to generate proxies for risk estimation at regional and 111 

global scales (Nardo et al. 2005; Nadim et al. 2006; Peduzzi et al. 2009). Pittore 2015 extends 112 

the concept of composite indicators and introduces focus maps as a means of prioritising data 113 

collection for efficient seismic risk assessment. Focus maps aim to implement a joint density 114 

of sampling probability for information collection that is conditionally dependent on the 115 

indicators themselves. The concept is based on a probability pooling of normalised and 116 

weighted input indicators. Also, supervised machine learning approaches (Snidaro et al. 2015; 117 

Poria et al. 2017; Avgerinakis et al. 2018) and methods based on Bayesian networks (Muesing 118 

et al. 2019) have been proposed in this context. Supervised machine learning methods are, 119 

however, constrained to often limited availability of training data and tend to lack transparency, 120 

which hampers their generalisation ability and application in disaster management. 121 
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Consequently, there is a need to enhance the availability and quality of early-stage impact 122 

proxy information layers and their integration into a spatially and temporally consistent 123 

framework that enables the rapid identification of areas that are most affected by a disaster. 124 

The aim of this study is to cover this need and propose an unsupervised method to identify 125 

disaster hotspots that is specifically targeted towards situations where detailed damage 126 

assessments and on-demand very high-resolution satellite or aerial images are not (yet) 127 

available. The work centres around the following research questions (RQ): 128 

RQ1: Is it possible to determine the areas most affected by a flood solely based on readily 129 

available proxy information to guide on-demand satellite data acquisitions, aerial or in-situ 130 

survey campaigns? 131 

RQ2: Can flood-related information layers with different semantic meaningfulness, spatial 132 

resolutions and temporal delays be fused in a spatially and temporally consistent framework? 133 

RQ3: What is the contribution of different proxy information layers from remote sensing, social 134 

media and other geodata to the identification of flood hotspots? 135 

The proposed method fuses information about flood hazard derived from systematically 136 

acquired medium-resolution Sentinel-1 (radar) and Sentinel-2 (multi-spectral) satellite images 137 

with disaster-relevant, georeferenced posts from Twitter and freely available ancillary geodata 138 

about exposed assets. The concept of focus maps (Pittore 2015) is combined with the H3 grid 139 

system (Sahr 2011) for a spatially explicit multi-scale information fusion. The performance of 140 

the method is evaluated against detailed damage assessments from rapid mapping activations 141 

of diverse real-world flood disasters. Code and test data are published openly and can be 142 

accessed from the following source: https://github.com/MWieland/h3h 143 

2 Study areas and data 144 

The study areas were globally sampled and covered a large variety of land-cover classes and 145 

languages (Figure 1). For five distinct flood disasters, Twitter data (Section 2.1), flood maps 146 

from remote sensing imagery (Section 2.2) and crowd-sourced building locations (Section 2.3) 147 

were collected. For subsets of the study areas, per-building damage data from Copernicus 148 

EMS and an openly available damage detection benchmark dataset have been acquired 149 

(Section 2.4). Table 1 provides an overview of data availability and disaster extent per study 150 

area. While the selection of study areas was generally limited by the availability of high-quality 151 

damage data (for evaluation purposes), the aim was to test the global applicability of the 152 

methods under varying environmental, cultural and geographic conditions.  153 

USA, August 2017: On 25 August 2017, hurricane Harvey made landfall on the coast of 154 

Texas. Substantial rainfall resulted in widespread flooding across south-eastern Texas, 155 

affecting regions such as Fort Bend, Brazoria, Galveston and Harris County along with 156 

extensive areas of Houston. The Copernicus EMS (EMSR229) was activated on 15 March 157 

2019 for selected areas in the greater Houston area. Beyond rapid mapping efforts, extensive 158 

damage mapping has been conducted as part of compiling the xBD remote sensing 159 

benchmark dataset (Gupta et al. 2019). 160 

https://github.com/MWieland/h3h
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Mozambique, March 2019: During the night of 14 March, tropical cyclone Idai made landfall 161 

near Beira, Mozambique causing major infrastructural damages as a result of the combined 162 

effects of heavy rainfall, strong winds and storm surge. Following the cyclone, a significant 163 

humanitarian crisis emerged, demanding urgent assistance for hundreds of thousands of 164 

people in Mozambique and Zimbabwe. The Copernicus EMS (EMSR348) was activated on 165 

15 March 2019 to produce damage maps for the most severely impacted areas in and around 166 

the city of Beira. 167 

168 
Figure 1: Overview of the location of the study areas with dates of respective flood disasters 169 

as well as distribution of predominant land-cover and languages. For subsets of the study 170 

areas per-building damage data is available for evaluation (red bounding boxes). 171 

Mexico, November 2020: During October and November 2020, a sequence of cold fronts 172 

accompanied by two cyclones led to significant flooding in Chiapas, Tabasco, and Veracruz, 173 

Mexico. These events submerged vast areas, impacting approximately 800,000 people, 174 

damaging more than 200,000 houses and flooding thousands of hectares of farmland. The 175 

Copernicus EMS (EMSR479) was activated on 8 November 2020 to produce damage maps 176 

for selected areas in Villahermosa. 177 

Germany, July 2021: From 14 to 15 July 2021, torrential rainfall caused severe flooding in 178 

the German states of North Rhine-Westphalia and Rhineland-Palatinate. Particularly affected 179 

was the Ahrweiler district in Rhineland-Palatinate, where the Ahr river surged, devastating 180 

numerous structures and claiming more than 110 lives. In response to this, emergency 181 
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mapping was conducted jointly by DLR’s Centre for Satellite-based Crisis Information (ZKI) 182 

and the Copernicus EMS (EMSR517). 183 

Pakistan, September 2022: From June to October 2022, heavier than usual monsoon rains 184 

and melting glaciers due to a severe heat wave caused some of the most severe floods in 185 

Pakistan’s recent history. The Copernicus EMS (EMSR631) was activated on 10 September 186 

2022 to produce damage maps for selected areas in Sindh province. The area of interest 187 

centres around the most affected Sindh and Balochistan provinces. 188 

Table 1: Data availability per study area. 189 

Study area Date   

Mapping 

activation 

Coverage 
km² 

Damage 
Mapped 

buildings 

Social media 

Relevant tweets 

Remote sensing 

Flooded km² 

Buildings 

Total 

USA 2017-08-25 6,477 37,373 12,571 134 1,714,895 

Mozambique 2019-03-15 5,820 17,019 49 825 236,825 

Mexico 2020-11-08 40,045 11,706 2,434 214 2,435,987 

Germany 2021-07-15 5,130 7,721 548 35 569,314 

Pakistan 2022-09-10 183,000 9,480 2,800 20,584 11,772,478 

2.1 Geo-social media 190 

The social media platform Twitter provides georeferenced data via various Application 191 

Programming Interface (API) endpoints. Following the approach of Havas et al. (2021), Tweets 192 

were retrieved via the REST and streaming API. In a first step, this data was filtered based on 193 

the bounding box of the respective area of interest (Figure 1) and a predefined time frame. 194 

Table 2 shows an overview of the filtering criteria and data. The important attributes for the 195 

study provided by the APIs were the date, the text and the georeference of each Tweet. The 196 

latter can be represented as a point or as the bounding box of a “place”, which is a location 197 

that the user assigned purposefully. 198 

Table 2: Overview of acquired Twitter data. 199 

Study area Date   

Mapping 

activation 

Date range 
Time-series (data acquisition) 

Tweets                  

Total 

Disaster-related Tweets 

Total 

USA 2017-08-25 2017-08-01 - 2017-09-14 160,975 12,571 

Mozambique 2019-03-15 2019-03-02 - 2019-03-31 95 49 

Mexico 2020-11-08 2020-10-25 - 2020-11-29 48,604 2,434 

Germany 2021-07-15 2021-07-01 - 2021-07-31 11,177 548 

Pakistan 2022-09-10 2022-09-03 - 2022-09-16 33,752 2,800 

2.2 Remote sensing 200 

With the launch of Sentinel-1 (April 2014 and April 2016) and Sentinel-2 (June 2015 and March 201 

2017) satellites, comprehensive monitoring of surface water dynamics became feasible on a 202 

large scale, offering high spatial resolution (approximately 10 to 20 m ground sampling 203 

distance), frequent revisits (approximately every 2 to 6 days depending on location), and wide 204 
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swath coverage (exceeding 250 km). Sentinel-1 satellites are equipped with a synthetic 205 

aperture radar (SAR) C-band sensor that allows them to penetrate through clouds and image 206 

day and night. Sentinel-2 satellites carry a multispectral instrument that captures data across 207 

13 spectral bands, spanning visible, near-infrared, and short-wave infrared ranges. In this 208 

study, data from both Sentinel-1 and Sentinel-2 satellites was used to delineate surface water 209 

bodies and to differentiate between temporary flooded areas and permanent water bodies. 210 

For each flood, the satellite images that were closest to the date of the respective rapid 211 

mapping activation were acquired and used as basis to outline the maximum observed water 212 

extent. A time-series of satellite images acquired over a two-year period prior to the disaster 213 

date was used to identify permanent water bodies under consideration of seasonal variations. 214 

Table 3 provides an overview of the satellite images used for each study area. 215 

Table 3: Overview of acquired remote sensing data. 216 

Study area Date 

Mapping 

activation 

Date    

Satellite image 

(flood) 

Date range                    

Time-series (permanent water) 

Sentinel-1 

Total number of 

satellite images 

Sentinel-2 

Total number of 

satellite images 

USA 2017-08-25 2017-08-30  2015-01-01 - 2016-12-31 364 518 

Mozambique 2019-03-15 2019-03-19 2017-01-01 - 2018-12-31 339 535 

Mexico 2020-11-08 2020-11-08 2018-01-01 - 2019-12-31 387 594 

Germany 2021-07-15 2021-07-15 2019-01-01 - 2020-12-31 375 601 

Pakistan 2022-09-10 2022-09-11 2020-01-01 - 2021-12-31 1362 4681 

2.3 Crowd-sourcing and open geodata 217 

Crowd-sourced datasets like OpenStreetMap (OSM) (OpenStreetMap 2024) can provide 218 

invaluable high-quality information about location and characteristics of exposed buildings and 219 

infrastructure worldwide. However, large variations in completeness and quality of crowd-220 

sourced datasets across geographic regions often hamper their usability for analyses that 221 

require globally consistent data quality and completeness (Barron et al. 2014; Herfort et al. 222 

2023). Therefore, building footprints from OSM were extended with Microsoft’s Building 223 

Footprints (Microsoft building footprints 2024) and Google’s Open Buildings (Google open 224 

buildings 2024) datasets on a case-by-case basis for each study area. After thorough visual 225 

quality and completeness checks between building footprints and reference satellite imagery 226 

prior to the respective flood disaster, OSM data was extended with Google’s Open Buildings 227 

for the study areas in Pakistan and Mexico. For the study area in the USA, OSM data was 228 

extended with Microsoft’s Building Footprints. The study areas in Germany and Mozambique 229 

were already completely covered by OSM. To combine different datasets, a fuzzy location 230 

matching criterion was applied on the centroids of the OSM building geometries. All buildings 231 

of the supplementary dataset whose centroid fell outside of a 10 m buffer to the OSM buildings 232 

were selected. An overview of the acquired buildings per study area is provided in Table 1. 233 

2.4 Per-building damage data 234 

Building damage mapping by means of in-situ surveys or visual interpretation of very high-235 

resolution optical remote sensing data is a common procedure to estimate the impact of a 236 

disaster. In this study, readily available damage data from Copernicus EMS (Copernicus 237 
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Emergency Management Service - Mapping 2022) and the xBD dataset (Gupta et al. 2019) 238 

was used as reference to validate and test the method. For the study areas in Germany, 239 

Mexico, Pakistan and Mozambique reference data from Copernicus EMS was derived. For 240 

the USA study site, an excerpt of the xBD dataset is used. Per-building damages in these 241 

datasets are categorised on the basis of ordinal classification schemes (e.g., 1: possibly 242 

damaged, 2: damaged, 3: destroyed).  243 

3 Method 244 

Figure 2 provides an overview of the methodological framework of this study. Twitter data is 245 

used to identify geo-social media hotspots (Section 3.1), flood maps are computed on the 246 

basis of Sentinel satellite images (Section 3.2), and OpenStreetMap as well as other building 247 

footprint data define the distribution of exposed assets. Copernicus EMS and xBD provide 248 

observed damage data as independent reference. All data layers are aggregated to the 249 

hexagonal H3 grid system (Section 3.3), normalized, and then combined using log-linear 250 

pooling to predict flood hotspots (Section 3.4). Methods to choose hyperparameters with and 251 

without reference data are introduced (Section 3.5) and the predicted hotspots are finally 252 

compared with observed hotspots for performance evaluation (Section 3.6). 253 

 254 
Figure 2: Flowchart of the methodological framework. 255 

3.1 Hotspot detection from geo-social media 256 

To identify Tweets directly related to flooding, the model developed by Hanny et al. (2024) 257 

was used. It is a fine-tuned Twitter-XLM-RoBERTa-base model that was improved by applying 258 

an active learning approach. It classifies Tweets solely on the basis of their texts into the 259 

categories “unrelated” and “related” with regard to natural disasters. It yielded an accuracy of 260 

0.94 on a test data set based on CrisisLex. The results of the classification were then 261 

aggregated on regular grids with a spatial resolution of 5 km by calculating the sum of all 262 

Tweets and all disaster-related Tweets within the respective cell. Based on these aggregated 263 

results, a spatial hot spot analysis was performed. For this, the Getis-Ord Gi* algorithm 264 

(Equation 1) was used which considers the values of spatially adjacent observations. In this 265 

study, spatial adjacency was defined by a Queen contiguity spatial weights matrix, to detect 266 

hot and cold spots, i.e. statistically significant areas with particularly high or low occurrences 267 

of the phenomenon under investigation. With respect to the application of this study, this 268 

referred to the ratio of disaster-related Tweets on all Tweets in a region. 269 
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(1) 

where xj is the attribute value of the feature j, wi,j is the spatial weight between feature i and j, 270 

n is the sample size, X is the mean and S the standard deviation of the data set. 271 

3.2 Flood mapping from satellite images 272 

A modular processing chain was deployed for surface water monitoring from Sentinel-1 and 273 

Sentinel-2 satellite images that handles satellite data search, preprocessing, analysis and 274 

dissemination over a predefined area of interest (Wieland and Martinis 2019). Images are 275 

analysed using sensor-specific pre-trained CNN for semantic segmentation to extract binary 276 

water masks. The network architectures utilize a U-Net decoder and combine it with an 277 

Efficientnet-B4 encoder. The networks were trained on an extended version of the freely 278 

available S1S2-Water dataset (Wieland et al., 2023) with an AdamW optimizer, initial learning 279 

rate of 1e-3, weight decay of 1e-2 and a weighted combination of binary cross entropy and 280 

Lovász Hinge loss. As input feature space for Sentinel-1, VV and VH polarizations as well as 281 

slope information derived from the Copernicus Digital Elevation Model (DEM) were used. 282 

Similarly, for Sentinel-2 six spectral bands (Red, Green, Blue, Near-Infrared, Shortwave-283 

Infrared-1, Shortwave-Infrared-2) and slope information were used as input features to train 284 

the network. As reported by Bereczky et al. (2022) and confirmed by Wieland et al. (2023), 285 

models trained on data showing no distinct inundation perform well in mapping the water 286 

extent during flood events, reaching Intersection over Union (IoU) scores of >0.8 for Sentinel-287 

1 and >0.9 for Sentinel-2. Time-series analysis was used to further distinguish permanent and 288 

seasonal water bodies from temporary, potentially hazardous flooded areas. In this study, 289 

followed Martinis et al. (2022) who specifically consider seasonality of surface water dynamics. 290 

The seasonal reference water masks for the study areas were computed over a reference time 291 

period of two years, for which all available Sentinel-1 and Sentinel-2 images were analysed.  292 

𝑦𝑓𝑙𝑜𝑜𝑑 = 𝑦𝑤𝑎𝑡𝑒𝑟\𝑟 
 
 

(2) 

The set difference of the water mask ywater derived from the satellite image that depicts 

the flood event and the reference water mask r produces the flood mask yflood that is 

being used for further analysis (Equation 2). 

 

3.3 Aggregation on H3 discrete global grid system 293 

In this study, the H3 grid system that features a hierarchical structure with 16 spatial 294 

resolutions and a 64-bit unsigned unique integer index for each cell is used (Sahr 2011). The 295 

grid cells have a hexagonal shape, with uniform distances between the centroid of each 296 

hexagon and the centres of its neighbouring cells. The choice of the H3 resolution level 297 
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depends on the specific application as well as the extent and scale of the study area under 298 

consideration. Since this study focused on regional to national scale analysis, H3 resolution 299 

levels 6, 7 and 8 were used, which correspond to average edge lengths of approximately 3.7 300 

km (roughly city size), 1.4 km (roughly neighbourhood size) and 0.5 km (roughly block size). 301 

To convert the proxy information layers into H3 grid cells at the desired resolution levels, 302 

specific import routines were devised depending on the format of the input data. Flood masks 303 

were stored as binary raster layers and as such were converted by summing the positive raster 304 

values inside each H3 grid cell, therefore providing a count of flooded pixels per grid cell. 305 

Twitter hotspot maps were provided as vector polygon layers and converted to H3 by 306 

assigning the polygon value at the centroid of each H3 grid cell. Exposed buildings were 307 

provided as vector point layers and converted to H3 by counting the number of buildings per 308 

H3 grid cell. Similarly, the per-building damage datasets were provided as vector point layers 309 

with ordinal damage categories. Summing up the per-building damage grades provides an 310 

aggregate measure of damage per H3 grid cell. The H3-Pandas Python package (H3-Pandas 311 

2024) was used to handle all H3 specific geoprocessing operations. Converted input data 312 

were stored in a H3-indexed Geopandas dataframe for further analysis. 313 

3.4 Information fusion 314 

Following the concept of focus maps, as outlined by Pittore (2015), the fusion of 315 

heterogeneous proxy information layers from remote sensing, social media and other geodata 316 

was approached with the overall aim to derive a joint probability of sampling that is 317 

conditionally dependent on the input layers themselves. Within this sampling framework, let Di 318 

be the set of proxy information layers that are relevant for the prioritization of disaster hotspots 319 

and that are aligned on a two-dimensional geographical grid (G) with the same extent, origin 320 

and grid resolution (Equation 3). In this study, G is defined by the H3 grid cells that span an 321 

area of interest at a predefined resolution level. 322 

𝐷𝑖 = 𝐷𝑖(𝑥, 𝑦) ∈ [0, ∞], (𝑥, 𝑦) ∈ 𝐺 
 

(3) 

The conditional probability of sampling given a single proxy layer P(S|Di) at a specific location 323 

can be defined by a simple normalization of its values to the range [0,1], where larger values 324 

indicate higher relevance of a location for the disaster under consideration. Here a minmax 325 

normalization (Equation 4) was applied and different truncations were tested based on quantile 326 

intervals to account for outliers. 327 

𝑃(𝑆|𝐷𝑖) =
𝐷𝑖 − min (𝐷𝑖)

max(𝐷𝑖) − min (𝐷𝑖)
 

 
(4) 

To approximate the joint probability of sampling and thus the prioritization of disaster hotspots 328 

given more than one proxy layer Di, an appropriate pooling operator PG is required. Here a 329 

log-linear pooling operator is used, which performs multiplicative pooling that emphasizes the 330 

locations where all input layers indicate a higher probability of sampling (Equation 5).  331 
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𝑛

𝑖=1

 

 
(5) 

The property of a log-linear pooling that it directly prioritizes locations with matching input 332 

layers makes it particularly suitable for the identification of disaster hotspots. Furthermore, by 333 

defining pooling weights wi one is able to control the relative importance of proxy information 334 

layers on the result.  335 

3.5 Hyperparameter optimization 336 

The main hyperparameters that are required by the information fusion method are the weights 337 

wi of the proxy information layers that are used as input to the log-linear pooling (Equation 5). 338 

The weights basically control the relative importance of the input layers on the result and allow 339 

to vary the discriminating effect of the pooling, making the results more or less selective on 340 

the specific input. Other hyperparameters to consider were the lower and upper quantiles [ql, 341 

qu] at which the values during normalization of the input layers were truncated (Equation 4). 342 

Using truncation with a quantile interval can enhance the robustness of the normalization. 343 

Values falling outside the defined interval were adjusted to the boundary values. This 344 

effectively removed the extreme tails of the distribution, which would otherwise have exerted 345 

a disproportionate influence on the resulting probability P(S|Di). 346 

In this study, different methods were compared to select hyperparameters depending on the 347 

availability of reference data (e.g., observed damage distributions). The base assumption of 348 

this work was that in a real disaster situation no reference data would be available and the 349 

information fusion method would be deployed in an unsupervised manner (Section 3.5.1). 350 

However, also the possibility to learn hyperparameters prior to an application based on 351 

observed damage data from other disasters was tested (Section 3.5.2). 352 

3.5.1 Selecting hyperparameters without reference data 353 

Optimizing log-linear pooling weights without reference data typically involves relying on 354 

theoretical or subjective criteria. A widely used approach is to assign equal weights to each 355 

input layer, which assumes that each source is equally reliable and valuable. Equal weights 356 

ensure a neutral and balanced combination of probability distributions, especially when there 357 

is no reason to favour one source over another. Commonly, equal weights are assigned such 358 

that they sum up to one. Applying weights that sum up to greater than one is possible in the 359 

context of log-linear pooling and effectively increases the discriminating effect of the pooling, 360 

thus making the results more selective (Pittore 2015). If prior knowledge about the reliability 361 

or relevance of each input layer is available, pooling weights can also be assigned subjectively 362 

with higher weights referring to more reliable or relevant layers.  363 

An objective method to optimize log-linear pooling weights without reference data is to 364 

minimize the sum of the Kullback-Leibler (KL) divergences from each input layer distribution 365 

to the pooled distribution (de Carvalho et al. 2023). The KL divergence from an input 366 

distribution P(S|Di) to the pooled distribution P(S|D1, D2, …, Dn) is defined as follows: 367 
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𝐷𝐾𝐿(𝑃(𝑆|𝐷𝑖)||𝑃(𝑆|𝐷1, 𝐷2, … , 𝐷𝑛)) = ∑ 𝑃(𝑆|𝐷𝑖)(𝑥)𝑙𝑜𝑔
𝑃(𝑆|𝐷𝑖)(𝑥)

𝑃(𝑆|𝐷1, 𝐷2, … , 𝐷𝑛)(𝑥)
𝑥∈𝑋

 

 
(6) 

The objective is to find the weights w1, w2, …, wn that minimize the sum of the KL divergences 368 

from each input distribution to the pooled distribution, while 𝑤𝑖 ≥ 0 (Equation 7).  369 

min
𝑤

∑ 𝐷𝐾𝐿(𝑃(𝑆|𝐷𝑖)||𝑃(𝑆|𝐷1, 𝐷2, … , 𝐷𝑛))

𝑛

𝑖=1

 

 
(7) 

This objective function was chosen over maximizing entropy, because it leads to a unique 370 

solution as detailed and proofed in de Carvalho et al. (2023). 371 

3.5.2 Selecting hyperparameters with reference data 372 

A supervised approach was tested to optimize hyperparameters according to a prior 373 

distribution from observed damage data. In this setup, the available reference data is split into 374 

training and validation sets and cross-validation is used to find the weights resulting in the best 375 

predictive performance on the validation set. Grid search is deployed as a transparent and 376 

reproducible approach to find optimal hyperparameters for normalization and log-linear 377 

pooling. The results of the grid search were, moreover, used for an explorative analysis of the 378 

hyperparameter space. For the task at hand, the search space for wi is defined as follows: 379 

 𝑤𝑖 ∈ {0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} 
 

(8) 

For the normalization quantile interval, the following search space is tested: 380 

[𝑞𝑙 , 𝑞𝑢] ∈ {[𝑞0.02, 𝑞0.98], [𝑞0.01, 𝑞0.99], [𝑞0.0, 𝑞1.0]} 
 

(9) 

The actual calculation of ql and qu depends on the specific distribution of the random variable 381 

under consideration (the input layers) and can be calculated as follows: 382 

𝑞𝑙 = 𝐹−1(𝑝𝑙); 𝑞𝑢 = 𝐹−1(𝑝𝑢) 
 

(10) 

where F-1 is the inverse cumulative distribution function of the random variable, and pl and pu 383 

the probabilities corresponding to the lower and upper quantiles. 384 
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3.6 Performance evaluation 385 

Performance evaluation in this study was conducted through a quantitative approach by 386 

comparing the predicted disaster hotspots resulting from the information fusion with 387 

normalized damage distributions from reference data. Evaluation metrics were derived from 388 

an ordinary least squares (OLS) regression between predicted and true hotspot values. The 389 

adjusted coefficient of determination R2
adj is used to measure the proportion of variance in the 390 

dependent variable that is explained by the independent variables, with R² being the regular 391 

coefficient of determination, n being the number of observations and k the number of 392 

independent variables (Equation 11). 393 

𝑅𝑎𝑑𝑗
2 = 1 − (

(1 − 𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
) 

 
(11) 

To prepare the reference data, the true damage grades from Copernicus EMS or xBD were 394 

first converted into a compatible H3 format as described in Section 3.3. Subsequently, the 395 

damage grades were normalized with Equation 4 to ensure uniformity across the dataset. The 396 

spatial extent of the comparison is then restricted to the extent of the reference data, allowing 397 

for a focused evaluation that only considers areas where the extent of damages is known. 398 

4 Results 399 

4.1 Explorative analysis of hyperparameters 400 

To explore the influence of hyperparameters on the predictions, a grid search was run across 401 

a large variety of parameter combinations, hotspot maps were computed for each of them and 402 

compared the predictions against a prior distribution from observed damage data. Figure 3 403 

shows an example of such a comparison for a single hyperparameter combination at H3 404 

resolution 7 over the Germany study area. Input layers in this example were normalized 405 

without truncation ([q0.0, q1.0]) and log-linear pooling was performed with equal weights 406 

([wBuildings=1.0, wFlood=1.0, wTweets=1.0]).  407 
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408 
Figure 3: Comparison of predicted hotspot map and prior distribution from observed damage 409 

data. Input layers were prepared at H3 resolution 7 and normalized without truncation. 410 

Across all study areas, 10,935 parameter combinations were evaluated for each of three H3 411 

resolutions, which resulted in a total of 32,805 test runs. Figure 4 shows the distribution of 412 

R2
adj values over all tested hyperparameter combinations in all study areas grouped by H3 413 

resolution. Please note that a direct comparison of regression metrics like R2
adj across 414 

resolutions is not meaningful, due to different spatial aggregations. For data aggregation in a 415 

different manner, the underlying data structure changes. This can affect the variability and 416 

relationships between variables, leading to different R2
adj values. However, for each resolution 417 

separately it was observed that a large variance of the dependent variable (here the true 418 

damages) could be predicted from the independent variables (here buildings, flood and 419 

Tweets). With the right hyperparameter settings, it was possible to achieve R2
adj values above 420 

0.9 (at resolution 6), 0.8 (at resolution 7) and 0.6 (at resolution 8) and hence a very good fit of 421 

the model to the observations. The choice of the normalization quantile interval for truncation 422 

during normalization of the input layers only had minor effects on the predictive power of the 423 

models, suggesting robustness to this parameter. The spread was similar across all quantiles, 424 

indicating that normalization quantiles have minimal impact on model performance variability 425 

at each resolution. At H3 resolution 6, it was observed that normalization without truncation 426 

([q0.0, q1.0]) resulted in slightly better fits between model predictions and observations. At 427 

resolutions 7 and 8, normalization with truncation ([q0.01, q0.99]) lead to minor improvements 428 

compared to stronger truncation ([q0.02, q0.98]) or no truncation ([q0.0, q1.0]).  429 

Figure 5 shows the distribution of R2
adj values across varying log-linear pooling weights for the 430 

input layers (buildings, flood and Tweets) at different H3 resolutions. Input layers were 431 

normalized with truncation ([q0.01, q0.99]). The results indicate that the choice of pooling weights 432 

significantly impacted the R2
adj values for different input layers, with each layer showing a 433 
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unique pattern. For buildings (first column), the R2
adj values increase with higher pooling 434 

weights at all resolutions. This suggested that increasing the discriminating effect of the 435 

pooling and therefore making the results more selective for this layer improved model 436 

performance. The R2
adj values for the flood input layer (second column) improved with 437 

increasing pooling weights up to a point (between 0.25 and 0.75 depending on resolution) and 438 

then started to decline. This indicated an optimal level of pooling weights beyond which model 439 

performance may decrease. The results for Tweets (third column) showed a relatively stable 440 

pattern with less variation across different pooling weights, suggesting that model performance 441 

for this layer was less sensitive to the choice of pooling weights.  442 

443 
Figure 4: Results of grid search across all tested hyperparameter combinations in all study 444 

areas grouped by H3 resolution (left) and further categorized by normalization quantiles (right). 445 

Figure 5 can also provide valuable insights into the relative importance of input layers on the 446 

prediction results. Layers with consistently higher R2
adj values were generally more important 447 

to the prediction. In this case, buildings showed the most substantial increase in R2
adj values 448 

with higher pooling weights, therefore suggesting high relative importance. Significant 449 

changes in R2
adj values with pooling weights indicated sensitivity and importance. Buildings 450 

and flood layers both showed sensitivity, with buildings improving consistently and flood 451 

having an optimal pooling weight. An input layer that maintains stable R2
adj values across 452 

different pooling weights suggests robustness but not necessarily importance. Tweets showed 453 

stability but less variation of R2
adj values across pooling weights, which indicates that they were 454 

reliable but of lesser relative importance for the prediction compared to the other layers. In 455 

summary, buildings appeared to be the most important input layer for predictions, followed by 456 

flood, with Tweets being the least impactful but still providing consistent predictive value. 457 
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458 
Figure 5: Results of grid search across different log-linear pooling weights for the input layers 459 

(buildings, flood and tweets) at different H3 resolutions. 460 

4.2 Optimization of pooling weights  461 

Figure 6 compares the performance of different methods (with and without reference) to 462 

choose log-linear pooling weights for the input layers (buildings, flood and Tweets) at H3 463 

resolution 7. According to the results in Section 4.1, input layers were normalized with 464 

truncation ([q0.01, q0.99]) before pooling. Various approaches were tested: optimizing 465 

hyperparameters specifically for each study using grid search, assigning equal weights (0.33 466 

and 1.0), employing supervised methods with cross-validation optimized on different study 467 

areas, and using an unsupervised method based on KL divergence. 468 
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469 
Figure 6: Comparison of methods to choose log-linear pooling weights for the input layers 470 

(buildings, flood and Tweets) grouped by study area. Input layers were prepared at H3 471 

resolution 7 and normalized with truncation ([q0.01, q0.99]) before pooling. 472 

The results indicated that while equal weight methods provided a straightforward and relatively 473 

effective approach, methods that involved optimization tended to offer better performance in 474 

terms of the R2
adj values. This suggests the importance of context-specific tuning for achieving 475 

the best results in log-linear pooling. Optimizing hyperparameters specifically for each study 476 

area (optimum) may be unrealistic for real applications due to the lack of appropriate reference 477 

data during an ongoing disaster. The results for this method, however, showed that a very 478 

good fit with observed damage distributions can be achieved solely based on the provided 479 

proxy information layers. Assigning equal weights that sum up to one (equal_033) showed the 480 

worst performance of all tested methods. Using equal weights of one per input layer (equal_1), 481 

however, performed relatively well and even outperformed optimized methods in some study 482 

areas. Cross-validation with hyperparameters optimized on different study areas (supervised) 483 

was competitive and outperformed the equal weights method in some cases. However, it 484 

showed large variations depending on the study areas it had been trained on. The 485 

unsupervised method based on KL divergence (unsupervised) showed the least performance 486 

variability and achieved good R2
adj values for all study areas. It was, therefore, the top-487 

performing method in terms of best fit and stability of results, together with the equal weights 488 

method (equal_1). 489 

Figure 7 shows hotspot maps that compare an observed damage distribution (reference) to 490 

predicted distributions using different methods for selecting log-linear pooling weights. Each 491 

map illustrates the joint probability of sampling and thus the prioritization of disaster hotspots 492 

given input proxy information layers P(S|DBuildings, DFlood, DTweets) across a geographic extent, 493 

with varying intensities of red indicating higher probabilities. Observed damages (top left) 494 

serve as the reference for comparison, where the most significant damage concentrates in the 495 

eastern part of the map, particularly around the Ahr valley and Bad Neuenahr-Ahrweiler. 496 

Optimizing weights on the same area with reference (optimum) closely matches the reference 497 

and further highlighted that the input proxy layers can well explain an actual damage 498 

distribution. All other methods were able to capture the general damage patterns with highest 499 

concentrations of sampling probabilities around the Ahr valley. Only the prediction using equal 500 

weights of 0.33 (equal_033) showed a clearly diffused and less concentrated distribution 501 

compared to the reference. Overall, the maps underlined that while equal weighting methods 502 

provided a baseline, methods that involved some form of optimization or learning (supervised 503 

or unsupervised) delivered better performance in predicting damage distributions similar to the 504 

observed reference. 505 
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506 
Figure 7: Map comparison of methods to choose log-linear pooling weights for the Germany 507 
study area. Input layers were prepared at H3 resolution 7 and normalized with truncation 508 
([q0.01, q0.99]) before pooling. 509 

4.3 Applications  510 

In the following, the log-linear pooling method was applied to the study areas using each of 511 

them as example to test specific features that are relevant for an application in a real-world 512 

disaster situation. These include, testing the method’s spatial (Section 4.3.1) and temporal 513 

(Section 4.3.2) consistency as well as its flexibility to incorporate different thematic input layers 514 

(Section 4.3.3). The whole area of interest in each study area was used, unsupervised pooling 515 

weights optimization and normalization of input layers with truncation ([q0.01, q0.99]) were 516 

applied. 517 

4.3.1 Spatial consistency (Pakistan) 518 

Figure 8 shows the Pakistan study area at different H3 resolutions. The columns represent 519 

input layers and respective predicted hotspot maps. At resolution 6, the map shows significant 520 

hotspots in the northern part of Sindh province, which aligns with the locations of Larkana and 521 

Jacobabad. There were some predicted hotspots in the central area, consistent with reported 522 

flood impact in Dadu. The southern area showed distinct hotspots centred around the highly 523 

populated greater Hyderabad region. The most prominent hotspot around Jacobabad is 524 

depicted in further detail at H3 resolution 7 and further resolved at resolution 8 for the city of 525 

Dera Allah Yar. The predicted hotspots aligned well with the reported locations of major impact 526 

during the Pakistan floods of 2022, as reported in the news and documented by the United 527 

Nations (UN-OCHA 2023). The maps, moreover, showed spatial consistency between 528 

resolutions with increasing levels of details of flood impact being revealed at higher resolution 529 

levels. 530 
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531 
Figure 8: Predicted hotspot maps at different H3 resolutions for the Pakistan study area. 532 

4.3.2 Temporal consistency (Germany) 533 

Figure 9 shows the dynamic nature of the floods in Western Germany from 13 to 18 July 2021. 534 

The maps highlight the spread and intensity of the flood event at H3 resolution 7, while the 535 

time series plot captures the quantitative temporal trends in both flood extent and public 536 

attention through social media activity.  537 

• July 13-14, 2021: The region experienced an unusually high amount of rainfall, with some 538 

areas recording more than 150 mm in 48 hours. The maps for July 13 and 14 show no 539 

significant hotspots, aligning with the fact that heavy rainfall and severe flooding had not 540 

yet reached critical levels. 541 

• July 15, 2021: The floods reached their peak, especially affecting areas around 542 

Euskirchen (northern parts of the study area) and the Ahr Valley (central parts of the study 543 

area). The map for July 15 shows the appearance of several hotspots, corresponding to 544 

significant flooding in these areas. Respectively, the time series plot shows a strong 545 

increase in flood pixel counts and relevant Tweets. This indicated the growing severity of 546 

the situation and increasing public awareness. 547 
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• July 16, 2021: While the flood water extent began to decrease in most areas, the extent 548 

of damage became fully apparent. The hotspot map for July 16 keeps pointing to the most 549 

severely affected regions. 550 

• July 17-18, 2021: Disaster response efforts were active in the affected areas and public 551 

attention remained high as the extent of the disaster was reported in the media. The maps 552 

for July 17 and 18 show fewer hotspots, indicating that the flood water extent further 553 

decreased while focus remained on high impact areas in the Ahr valley. The time series 554 

plot shows a significant drop in flood pixel counts, while Tweet counts remained high, 555 

indicating ongoing public engagement with the disaster. 556 

The results confirmed that the method was able to produce temporally consistent outputs, 557 

which aligned well with the spatial distribution of actual events that happened during the 558 

disaster.  559 

560 
Figure 9: Time series of predicted hotspot maps at H3 resolution 7 for Germany. 561 

4.3.3 Influence of different exposure layers (Mozambique) 562 

Figure 10 shows the influence of choosing different datasets for mapping exposed assets 563 

using the study area of Mozambique as an example. The same flood and Tweets input layers 564 

were applied, while the source of the exposure layer was varied. It compares per-building 565 
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information from OSM with the aggregated built-up area product GHS-BUILT-S (building 566 

counts per 100 m grid cells) of the Global Human Settlement Layer (GHS) (Pesaresi and 567 

Politis 2023). Moreover, population datasets from GHS-POP (population counts per 100 m 568 

grid cells) (Schiavina et al. 2023) and Kontur (population counts per H3 resolution 7 hexagons) 569 

(Tarakanov 2020) were compared for their usability as input layer to predict hotspots. Overall, 570 

the figure indicates that the city of Beira was the most critically affected hotspot in the study 571 

area, primarily due to the high building and population densities. Despite a general agreement 572 

across the different input layers regarding most exposed regions, differences in the predicted 573 

hotspot maps became visible. In particular, when using the Kontur population dataset as input, 574 

the predicted hotspot maps were more dispersed compared to the hotspots with GHSL 575 

population input. Spatial distribution and intensity of hotspots derived with GHSL buildings and 576 

population input were well aligned with each other. The GHSL-based hotspots, moreover, 577 

closely matched the predicted hotspots on the basis of OSM data. 578 

579 
Figure 10: Predicted hotspot maps at H3 resolution 7 derived with different exposure input 580 

layers. Building locations from OSM (first column), building counts from GHSL Global Human 581 

Settlement Layer (second column), population counts from GHSL (third column), and 582 

population counts from Kontur (last column). 583 

5 Discussion 584 

Several studies developed methods to fuse information from remote sensing and social media 585 

to improve accuracy of flood hazard maps (Rosser et al. 2017; Huang et al. 2018; Guo et al. 586 

2023). Contrary to these, the study at hand aimed at predicting the sampling probability for 587 

additional information collection that is conditionally dependent on the input proxy information 588 

layers themselves. To achieve this, a spatially and temporally consistent log-linear pooling 589 

framework was developed based on the H3 discrete global grid system. The fundamental 590 

approach was similar to what has been proposed by Pittore (2015) in the context of seismic 591 

risk assessment. Major differences to their work, however, include the utilization of a discrete 592 

global grid system for scalable harmonization of input layers, the use of geo-social media data, 593 

the development of an unsupervised optimization of pooling weights, and a quantitative 594 

performance evaluation against observed damage distributions. The latter, moreover, allowed 595 



22 
 

to perform an extensive hyperparameter exploration to better understand the sensitivity of the 596 

method to variations in input layers, normalization and pooling weights. Lastly, the application 597 

of this study focussed on flood rapid response rather than seismic risk assessment. To this 598 

regard, it aimed at determining the most likely disaster affected areas before initiating on-599 

demand satellite data acquisitions and planning aerial or in-situ survey campaigns.  600 

Information fusion 601 

This study demonstrated that the proposed information fusion method effectively predicted 602 

disaster hotspots in comparison to observed damage distributions. Despite the absence of an 603 

absolute ground reference, the proposed approach offered a reliable comparative analysis 604 

against damage distributions derived as part of rapid emergency mapping activations by the 605 

Copernicus EMS. This is an advancement over other studies that use probability pooling 606 

methods for example in the field of risk assessment, which commonly lack appropriate 607 

reference data for validation (Nadim et al. 2006; Pittore et al. 2015). Through extensive 608 

hyperparameter tuning and comparing various methods to approximate optimal pooling 609 

weights, it was identified that equal weight methods are straightforward and relatively effective, 610 

but optimization-based methods tend to perform better. This underscored the significance of 611 

context-specific tuning in achieving optimal results in log-linear pooling. An unsupervised 612 

method minimizing the KL divergence between input distributions and predicted distributions 613 

showed superior performance, addressing the limitations of supervised methods which require 614 

extensive training data (Wang et al. 2018). The proposed method leverages the H3 discrete 615 

global grid system, fuses medium-resolution satellite data, social media inputs, and geospatial 616 

data on exposed assets, offering a coherent and scalable framework for disaster hotspot 617 

identification. This integrative approach contrasts with the methods of previous studies (Yang 618 

et al. 2022; Florath et al. 2024) by providing a more flexible and comprehensive solution 619 

adaptable to various disaster types and data sources. This capability is critical in improving 620 

situational awareness during disaster response. 621 

Reliability and semantic classification of geo-social media data 622 

In the social media analysis, solely georeferenced data from Twitter are employed. The 623 

reliability of such data has been shown in several studies. For instance, Ferner et al. 2020 624 

compare their Twitter-based analysis with satellite-derived damage information for the 625 

2014 Napa Valley earthquake and the 2017 Hurricane Harvey, showing that the footprints 626 

coincide significantly. Similarly, Yang et al. 2019 confirm the reliability of Twitter data for 627 

Hurricane Harvey. Liu et al. 2020 compare flood-related Tweets to meteorological alerts for a 628 

flood in Boulder, USA and find that texts and imagery from Tweets can contain plenty useful 629 

information for disaster management purposes. Additionally, Twitter’s Academic API, which 630 

was also used in our study, has been shown to provide a representative sample of Tweets 631 

(Pfeffer et al. 2023). In another context, Tweets have also been found to be a reliable data 632 

source for influenza surveillance (Aslam et al. 2014). For Sina Weibo, a comparable platform 633 

to Twitter in China, a strong correlation to human mobility has been identified, i.e. a reliability 634 

of this data as a representation of human activity (Liu et al. 2022). However, as our study 635 

covered several areas of interest, it cannot be assumed that this reliability would be the same 636 

for all regions. In particular, more rural areas are more likely to be less suitable for social 637 

media-based analyses. To mitigate this issue and increase the amount of available data, 638 
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content from other social media platforms (e.g. Mastodon, TikTok) could be used in future 639 

work. However, such posts often contain spatially less accurate georeferences. 640 

For identifying relevant geo-social media posts, a binary RoBERTa-based model was used. 641 

Alternative approaches, such as specific relevance classification (Derczynski et al. 2018; 642 

Blomeier et al. 2024) or topic modelling (Havas and Resch 2021; Hanny and Resch 2024), 643 

could be explored in future studies to understand their impact on the results of the information 644 

fusion. Initially, attempts were carried out to directly aggregate relevant Tweets to the H3 grid, 645 

but the resolution significantly influenced the results of geo-social media analysis, particularly 646 

when the number of relevant Tweets was limited and not well georeferenced. This issue could 647 

be mitigated using an independent spatial hotspot analysis before conversion to H3, which 648 

helped address the Modifiable Areal Unit Problem (MAUP) by incorporating a chosen spatial 649 

neighbourhood. However, a meaningful spatial delimitation for aggregating Tweets remains a 650 

limitation of the approach. Additionally, changes in social media platforms’ policies may impact 651 

academic data access and user structure, as was shown for Twitter (Schmidt et al. 2023), 652 

which also affects the reliability of the approach. Therefore, replicating this study with different 653 

data sources is essential for moving the findings forward into a real-world application. 654 

Flood mapping from satellite images 655 

The experiments highlighted the sensitivity of the input flood water mask on the results, 656 

emphasizing the need to understand the accuracy and limitations of the respective inputs. 657 

Errors in the source data directly affect the resulting hotspot map, as the fusion method does 658 

not handle uncertainties or compensates for input errors. Bayesian information fusion methods 659 

that incorporate uncertainty could provide significant benefits in this context (Pittore et al. 660 

2018). To ensure high quality input flood masks, Martinis et al. (2022) stressed the importance 661 

of using an up-to-date reference water mask that considers seasonality, as static masks may 662 

lead to unreliable flood extent representations. This become particularly relevant in regions 663 

with dynamic hydrological conditions. In this study, reference water masks with a seasonal 664 

component were derived to reduce potential over-estimations of flood inundation. Fichtner et 665 

al. (2023) advanced this concept by identifying hazardous flood areas through spatio-temporal 666 

anomaly detection in a time series of water maps. This approach could be a robust alternative 667 

for continuous monitoring and should be further explored in future studies. If archived water 668 

extents are not readily available and/or computational resources are limited, it is suggested to 669 

use a single pre-event (non-flood) water extent of the same season as reference. 670 

Exposure information 671 

Crowd-sourced per-building datasets were used to define exposure. The main reason to focus 672 

on per-building data was to ensure the same geographical core entity as the reference dataset 673 

(per-building observed damages). Such detailed datasets can provide high-quality information 674 

about location and characteristics of single buildings, roads and other infrastructure. Variations 675 

in data completeness, however, may limit their usability for analyses that require globally 676 

consistent data quality and completeness (Herfort et al. 2023). Therefore, it was shown that 677 

globally consistent gridded representations of built-up area (GHSL-Builtup) and population 678 

distribution (GHSL-Pop or Kontur) at large geographical units can provide a valid alternative. 679 

H3 discrete global grid system 680 
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The H3 Discrete Global Grid System (DGGS) was chosen to combine heterogeneous input 681 

proxy information layers, showing advantages over traditional GIS methods (Li and Stefanakis 682 

2020). A DGGS enables consistent multiscale analysis by dividing the Earth's surface into 683 

distinct grid cells, facilitating the integration of diverse data types cohesively (Purss et al. 684 

2019). This approach mitigated computational challenges by spatially aggregating pixel 685 

information and allowed for the observation of successive phenomena at the same geographic 686 

locations across scales (Chaudhuri et al. 2021). Moreover, the H3 grid offered enhanced 687 

performance, scalability, and operational flexibility, making it a suitable choice for disaster 688 

hotspot identification and response planning. 689 

6 Conclusions 690 

In this study, a method was proposed to quickly identify disaster hotspots, especially in 691 

situations where detailed damage assessments from in-situ surveys or analysis of very high-692 

resolution satellite images are not readily available. The method utilizes the H3 discrete global 693 

grid system for spatially consistent integration of heterogenous geoinformation layers. It 694 

combines flood hazard data derived from systematically acquired medium-resolution satellite 695 

imagery with disaster-related information from geo-social media and freely accessible 696 

geospatial data on exposed assets. The fusion is based on a log-linear pooling of normalized 697 

proxy information layers coupled with an optimization of pooling weights. With respect to the 698 

main research questions, we can draw the following conclusions. 699 

RQ1: Is it possible to determine the areas most affected by a flood solely based on readily 700 

available proxy information to guide on-demand satellite data acquisitions, aerial or in-situ 701 

survey campaigns? 702 

In five diverse study areas, it was shown that it is possible to determine the areas most affected 703 

by a flood solely based on readily available proxy information. An extensive hyperparameter 704 

search and a comparison of different methods to approximate optimal pooling weights 705 

revealed that while equal weight methods provided a straightforward and relatively effective 706 

approach, methods that involved optimization tended to offer better performance. This 707 

suggests the importance of context-specific tuning for achieving the best results in log-linear 708 

pooling. An unsupervised method that minimizes the KL divergence between input 709 

distributions and predicted distribution showed superior performance and can overcome the 710 

training data limitations of supervised methods.  711 

RQ2: Can flood-related information layers with different semantic meaningfulness, spatial 712 

resolutions and temporal delays be fused in a spatially and temporally consistent framework? 713 

While being simple and transparent, the method was capable to incorporate geoinformation 714 

layers with different semantic meaningfulness and spatial resolutions into a spatially and 715 

temporally consistent framework. This means it can be adapted to other natural hazards (e.g., 716 

landslides, fire, earthquakes, etc.) or exposed assets (e.g., roads, railways, critical 717 

infrastructure, etc.). In this study, flood hazard extents derived from remote sensing, exposed 718 

buildings from crowd-sourcing and relevant text messages from Twitter were used as input. 719 

The methods to derive these information layers from the respective data sources, are 720 

established, extensively tested and highly accurate.  721 
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RQ3: What is the contribution of different proxy information layers from remote sensing, social 722 

media and other geodata to the identification of flood hotspots? 723 

The experiments revealed that exposed buildings appear to be the most important input layer 724 

for predictions, followed by flood maps, with Tweets being the least impactful but still providing 725 

consistent predictive value. Using other data sources (e.g., public datasets, field reports, etc.) 726 

to derive proxy information layers is possible. However, it is important to understand the 727 

accuracy and limitations of the respective input, as errors in the source directly transfer into to 728 

the resulting hotspot map. The fusion method itself does not handle uncertainties, nor is it able 729 

to compensate for errors in the input. Therefore, next steps focus on exploring uncertainty 730 

aware Bayesian information fusion methods for this application. Ongoing and future efforts 731 

aim to incorporate these methods into rapid mapping processes to support  prioritisation and 732 

early-triggering of data acquisition (Mühlbauer et al. 2024) and to contribute to data-driven 733 

decision-making in early phases of disaster response. 734 

References 735 

Adriano B, Yokoya N, Xia J, et al (2021) Learning from multimodal and multitemporal earth 736 
observation data for building damage mapping. ISPRS Journal of Photogrammetry 737 
and Remote Sensing 175:132–143. https://doi.org/10.1016/j.isprsjprs.2021.02.016 738 

Adwaith D, Abishake AK, Raghul SV, Sivasankar E (2022) Enhancing multimodal disaster 739 
tweet classification using state-of-the-art deep learning networks. Multimedia Tools 740 
Appl 81:18483–18501. https://doi.org/10.1007/s11042-022-12217-3 741 

Aimaiti Y, Sanon C, Koch M, et al (2022) War related building damage assessment in Kyiv, 742 
Ukraine, using Sentinel-1 radar and Sentinel-2 optical Images. Remote Sensing 743 
14:6239. https://doi.org/10.3390/rs14246239 744 

Ajmar A, Boccardo P, Broglia M, et al (2017) Response to flood events: the role of satellite-745 
based emergency mapping and the experience of the Copernicus Emergency 746 
Management Service. In: Flood Damage Survey and Assessment: New Insights from 747 
Research and Practice. American Geophysical Union, pp 213–228 748 

Aslam AA, Tsou M-H, Spitzberg BH, et al (2014) The Reliability of Tweets as a 749 
Supplementary Method of Seasonal Influenza Surveillance. Journal of Medical 750 
Internet Research 16:e3532. https://doi.org/10.2196/jmir.3532 751 

Avgerinakis K, Moumtzidou A, Andreadis S, et al (2018) A multimodal approach in 752 
estimating road passability through a flooded area using social media and satellite 753 
images. Sophia Antipolis, France, pp 1–3 754 

Barron C, Neis P, Zipf A (2014) A comprehensive framework for intrinsic OpenStreetMap 755 
quality analysis. Transactions in GIS 18:877–895. https://doi.org/10.1111/tgis.12073 756 

Barz B, Schröter K, Kra A-C, Denzler J (2021) Finding relevant flood images on Twitter using 757 
content-based filters. In: Del Bimbo A, Cucchiara R, Sclaroff S, et al. (eds) Pattern 758 
Recognition. ICPR International Workshops and Challenges. Springer International 759 
Publishing, Cham, pp 5–14 760 



26 
 

Bereczky M, Wieland M, Böhnke C, et al (2022) Water mapping for flood detection using 761 
SAR data and convolutional neural networks. IEEE Journal of Selected Topics in 762 
Applied Earth Observations and Remote Sensing 15:2023–2036 763 

Blomeier E, Schmidt S, Resch B (2024) Drowning in the information flood: machine-learning-764 
based relevance classification of flood-related Tweets for disaster management. 765 
Information 15:149. https://doi.org/10.3390/info15030149 766 

Cao R, Tu W, Yang C, et al (2020) Deep learning-based remote and social sensing data 767 
fusion for urban region function recognition. ISPRS Journal of Photogrammetry and 768 
Remote Sensing 163:82–97. https://doi.org/10.1016/j.isprsjprs.2020.02.014 769 

Chaudhuri C, Gray A, Robertson C (2021) InundatEd-v1.0: a height above nearest drainage 770 
(HAND)-based flood risk modeling system using a discrete global grid system. 771 
Geoscientific Model Development 14:3295–3315. https://doi.org/10.5194/gmd-14-772 
3295-2021 773 

Chini M, Pelich R, Li Y, et al (2021) SAR-based flood mapping: where we are and future 774 
challenges. In: 2021 IEEE International Geoscience and Remote Sensing 775 
Symposium IGARSS. pp 884–886 776 

Copernicus Emergency Management Service - Mapping (2022). 777 
https://emergency.copernicus.eu/mapping/list-of-activations-rapid. Accessed 14 Feb 778 
2024 779 

de Carvalho LM, Villela DAM, Coelho FC, Bastos LS (2023) Combining probability 780 
distributions: extending the logarithmic pooling approach. Bayesian Anal 18:. 781 
https://doi.org/10.1214/22-BA1311 782 

Derczynski L, Bontcheva K, Meesters K, Maynard D (2018) Helping crisis responders find 783 
the informative needle in the Tweet haystack. In: Proceedings of the 15th ISCRAM 784 
Conference. New York, USA 785 

Ferner C, Havas C, Birnbacher E, et al (2020) Automated Seeded Latent Dirichlet Allocation 786 
for Social Media Based Event Detection and Mapping. Information 11:376. 787 
https://doi.org/10.3390/info11080376 788 

Fichtner F, Mandery N, Wieland M, et al (2023) Time-series analysis of Sentinel-1/2 data for 789 
flood detection using a discrete global grid system and seasonal decomposition. 790 
International Journal of Applied Earth Observation and Geoinformation 119:103329. 791 
https://doi.org/10.1016/j.jag.2023.103329 792 

Florath J, Chanussot J, Keller S (2024) Rapid natural hazard extent estimation from twitter 793 
data: investigation for hurricane impact areas. Nat Hazards 120:6775–6796. 794 
https://doi.org/10.1007/s11069-024-06488-2 795 

Fohringer J, Dransch D, Kreibich H, Schröter K (2015) Social media as an information 796 
source for rapid flood inundation mapping. Natural Hazards and Earth System 797 
Sciences 15:2725–2738. https://doi.org/10.5194/nhess-15-2725-2015 798 

Google open buildings (2024). https://sites.research.google/open-buildings/. Accessed 13 799 
Feb 2024 800 



27 
 

Guo K, Guan M, Yan H (2023) Utilising social media data to evaluate urban flood impact in 801 
data scarce cities. International Journal of Disaster Risk Reduction 93:103780. 802 
https://doi.org/10.1016/j.ijdrr.2023.103780 803 

Gupta R, Goodman B, Patel N, et al (2019) Creating xBD: a dataset for assessing building 804 
damage from satellite imagery. In: Proceedings of the IEEE/CVF Conference on 805 
Computer Vision and Pattern Recognition Workshops. Long Beach, USA, pp 10–17 806 

H3-Pandas (2024). https://github.com/DahnJ/H3-Pandas. Accessed 11 Feb 2024 807 

Hanny D, Resch B (2024) Clustering-based joint topic-sentiment modeling of social media 808 
data: a neural networks approach. Information 15:200. 809 
https://doi.org/10.3390/info15040200 810 

Hanny D, Schmidt S, Resch B (2024) Active Learning for Identifying Disaster-Related 811 
Tweets: A Comparison with Keyword Filtering and Generic Fine-Tuning. In: Arai K 812 
(ed) Intelligent Systems and Applications. Springer Nature Switzerland, Cham, pp 813 
126–142 814 

Havas C, Resch B (2021) Portability of semantic and spatial–temporal machine learning 815 
methods to analyse social media for near-real-time disaster monitoring. Nat Hazards 816 
108:2939–2969. https://doi.org/10.1007/s11069-021-04808-4 817 

Havas C, Resch B, Francalanci C, et al (2017) E2mC: improving emergency management 818 
service practice through social media and crowdsourcing analysis in near real time. 819 
Sensors 17:2766. https://doi.org/10.3390/s17122766 820 

Havas C, Wendlinger L, Stier J, et al (2021) Spatio-temporal machine learning analysis of 821 
social media data and refugee movement statistics. ISPRS International Journal of 822 
Geo-Information 10:498. https://doi.org/10.3390/ijgi10080498 823 

Herfort B, Lautenbach S, Porto de Albuquerque J, et al (2023) A spatio-temporal analysis 824 
investigating completeness and inequalities of global urban building data in 825 
OpenStreetMap. Nat Commun 14:3985. https://doi.org/10.1038/s41467-023-39698-6 826 

Holzheimer E, Kippnich U, Kippnich M, et al (2022) Erkundung im Ahrtal mit Unterstützung 827 
von Verfahren der Künstlichen Intelligenz. In: Die Flut im Juli 2021. Erfahrungen und 828 
Perspektiven aus dem Rettungsingenieurwesen und 829 
Katastrophenrisikomanagement. TH Köln, Köln, pp 22–26 830 

Huang X, Li Z, Wang C, Ning H (2020) Identifying disaster related social media for rapid 831 
response: a visual-textual fused CNN architecture. International Journal of Digital 832 
Earth 13:1017–1039. https://doi.org/10.1080/17538947.2019.1633425 833 

Huang X, Wang C, Li Z (2018) A near real-time flood-mapping approach by integrating social 834 
media and post-event satellite imagery. Annals of GIS 24:113–123. 835 
https://doi.org/10.1080/19475683.2018.1450787 836 

Kamoji S, Kalla M (2023) Effective flood prediction model based on Twitter text and image 837 
analysis using BMLP and SDAE-HHNN. Engineering Applications of Artificial 838 
Intelligence 123:106365. https://doi.org/10.1016/j.engappai.2023.106365 839 

Krullikowski C, Chow C, Wieland M, et al (2023) Estimating ensemble likelihoods for the 840 
Sentinel-1-based Global Flood Monitoring product of the Copernicus Emergency 841 
Management Service. IEEE Journal of Selected Topics in Applied Earth 842 



28 
 

Observations and Remote Sensing 16:6917–6930. 843 
https://doi.org/10.1109/JSTARS.2023.3292350 844 

Li J, He Z, Plaza J, et al (2017) Social media: new perspectives to improve remote sensing 845 
for emergency response. Proceedings of the IEEE 105:1900–1912. 846 
https://doi.org/10.1109/JPROC.2017.2684460 847 

Li M, Stefanakis E (2020) Geospatial operations of discrete global grid systems: a 848 
comparison with traditional GIS. J geovis spat anal 4:26. 849 
https://doi.org/10.1007/s41651-020-00066-3 850 

Liu L, Wang R, Guan WW, et al (2022) Assessing Reliability of Chinese Geotagged Social 851 
Media Data for Spatiotemporal Representation of Human Mobility. ISPRS 852 
International Journal of Geo-Information 11:145. https://doi.org/10.3390/ijgi11020145 853 

Liu X, Kar B, Montiel Ishino FA, et al (2020) Assessing the Reliability of Relevant Tweets 854 
and Validation Using Manual and Automatic Approaches for Flood Risk 855 
Communication. ISPRS International Journal of Geo-Information 9:532. 856 
https://doi.org/10.3390/ijgi9090532 857 

Liu Z, Qiu Q, Li J, et al (2021) Geographic optimal transport for heterogeneous data: fusing 858 
remote sensing and social media. IEEE Transactions on Geoscience and Remote 859 
Sensing 59:6935–6945. https://doi.org/10.1109/TGRS.2020.3031337 860 

Martinis S, Groth S, Wieland M, et al (2022) Towards a global seasonal and permanent 861 
reference water product from Sentinel-1/2 data for improved flood mapping. Remote 862 
Sensing of Environment 278:113077. https://doi.org/10.1016/j.rse.2022.113077 863 

Microsoft building footprints (2024). https://www.microsoft.com/en-us/maps/bing-864 
maps/building-footprints. Accessed 13 Feb 2024 865 

Muesing J, Burks L, Iuzzolino M, et al (2019) Fully bayesian human-machine data fusion for 866 
robust dynamic target surveillance and characterization. In: AIAA Scitech 2019 867 
Forum. American Institute of Aeronautics and Astronautics, San Diego, USA 868 

Mühlbauer M, Friedemann M, Roll J, et al (2024) Improved satellite-based emergency 869 
mapping through automated triggering of processes. In: Proceedings of the ISCRAM 870 
Conference. Muenster, Germany 871 

Nadim F, Kjekstad O, Peduzzi P, et al (2006) Global landslide and avalanche hotspots. 872 
Landslides 3:159–173. https://doi.org/10.1007/s10346-006-0036-1 873 

Nardo M, Saisana M, Saltelli A, Tarantola S (2005) Tools for composite indicators building. 874 
EUR 21682 EN. JRC31473 875 

OpenStreetMap (2024). http://www.openstreetmap.org. Accessed 11 Mar 2024 876 

Papadimos T, Andreadis S, Gialampoukidis I, et al (2023) Flood-related multimedia 877 
benchmark evaluation: challenges, results and a novel GNN approach. Sensors 878 
23:3767. https://doi.org/10.3390/s23073767 879 

Peduzzi P, Dao H, Herold C, Mouton F (2009) Assessing global exposure and vulnerability 880 
towards natural hazards: the disaster risk index. Natural Hazards and Earth System 881 
Sciences 9:1149–1159 882 



29 
 

Pesaresi M, Politis P (2023) GHS-BUILT-S R2023A - GHS built-up surface grid, derived 883 
from Sentinel2 composite and Landsat, multitemporal (1975-2030). 884 
http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea 885 

Pfeffer J, Mooseder A, Lasser J, et al (2023) This Sample Seems to Be Good Enough! 886 
Assessing Coverage and Temporal Reliability of Twitter’s Academic API. 887 
Proceedings of the International AAAI Conference on Web and Social Media 17:720–888 
729. https://doi.org/10.1609/icwsm.v17i1.22182 889 

Pittore M (2015) Focus maps: a means of prioritizing data collection for efficient geo-risk 890 
assessment. Annals of Geophysics 58:S0107. https://doi.org/10.4401/ag-6692 891 

Pittore M, Graziani L, Maramai A, et al (2018) Bayesian estimation of macroseismic intensity 892 
from post-earthquake rapid damage mapping. Earthquake Spectra 34:1809–1828. 893 
https://doi.org/10.1193/112517EQS241M 894 

Pittore M, Wieland M, Errize M, et al (2015) Improving post-earthquake insurance claim 895 
management: a novel approach to prioritize geospatial data collection. ISPRS 896 
International Journal of Geo-Information 4:2401–2427. 897 
https://doi.org/10.3390/ijgi4042401 898 

Poria S, Cambria E, Bajpai R, Hussain A (2017) A review of affective computing: From 899 
unimodal analysis to multimodal fusion. Information Fusion 37:98–125. 900 
https://doi.org/10.1016/j.inffus.2017.02.003 901 

Powers CJ, Devaraj A, Ashqeen K, et al (2023) Using artificial intelligence to identify 902 
emergency messages on social media during a natural disaster: A deep learning 903 
approach. International Journal of Information Management Data Insights 3:100164. 904 
https://doi.org/10.1016/j.jjimei.2023.100164 905 

Purss MBJ, Peterson PR, Strobl P, et al (2019) Datacubes: a discrete global grid systems 906 
perspective. Cartographica 54:63–71. https://doi.org/10.3138/cart.54.1.2018-0017 907 

Putri AFS, Widyatmanti W, Umarhadi DA (2022) Sentinel-1 and Sentinel-2 data fusion to 908 
distinguish building damage level of the 2018 Lombok Earthquake. Remote Sensing 909 
Applications: Society and Environment 26:100724. 910 
https://doi.org/10.1016/j.rsase.2022.100724 911 

Resch B, Usländer F, Havas C (2018) Combining machine-learning topic models and 912 
spatiotemporal analysis of social media data for disaster footprint and damage 913 
assessment. Cartography and Geographic Information Science 45:362–376. 914 
https://doi.org/10.1080/15230406.2017.1356242 915 

Rosser JF, Leibovici DG, Jackson MJ (2017) Rapid flood inundation mapping using social 916 
media, remote sensing and topographic data. Natural Hazards 87:103–120. 917 
https://doi.org/10.1007/s11069-017-2755-0 918 

Sahr K (2011) Hexagonal discrete global grid systems for geospatial computing. Archives of 919 
Photogrammetry, Cartography and Remote Sensing 22:363–376 920 

Schiavina M, Freire S, Carioli A, MacManus K (2023) GHS-POP R2023A - GHS population 921 
grid multitemporal (1975-2030). In: European Commission, Joint Research Centre 922 
(JRC). http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe 923 



30 
 

Schmidt S, Zorenböhmer C, Arifi D, Resch B (2023) Polarity-based sentiment analysis of 924 
georeferenced tweets related to the 2022 Twitter acquisition. Information 14:71. 925 
https://doi.org/10.3390/info14020071 926 

Snidaro L, Visentini I, Bryan K (2015) Fusing uncertain knowledge and evidence for maritime 927 
situational awareness via Markov Logic Networks. Information Fusion 21:159–172. 928 
https://doi.org/10.1016/j.inffus.2013.03.004 929 

Tarakanov A (2020) Kontur population dataset. In: Kontur Inc. 930 
https://www.kontur.io/portfolio/population-dataset/. Accessed 15 Feb 2024 931 

UN-OCHA (2023) Revised Pakistan 2022 Floods Response Plan Final Report. UN-OCHA, 932 
Geneva 933 

Voigt S, Giulio-Tonolo F, Lyons J, et al (2016) Global trends in satellite-based emergency 934 
mapping. Science 353:247–252. https://doi.org/10.1126/science.aad8728 935 

Wang H, Skau E, Krim H, Cervone G (2018) Fusing heterogeneous data: a case for remote 936 
sensing and social media. IEEE Transactions on Geoscience and Remote Sensing 937 
56:6956–6968. https://doi.org/10.1109/TGRS.2018.2846199 938 

Wieland M, Fichtner F, Martinis S, et al (2023) S1S2-Water: A global dataset for semantic 939 
segmentation of water bodies from Sentinel-1 and Sentinel-2 data. IEEE Journal of 940 
Selected Topics in Applied Earth Observations and Remote Sensing 17:1084–1099 941 

Wieland M, Martinis S (2019) A modular processing chain for automated flood monitoring 942 
from multi-spectral satellite data. Remote Sensing 11:2330. 943 
https://doi.org/10.3390/rs11192330 944 

Wiguna S, Adriano B, Mas E, Koshimura S (2024) Evaluation of deep learning models for 945 
building damage mapping in emergency response settings. IEEE J Sel Top Appl 946 
Earth Observations Remote Sensing 17:5651–5667. 947 
https://doi.org/10.1109/JSTARS.2024.3367853 948 

Yang J, Yu M, Qin H, et al (2019) A Twitter Data Credibility Framework—Hurricane Harvey 949 
as a Use Case. ISPRS International Journal of Geo-Information 8:111. 950 
https://doi.org/10.3390/ijgi8030111 951 

Yang T, Xie J, Li G, et al (2022) Extracting disaster-related location information through 952 
social media to assist remote sensing for disaster analysis: the case of the flood 953 
disaster in the Yangtze river basin in China in 2020. Remote Sensing 14:1199. 954 
https://doi.org/10.3390/rs14051199 955 

Zheng Z, Zhong Y, Wang J, et al (2021) Building damage assessment for rapid disaster 956 
response with a deep object-based semantic change detection framework: From 957 
natural disasters to man-made disasters. Remote Sensing of Environment 958 
265:112636. https://doi.org/10.1016/j.rse.2021.112636 959 

Zhou X, Chen L (2014) Event detection over twitter social media streams. The VLDB Journal 960 
23:381–400. https://doi.org/10.1007/s00778-013-0320-3 961 

 962 



31 
 

Declarations 963 

Funding 964 

This work was supported in part by the German Federal Ministry of Education and Research 965 

(BMBF) and the Austrian Research Promotion Agency (FFG) through the project “Künstliche 966 

Intelligenz zur Analyse von Erdbeobachtungs- und Internetdaten zur Entscheidungs-967 

unterstützung im Katastrophenfall” (AIFER) under grant numbers 13N15525-13N15529 and 968 

879732. Additional support has been received from the European Union’s Horizon Europe 969 

research and innovation programme as part of the project “Trusted extremely precise mapping 970 

and prediction for emergency management” (TEMA) under grant number 101093003. 971 

Author contributions 972 

All authors contributed to the study conception and design. Material preparation, data 973 

collection and analysis were performed by Marc Wieland and Sebastian Schmidt. The first 974 

draft of the manuscript was written by Marc Wieland and Sebastian Schmidt and all authors 975 

commented on previous versions of the manuscript. All authors read and approved the final 976 

manuscript. 977 

Competing interests 978 

The authors have no relevant financial or non-financial interests to disclose. 979 


