
From Operational Design Domain to Runtime
Monitoring of AI-based Aviation Systems
1st Christoph Torens

Institute of Flight Systems
German Aerospace Center (DLR)

Braunschweig, Germany
christoph.torens@dlr.de

2nd Siddhartha Gupta
Institute of Informatics

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

siddhartha.gupta@tu-clausthal.de

3rd Nirmal Roy
Institute of Informatics

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

nirmal.roy@tu-clausthal.de

4th Jasper Sprockhoff
Institute of Flight Systems

German Aerospace Center (DLR)
Braunschweig, Germany
jasper.sprockhoff@dlr.de

5th Umut Durak
Institute of Informatics

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

umut.durak@tu-clausthal.de

Abstract—For the integration of autonomy and machine learn-
ing in the next generation of systems for urban air mobility and
unmanned aircraft, it needs to be shown that these functions
can be integrated safely. Moreover, it must be shown that these
systems can operate safely with these active machine-learning
functions. One prerequisite is that the machine-learning function
is only utilized when it is expected to operate safely within the
specified environmental conditions. This paper shows a model-
based approach for the definition of the Operational Design
Domain (ODD). The ODD enables the formalisation of the
expected environmental conditions during the operation and the
system states. With the formal model, the ODD specification can
then be transformed into a specification of a runtime monitoring
language called RTLola. This enables the utilization of the
RTLola runtime monitoring framework to check log files against
violations of the ODD and, later, supervise the ODD during
operation and in flight. The goal is to automate the supervision
and make it more user-friendly. This is shown in two separate
use cases, where an ODD model is created and then exported
and transformed into a monitoring specification. The approach
is validated with a set of log files from the use cases.

Index Terms—machine learning (ML), trustworthiness, oper-
ational design domain (ODD), unmanned aircraft system (UAS),
innovative air mobility (IAM)

I. INTRODUCTION

There is a huge interest in extending autonomy by utiliz-
ing Machine Learning (ML) for Unmanned Aircraft System
(UAS). Only with the use of these technologies it is possible
to enable object detection, i.e., humans on a landing pad,
detecting and avoiding intruder traffic. For the use of ML in the
next generation of UAS, it must be shown that these systems
can operate safely. However, the challenge is to show that
the ML system is trustworthy and can give safe results for
any possible input during operation. This is nontrivial since
the operation and its environment can only be controlled to a
certain degree. As a result, an input might be fed into the ML
system that is not trained, not expected, and where the ML
system is not guaranteed to operate safely.

To define and describe the problem of inputs during op-
eration, the Operational Design Domain (ODD) concept was
introduced by EASA [1] as the operational conditions on the
ML constituent level. This concept was adapted from the
definition used in the automotive industry, which is based
on [2]. Furthermore, the operational domain (OD) was in-
troduced in [3] as the operational conditions at the system
level. By defining these conditions, it is possible to separate the
operation into several domains. The OD defines all operating
conditions in which the system can operate safely. The aircraft,
flight envelope, and flight performance may limit this. The
ODD defines all operating conditions in which the ML con-
stituent can safely operate. These may be limited by the ML
constituent, the training data, or the validation performance.
Ideally, the ODD matches the OD. In that case, the ML
constituent can be utilized safely in the complete operational
domain and, thus, in all operations. However, especially with
the introduction of ML as a new technology into systems, the
ODD can be a reduced set compared to the OD, e.g. operation
only at daytime and not at night. This allows us to define
specific, selected operating conditions as the ODD that the
ML component can be trained to a good performance with
sufficient training data. As such, an ODD specific development
of the ML component can significantly reduce the efforts for
training and validation. On the other hand, this introduces a
new problem: the ML component can now only be utilized
in this reduced set of environmental conditions of the ODD.
The supervision of this valid utilization can be done by the
pilot. However, this adds to the existing workload of the pilot.
A better way would be to have an automated system that
is specifically designed for determining whether the current
situation during operation is inside or outside the ODD. The
idea of this paper is to define, model, transform, and supervise
the ODD, thus automating the problem of ODD determination.

To assure trustworthiness, the ODD is used in conjunction
with scenarios for a safety argument of an aviation system

Fig. 1. Generation of Scenarios and ODD from Domain Model

under verification. A scenario describes the system with the
major entities, their initial conditions, a timeline of significant
events, and the environment [4]. A systematically generated set
of scenarios can reduce the effort of testing a complex system
by selecting essential test cases [5]. In our previous works
[6] [7], we showed an approach for generating scenarios and
ODD from the same domain model shown in Fig. 1. A domain
model captures all the elements (with the operating parameters
and relationships among each other) required for testing the
AI system in the simulation environment. The operational
scenarios derived from the Concept of Operations determine
the elements for verification. [6] also showed how a typical
domain model structure is similar to the ODD structure from
BSI: PAS 1883 [8]. The results were then shown in a human-
readable table.

The contributions of this paper have two aspects. The
first one is to define a computational representation for both
ODD and OD based on our study of EASA Concept Paper:
First Usable Guidance for Level 1 and 2 Machine Learning
Applications [1], ISO 34503 standard [9], and OpenODD
concept paper [10]. The format should be generated in con-
junction with our existing scenario-based approach. Its output
will be scenarios and ODD in computational formats, with
scenarios already having machine-readable format defined in
[11]. The ODD gets exported in YAML. The YAML format
hierarchically describes the properties and lists each param-
eter’s boundary values. The export as a machine-readable is
essential for further tooling and configuration of the aircraft
and systems. The second aspect is a transformation of the
text format ODD into a monitor specification. Here, we use
RTLola as specification language [12]. The transformation
from the ODD text format to an RTLola specification can
be interpreted as a transformation from one domain-specific
language (DSL) to another. The idea is to automate the
supervision of ODD parameters from the model of the ODD
by supporting and transforming the ODD into an RTLola mon-
itoring specification. The challenge for the transformation is to
map the hierarchical YAML format into the modular monitor-
ing specification language and to represent ODD limitations,

conditions and boundaries. This can be used to validate the
simulation scenarios and safeguard the autonomous operation
by explicitly stating implicit assumptions.

Fig. 2 shows the complete workflow of our contribution.
The boxes within the dotted line show the modes in the
ODME tool. The operational scenarios are defined in the
system’s Concept of Operations and help to model all the
constituents imported for the system in the domain model.
The domain model contains all possible scenarios and OD.
Different scenarios or ODDs can be defined using the tool.
The generated RTLola specification supervises the ODD to
validate the scenarios and the simulation runs. The green arrow
in the diagram represents the transformation to the RTLola
specification. The executable RTLola module will monitor and
read the specifications and verify the log files for any violation
of the ODD. The goal is also to utilize the ODD Monitor in
the final system. Supervising the ODD, even in operational
scenarios, is necessary to safeguard any autonomy or machine
learning components.

II. RELATED WORK

A. AI Standards

The overall goal is to achieve trustworthy autonomy in
the context of the safety critical aviation domain, with a
specific focus on innovative air mobility. There is a lot of work
on general verification of machine learning, and establishing
trustworthiness. However, the question always remains on
what is required for authority approval and certification of this
technology. To address this question, EASA published an AI
roadmap and subsequently first guidance documents for the
certification of ML in aviation [1] [3]. With the automotive
domain, ISO 34503 standard [9] and ASAM OpenODD con-
cept paper [10] and the Safety of the Intended Functionality
standard (SOTIF) [13] define and utilize the ODD concept
to define the safety aspects, safety cases [14] and operating
conditions for an automated driving task.

Fig. 2. The Operation Domain Modelling Environment Workflow for scenario generation and ODD definition and transformation to executable monitors

B. ODD

SAE J3016 [2] states that Operational Design Domain
(ODD) is “Operating conditions under which a given driving
automation system or feature thereof is specifically designed
to function, including, but not limited to, environmental, ge-
ographical, and time-of-day restrictions, and/or the requisite
presence or absence of certain traffic or roadway characteris-
tics”. This definition of ODD is by far the most popular one
used in the ODD literature, and all other definitions of ODD
are a variation of the original, including the EASA concept
paper: First Usable Guidance for Level 1 and 2 Machine
Learning Applications [1] and the OpenODD concept paper
[10]. An additional concept associated with ODD is called
Operational Domain (OD).

ODD is an important concept in developing and deploy-
ing autonomous systems, ensuring they operate within well-
defined and suitable conditions. ODD helps manage the expec-
tations and limitations of autonomous systems by considering
factors like weather, road types, speed limits, traffic density
etc. By defining these conditions, the ODD ensures that the
operation of the autonomous system is safe, appropriate, and
optimal. ODD is used to define scenarios that accurately
represent real-world operating conditions for testing and val-
idation. ODD aids in safety assessment and risk analysis,
helping identify potential hazards and prioritize risk mitigation
strategies [15]. It also facilitates regulatory compliance by
aligning with safety and operational requirements. ODD can
promote effective communication and standardization among
stakeholders, establishing a shared understanding of system
behaviour across scenarios [16].

There is a need for a proper ODD format and associated
tooling due to the complexity and diversity of autonomous
systems. [10] states that the language should be machine-
readable and human-readable, be able to be parsed using

any text parsers, and it should enable queries for attributes
of the ODD. This will help achieve all the benefits outlined
previously. Using associated tooling facilitates automated pro-
cessing, easier analysis, and compliance checking, improving
productivity and reducing errors. The tool should clearly
distinguish between ODD and OD definitions.

[17] discusses the development of the ODD language
from a conceptual perspective. A structured natural language
format that is human-readable is introduced. Specifically, the
domain model with hierarchy and attributes is described. The
attributes are further detailed regarding metrics, datatypes,
and units. Additionally, qualifiers for inclusion, exclusion
and conditionals or dependencies for inclusion and exclusion
utilizing logical operators. With these formal model blocks,
it is possible to build complex ODDs. A second publication
from the authors [18] discusses that the ODD should also
support a formal representation and a conversion between the
two. It should be noted that while the language is highly
adaptable and hierarchical, it is possible to model a large
variety of complex ODDs. However, whether these ODDs can
be measured or checked is a different question. For example, it
is possible to model the road type ”cobblestone,” but it might
be difficult to have a sensor distinguish this from ”concrete.”
One of the key concepts from the second paper is the statement
”DETERMINE”.

DETERMINE light_rain WHEN
droplet_size < one AND rain_rate < 2

This enables the mapping of low-level sensor measurements
to high-level modelling concepts.

C. Monitoring and Runtime Assurance
Monitoring is used as a technique to supervise and validate

data streams. In this work, we use monitoring to automatically
determine if we are inside or outside of the ODD. Furthermore,
RTLola has been used in previous work to monitor, supervise
and safeguard cyber-physical systems. RTLola is a real-time
monitoring language and toolkit. RTLola can be used to
monitor data streams of systems during flight to analyze,

safeguard and assure systems and operation [19] [20] [21].
The concept of runtime assurance can be utilized to safeguard
the behavior of an UAS during flight or operation. A standard
that describes a reference architecture for runtime assurance
is the ASTM standard F3269 [22]. In this work the focus is
on the monitoring and automated test for inside or outside of
ODD.

III. ODD USE CASE

we look at two ML use cases in the context of UAS and
aviation. One use case is a UAS flight test performed in
the context of a DLR project HorizonUAM [23]. This use
case is validated with data from the original flight tests. The
other use is from a simulation study performed utilizing the
simulation engine FlightGear [7], and is validated with logs
from simulated flights.

The HorizonUAM project researched several aspects of
airtaxis, including the utilization of autonomy and specifically
ML. For the project a demonstration and flight test was done
with a drone to simulate flight and approach of an airtaxi
at a vertiport landing spot. The use case was tested and
demonstrated as part of a larger project at the DLR National
Experimental Test Center for Unmanned Aircraft Systems in
Cochstedt with a DJI M600 Pro drone. The flight controller is
a Pixhawk 4. It uses the PX4 flight stack as autopilot software.
The ML component is the detection of humans at the landing
spot via the onboard camera. The person detection is done by
an ML algorithm onboard the vehicle. The ODD for the ML
component is defined as:

• flight altitude: 20m to 50m
• flight speed: 0 to 10 m//s
• pitch angle: -10 to +10 degree
• roll angle: -10 to +10 degree
This ODD describes limitations of the system and its

operation, however the training data for the ML component
was recorded with these conditions. As a result, the flight
altitude submitted to these values, since higher altitudes would
result in any persons appearing too small in the captured
image. Any lower attitudes would result in presence appearing
too big. Similar effects would apply for the flight speed with
high speeds possibly resulting in lower image quality. The
pitch or role angles are relevant because this is a huge impact
on the image perspective. Additional properties of the ODD
would be time of day and//or image brightness. However, in
this work we do not focus on further properties.

For the second use case, we utilize an existing simulation
set up in FlightGear. We define the use case to be the detection
of intruder aircraft in order to avoid near mid-air collisions.
An object detection model is trained on a synthetic image
data set generated FlightGear using the approaches described
in [24]. In these methods values for all parameters of the
ODD are sampled from a data model. The values are used
to render scenes in the simulator conforming to the ODD.
Images of these scenes are then used as training data for the
object detector. We have defined the following ODD for our
specific application:

• flight altitude: 10000 to 15000 feet
• flight speed: 300 to 430 miles/h
• pitch angle: -10 to +10 degree
• roll angle: -10 to +10 degree

Since our model was trained exclusively on data within these
ranges it is important for the aircraft to stay within the ODD
during operation. Therefore, ODD monitoring during flights is
needed.

IV. ODD MODELING

A. Rationale

The ODD modelling process extends the scenario modelling
process established in earlier works [6], [7], [24], [25] in
aviation. The scenario modelling process entails transforming
stakeholder requirements into executable specifications. This
transformation is done through three levels of abstraction: op-
erational scenarios, conceptual scenarios, and executable sce-
narios. The operational scenarios are written in plain language
based on the ConOps (a document describing the system,
operation, environment, and procedures of UAS), elements and
then modelled as conceptual scenarios. Conceptual scenarios
are models that represent the elements of the scenarios, their
relationships with each other, and their attributes with valid
value ranges. The models can be reduced to characteristics
of individual scenarios, which can be transformed into a
machine-readable format that serves as executable scenarios.
The EASA concept paper [3] uses the operational scenarios
defined through ConOps to describe the system’s OD. The
OD should contain operating parameters classified as different
types with permissible value ranges. An ODD is technically
similar to the OD but has smaller sub-ranges. The OD is
defined at the system level, and ODD is defined at the AI/ML
constituent level.

B. ODME Tool

The ODME tool is a GUI-based tool developed to utilise
scenarios and ODD modelling techniques for practical aviation
research. It was initially developed in 2019 to realise the early
stages of scenario modelling research by transforming opera-
tional scenarios into models, applying model transformations
and exporting the scenarios in machine-executable form in
XML format. The tool has been recently upgraded to include
ODD modelling in conjunction with scenario modelling.

The tool consists of various modes correlating to various
functionalities supported by it. The two modes relevant to the
paper are the domain modelling mode and the Operational
Design Domain mode. Domain modelling is the point of
entry for any new project on the tool. It allows the domain
expert to map relevant elements hierarchically, exhibiting the
relationships between the components and their associated
attributes. Technically, the attributes and their defined ranges
in the domain model correspond to the OD. The Operational
Design Domain Mode can automatically extract the relevant
details from the domain model and represent them in a human-
readable table as the OD. The user can add comments to the
various values but can only edit the domain model to reflect the

changes in the OD. The mode also supports an ODD manager
mode, which allows the user to define multiple ODDs within
one OD. An ODD is defined by selecting a subset of the OD’s
permitted range. The ODD can be exported as XML or YAML
form by the ODD manager, facilitating further computation for
monitoring by specific programs.

C. Use Case Model

Fig. 3 showcases the model used for this research paper. It
is defined by using generalised characteristics of ODDs as de-
scribed by the ISO 34503 standard [9] catering to the specific
needs of our use case. The ODD comprises three main sections
– the Environment, Static Entities and Dynamic Entities. The
environment has four components – Weather, Particulates,
Connectivity and Illumination. The Weather entity defines the
Air Temperature, the Wind, Rainfall and Snowfall. Various
strengths define the last three Weather conditions, e.g. Rainfall
could range from No to Cloudburst, with each Rainfall type
characterised by specific values of properties. The other aspect
of the Environment is Particulates, defined by different sizes,
intensities, and types. Connectivity describes the communi-
cation type and the positioning system used in the airborne
system. Illumination defines the luminosity, the sun’s position
and the Cloudiness in Weather, ranging from No to Overcast.

Besides the Environment, the other two model components
include the static and dynamic entities. For our use case,
the Static Entities consist of six elements. The first element
is the flight Area, the second is the Landing Pads, and the
third is Geofencing. The fourth and fifth elements are the
Trees and Buildings in the system’s surroundings, with the
last element being specific parameters for the Airspace. The
static elements cater, in general, to different types of airborne
systems. The Dynamic Entities describe the Subject Drone
and other systems referred to as Intruder Drone. The model
also defines the state variables and the payload of the subject
aircraft. Finally, specific for the node Drone State Fig. 4 shows
a more detailed view of the editor function that enables to
model the specific properties on the top right of the screenshot.
This is where the boundary values of the ODD are modeled,
as property of the leaf node.

V. ODD TRANSFORMATION

A. YAML Export and Transformation to RTlola

The ODD from the Domain Model created using the ODME
tool can be extracted and exported as a YAML file. The YAML
output is hierarchical in structure, the structure is taken from
the domain model structure that is shown in Fig. 3. For the
ODD it is important that this output also includes the attributes
and boundary values for each leaf node of the domain model.
The modeling of these values for the leaf node Drone State
is shown in Fig. 4. The resulting YAML file is shown in
Fig. V-A. The specification shows the modeling of simple
boundary values, such as lower bound and upper bound for
the altitude. Furthermore, it is possible to define additional
layers of boundary values, such as warning bounds.

In the next step, the extracted YAML file is then transformed
into RTLola format, Fig. 8. The transformation is written in
Python using the library textX, a meta-language for building
Domain-Specific Languages (DSLs). The tool uses meta-
models that represent the structure of the YAML specifications.
The created textX metamodel file is used as a blueprint for
parsing YAML files and generating the model.

For each node, the RTLola input declaration is generated
(”input”) that defines the variable name and its corresponding
data type. The function handles the translation of limits (lower
bound, upper bound limits in ODD) specified in the YAML
file into RTLola trigger specifications. In the RTLola specifi-
cation language, a trigger defines the condition in which the
monitoring algorithm determines a violation of the property.
These triggers and expressions capture the constraints and
operational specifications stated in the ODD, ensuring that the
output RTLola code reflects the intended operational limit of
the system. For each boundary value a trigger specification is
generated, Fig. 8.

B. ODD Mapping to Log File

An ODD, such as the model in Fig. 3
describes parameters in an abstract manner, e.g.,
Subject Drone.Drone State.Flight Altitude. In the first
use case, a PX4 flight stack was used with corresponding
log files. A practical problem arises when the available log
files do not represent the abstract ODD 1-to-1. In this case,
a mapping from the ODD to the log file must be done. For
the HorizonUAM use case log files, we need four parameters
as the ODD. The PX4 flight software produces dozens
of different log files in CSV format. The corresponding
parameters from the ODD are present in at least two different
log files.

• vehicle attitude setpoint 0.csv and
• vehicle gps position 0.csv
The transformation from YAML to RTlola must generate

a valid specification file. And for the RTlola framework to
be able to read and parses the information from the trace, in
this case the log file, it is necessary to declare all log file
parameters as ”input” variables. This is automated by a script
that reads the log file and adds ”input” declarations into the
RTlola specification file for each parameter.

Finally, it is necessary to map the abstract ODD parameter
to the specific log file parameter. This part of the mapping
currently has to be done manually, since it is necessary to
identify the parameter from the log file that matches the ODD
parameter. We need to have a mapping for each of these
cases and for each log file. Fig. 6 shows the mapping for
vehicle gps position 0.csv, where the left part of the mapping
is the parameter name in the ODD model (Fig. 3) and the right
side is the parameter name of the log file (”alt”).

Fig. 7 shows the mapping for the FlightGear use case. In
this case the log file contains all 3 parameters from the abstract
ODD.

Specifying this mapping from the abstract parameter to the
specific parameter in the log file enables the generation of

Fig. 3. The Use Case Domain Model based on ISO34503 Standard

Fig. 4. Attributes and their defined ranges

monitoring specification from the ODD parameter boundaries.
However, there is an additional challenge. In the ODD model,
the boundary values are again described on an abstract level.
For example, the flight altitude is specified with 20m to 50m.

Subject_Drone:
Drone_State:
-Altitude_m:

type: double
lower bound: 20.0
lower warning bound: 25.0
upper bound: 50.0
upper warning bound: 45.0
function: NONE

-Drone_speed_ms:
type: double
lower bound: 0.0
lower warning bound:
upper bound: 10.0
upper warning bound:
function: NONE

...

Fig. 5. YAML Output

In the PX4 log file, the altitude is specified in millimeter above
NN. So in this case, the unit has to be adapted, as well as the
relative offset of the altitude about sea level. This problem

Subject_Drone.Drone_State.Altitude_m:alt
Subject_Drone.Drone_State.Speed_ms:vel_m_s

Fig. 6. Mapping specification for the HorizonUAM use case

Subject_Drone.Drone_State.Altitude_m:
Altitude_Aircraft

Subject_Drone.Drone_State.Speed_ms:
Airspeed_Aircraft

Subject_Drone.Drone_State.Pitch:
Pitch_Aircraft

Subject_Drone.Drone_State.Roll:
Roll_Aircraft

Fig. 7. Mapping specification for the FlightGear use case

can be addressed in 2 ways. First, it is possible to manually
convert the unit and add the corresponding offset manually,
e.g. via an additional mapping file. As a result, the generated
trigger specification must be adapted to the boundary value
plus the relative offset.

Secondly, it would be possible to initialize the altitude
with the first entry from the log file as relative zero altitude.
All subsequent height measurements in the log file would be
treated as offsets to that altitude automatically. This requires an
adapted specification of the trigger in the RTlola output. The
trigger needs to calculate the current altitude relative to the
altitude from the initial start of the log file. However, RTlola
is a very powerful specification language and thus it is very
easy to do this.

input time_utc_usec: Float64
input lat: Float64
input lon: Float64
input alt: Float64
trigger alt < 200.0 "alt lower bound exceeded"
trigger alt > 230.0 "alt upper bound exceeded"
trigger alt < 205.0 "alt lower warning bound"
trigger alt > 225.0 "alt upper warning bound"
input alt_ellipsoid: Float64
input s_variance_m_s: Float64
...

Fig. 8. RTLola Output

VI. ODD MONITORING

For runtime monitoring, we use RTlola as the framework.
RTlola is a framework that is developed by CISPA 1. The
benefit of RTlola is that it is a formal language that enables
modular high level specifications of monitoring properties. An
interpreter for the language exists, as well as a compiler for
C++ or Rust. This means that it can be utilized to analyze log
files, as in this example. Furthermore, it can also be utilized as
an online monitoring integrated into the onboard system. As
such, it can be utilized as a monitor for a run-time assurance
architecture as standardized with RTCA F3269.

1https://finkbeiner.groups.cispa.de/tools/rtlola/

A. ODD Validation using Test Flight Logs

For this validation, we used test flight logs from our flight
tests for the HorizonUAM project. During the project, we
conducted several flight tests with our drone. For convenience,
the logs are validated using the RTlola playground via a web
interface 2. A screenshot of the web interface is shown in Fig.
9. The web interface shows a text input for the specification,
a text input for the log data, which is called trace, and then
a text output console with output from RTlola on the trace.
Furthermore, in the screenshot it can be identified that the
trigger for altitude is listed in the console. This means, that
the monitor found a violation of the altitude property boundary
within the trace.

B. ODD Validation using Simulation

We execute flight simulations in FlightGear to create data
logs to test our approach. Our simulations start by flying a
737-200 in the air within ODD boundaries. Utilizing a Python
script, we change the target values of the aircraft’s autopilot.
By changing target speed, target altitude, pitch or heading,
we create artificial violations of the defined ODD boundaries.
We use the internal logging function provided by FlightGear
to generate the data logs. We defined a log configuration to
enter the aircraft’s position, orientation, and speed each 200 ms
into a .csv output file. Using the described approach, starting
from the domain model, then YAML export, transformation to
RTlola file, and mapping file, it was possible to validate the
monitoring with the RTlola playground.

VII. ODD CHALLENGES

Several challenges exist with this approach. This approach
assumes that the parameters of the ODD can be directly
measured as sensor inputs or can be broken down and mapped
to sensor inputs. However, this might not always be the case.
For example, there might be limitations on high-level concepts,
such as cloudiness, urban environment, or other aspects, that
are not directly measurable. For weather information, it might
be necessary to rely on external data rather than attempting
to identify the degree of rain at the moment. In this case, the
ODD develops into a complex hierarchical model that relies on
a multitude of sensors, inputs, and online information. Existing
gaps between ODD conceptual parameters and sensor inputs
might be modelled, similar to the ODD framework from [18]
with ”DETERMINE” statements.

Another problem arises if sensory inputs cannot determine
any aspect of the ODD. Either, if there is no sensor of the
required type. In that case, the ODD cannot be determined, and
thus, the ML component cannot be safely used. Furthermore,
the determination of the ODD is dependent on the sensor
inputs and cannot be established if the sensor fails. These
conditions have to be checked as constraints for an automated
utilization of the ODD concept.

2https://rtlola.cispa.de/playground/

Fi
g.

9.
V

al
id

at
io

n
of

O
D

D
m

on
ito

ri
ng

us
in

g
R

T
lo

la
pl

ay
gr

ou
nd

VIII. CONCLUSION

This paper discussed the modeling and definition of a
computational representation for ODD and OD. Additionally,
a transformation of ODD to a runtime monitoring specification
was shown. It was shown which practical problems arise,
when utilizing an ODD description with actual log files and
how these can be solved. The transformed runtime monitoring
specifications were validated using log files from two separate
use cases. The mapping file from the ODD to the log file
currently has to be created manually. Future work will research
further aspects of automation, e.g., automated mapping using
standardized log files or tagged log files.

REFERENCES

[1] EASA, “Concept Paper First usable guidance for Level 1 and 2 machine
learning applications,” 2023.

[2] SAE, “J3016 202104 - taxonomy and definitions for terms re-
lated to driving automation systems for on-road motor vehicles,”
https://www.sae.org/standards/content/j3016 202104/, 2021.

[3] EASA, “Concept paper: guidance for level 1 & 2 machine learning
applicationsproposed issue 02,” 2024.

[4] O. Topçu, U. Durak, H. Oğuztüzün, and L. Yilmaz, Distributed simula-
tion: A model driven engineering approach. Springer, 2016.

[5] J. Ma, X. Che, Y. Li, and E. M.-K. Lai, “Traffic scenarios for auto-
mated vehicle testing: A review of description languages and systems,”
Machines, vol. 9, no. 12, p. 342, 2021.

[6] S. Gupta, U. Durak, O. Ellis, and C. Torens, “From operational scenarios
to synthetic data: Simulation-based data generation for ai-based airborne
systems,” in AIAA SCITECH 2022 Forum, 2022, p. 2103.

[7] S. Gupta and U. Durak, “Operational domain metamodel for testing ai
systems in aviation,” in AIAA SCITECH 2023 Forum, 2023, p. 2589.

[8] BSI, “Pas 1883:2020 - operational design domain (odd)
taxonomy for an automated driving system (ads),”
https://shop.bsigroup.com/products/operational-design-domain-odd-
taxonomy-for-an-automated-driving-system-ads-specification, 2021.

[9] I. S. 33, “Iso 34503:2023 road vehicles, test scenarios for automated
driving systems specification for operational design domain,” 2023.

[10] ASAM, “Asam openodd: Concept paper,” 2021.
[11] U. Durak, S. Jafer, R. Wittman, S. Mittal, S. Hartmann, and B. P.

Zeigler, “Computational representation for a simulation scenario defi-
nition language,” in 2018 AIAA Modeling and Simulation Technologies
Conference, 2018, p. 1398.

[12] J. Baumeister, B. Finkbeiner, S. Schirmer, M. Schwenger, and C. Torens,
“RTLola Cleared for Take-Off: Monitoring Autonomous Aircraft,” in
Computer Aided Verification, S. K. Lahiri and C. Wang, Eds. Cham:
Springer International Publishing, 2020, pp. 28–39.

[13] ISO, “Pas 21448 road vehicles safety of the intended functionality sotif,”
2019.

[14] “The UL 4600 Guidebook.” [Online]. Available:
https://safeautonomy.blogspot.com/2022/11/blog-post.html

[15] A. Schnellbach and G. Griessnig, “Development of the iso 21448,” in
Systems, Software and Services Process Improvement: 26th European
Conference, EuroSPI 2019, Edinburgh, UK, September 18–20, 2019,
Proceedings 26. Springer, 2019, pp. 585–593.

[16] M. Gyllenhammar, R. Johansson, F. Warg, D. Chen, H.-M. Heyn,
M. Sanfridson, J. Söderberg, A. Thorsén, and S. Ursing, “Towards an
operational design domain that supports the safety argumentation of an
automated driving system,” in 10th European Congress on Embedded
Real Time Systems (ERTS 2020), 2020, pp. 1–10.

[17] P. Irvine, X. Zhang, S. Khastgir, E. Schwalb, and P. Jennings, “A Two-
Level Abstraction ODD Definition Language: Part I,” in 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
Oct. 2021, pp. 2614–2621, iSSN: 2577-1655. [Online]. Available:
https://ieeexplore.ieee.org/document/9658751

[18] E. Schwalb, P. Irvine, X. Zhang, S. Khastgir, and P. Jennings, “A Two-
Level Abstraction ODD Definition Language: Part II,” in 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
Oct. 2021, pp. 1669–1676, iSSN: 2577-1655. [Online]. Available:
https://ieeexplore.ieee.org/document/9658812

[19] S. Schirmer, C. Torens, J. C. Dauer, J. Baumeister, B. Finkbeiner, and
K. Y. Rozier, “A hierarchy of monitoring properties for autonomous
systems,” in AIAA SciTech Forum, 2023, pp. 1–13. [Online]. Available:
https://elib.dlr.de/193868/

[20] C. Torens, F.-M. Adolf, P. Faymonville, and S. Schirmer, “Towards
intelligent system health management using runtime monitoring,” in
AIAA Infotech @ Aerospace, AIAA SciTech Forum, Januar 2017, pp.
1–11. [Online]. Available: https://elib.dlr.de/111412/

[21] C. Torens, P. Nagarajan, S. Schirmer, J. Dauer, J. E.
Baumeister, F. Kohn, B. Finkbeiner, G. Manfredi, and F. Löhr,
Certification Aspects of Runtime Assurance for Urban Air Mobility.
AIAA SCITECH 2024 Forum, 2024, ch. Session: Certification,
Verification and Artificial Intelligence, pp. 1–17. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2024-1464

[22] P. Nagarajan, S. K. Kannan, C. Torens, M. E. Vukas, and G. F. Wilber,
“ASTM F3269 - An Industry Standard on Run Time Assurance for
Aircraft Systems,” in AIAA Scitech 2021 Forum. VIRTUAL EVENT:
American Institute of Aeronautics and Astronautics, Inc., Jan. 2021.
[Online]. Available: https://arc.aiaa.org/doi/10.2514/6.2021-0525

[23] C. Torens, F. Juenger, S. Schirmer, S. Schopferer, D. Zhukov, and
J. C. Dauer, Ensuring Safety of Machine Learning Components Using
Operational Design Domain. AIAA SCITECH 2023 Forum, 2023,
ch. Session: Software Platforms and Applications, pp. 1–14. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2023-1124

[24] J. Sprockhoff, S. Gupta, U. Durak, and T. Krueger, “Scenario-based
synthetic data generation for an ai-based system using a flight simulator,”
in AIAA SCITECH 2024 Forum, 2024, p. 1462.

[25] J. Sprockhoff, B. Lukic, V. Janson, A. Ahlbrecht, U. Durak, S. Gupta,
and T. Krueger, “Model-based systems engineering for ai-based sys-
tems,” in AIAA SCITECH 2023 Forum, 2023, p. 2587.

