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Hypersonic glide vehicles (HGVs) have emerged as crucial assets with applications in both
civil and military sectors, prompting significant research and development efforts. Ensuring
the stability and precision of these vehicles, especially in the face of complex and uncertain
physical effects, necessitates well-designed autopilots and robust control systems. Among the
control methodologies explored, nonlinear dynamic inversion (NDI) stands out as a promising
approach, offering the ability to handle highly nonlinear systems effectively. However, challenges
such as sensitivity to model uncertainties and closed-loop instabilities pose significant hurdles.
Addressing these challenges requires careful consideration of closed-loop dynamics, either
through robust control approaches or tailored pole locations. This paper proposes a systematic
methodology for determining suitable gains for cascaded nonlinear controllers, leveraging
the similarities between NDI and quasi-linear parameter-varying (quasi-LPV) systems. By
transforming nested nonlinear dynamics into a quasi-LPV framework, the proposed approach
enables the utilization of linear control tools, providing stability and performance across the
entire flight envelope. The contributions of the paper include discussions on the transformation
of nonlinear dynamics, validations of assumptions, insights into potential applications of
quasi-LPV control, and simulation results demonstrating the effectiveness of the proposed
methodology.

I. Introduction
In recent years, hypersonic glide vehicles (HGVs) have increasingly become the subject of research and development

efforts from both academia and industry [1]. This emerging class of vehicles has potential applications in both civil
and military sectors [2]. The German Aerospace Center (DLR) is investigating autonomous hypersonic flight systems’
physical limitations and performance across various mission scenarios. Robustly designed autopilots are essential for
autonomous flight vehicles, as they stabilize the vehicle and ensure precise tracking of either online or offline computed
trajectories to reach desired destinations. Control systems must manage complex and uncertain physical effects across
expansive flight envelopes for hypersonic applications.

Nonlinear dynamic inversion (NDI) is a control approach well-suited for handling the highly nonlinear characteristics
of hypersonic glide vehicles throughout the envelope. The primary benefit of NDI is the simplification of the input-output
dynamics of a nonlinear, input-affine system by using state feedback and coordinate transformation rather than traditional
Jacobian Linearization [3]. This reduction transforms the dynamics of the controlled variables to simple integrator
dynamics, enabling control through a single linear controller [4]. Successful applications of cascaded NDI feedback
controllers have been demonstrated, such as in [5] for autonomous attitude control of hypersonic re-entry vehicles and
in [6] for control augmentation in supermaneuverable aircraft. Both cases employ time-scale separation to address the
nested attitude dynamics [7].

NDI, despite its benefits, presents notable challenges. It is sensitive to inaccuracies in the underlying model due to
its model-based online linearization, which can lead to inversion errors and closed-loop instabilities [8]. This sensitivity
underscores the need for robustness in control design [9–11]. While NDI theoretically enables uniform closed-loop
dynamics across an entire flight envelope, this concept often conflicts with robustness requirements, particularly
in systems with broad flight envelopes like hypersonic vehicles. Significant variations in open-loop dynamics can
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overburden actuators when closed-loop dynamics designed for specific operating points are enforced across the envelope.
Furthermore, cascaded NDI controllers, often tuned manually and independently, fail to account for interactions
between loops, resulting in overlooked gain and phase margin requirements. These issues, compounded by practical
constraints like measurement inaccuracies and actuator limitations, often degrade real-world performance. Though NDI
theoretically removes the need for gain scheduling, incorporating it can improve robustness by addressing open-loop
dynamic variations across extensive flight envelopes.

Motivated by the identified challenges in robustness and tuning of NDI-based cascaded control systems, this paper
leverages the connections between NDI- and LPV-based methodologies to establish a systematic controller design
workflow for HGVs during the midcourse phase. Fig. 1 provides an overview of the mission phases of an HGV and
gives context to the midcourse phase. The mission begins with the launch phase, followed by the separation and
reentry phase, where the HGV detaches from the launch vehicle at approximately 100 km altitude. The subsequent
midcourse phase occupies most of the mission time and involves atmospheric gliding at high speeds with a trajectory
optimized for maximum lift-to-drag ratio. The mission ends in the terminal phase, where the vehicle executes precise
maneuvers to approach and impact its target. To clarify the operational environment, it is essential to distinguish
between exoatmospheric and endoatmospheric flight conditions. During exoatmospheric flight, which occurs at altitudes
where aerodynamic control surfaces are no longer effective due to insufficient atmospheric density, small integrated
propulsors generate the necessary moments to control the vehicle’s attitude. In contrast, during endoatmospheric flight,
within atmospheric conditions, four integrated flaps are employed as control effectors, cf. Fig. 4.

Terminal

Launch

Separation & 

Reentry

Midcourse

Earth

Figure 1 Mission phases of HGV.

The here proposed unified framework addresses the difficulties of managing operations across the large flight
envelope of HGVs, particularly during the midcourse phase. The proposed method provides robustness against model
inaccuracies, parametric uncertainties, and actuator constraints. By integrating the method into the control design
workflow, this approach offers a structured solution for tuning cascaded NDI controllers throughout the flight envelope,
ensuring optimal performance under varying conditions.

The main contributions of this paper are threefold. First, a quasi-LPV framework is developed, tailored explicitly
for the nonlinear dynamics of HGVs during the midcourse. This enables the application of established linear control
techniques for the tuning of cascaded NDI controllers at different operating points within the flight envelope. Second,
the assumptions underlying the proposed approach are validated by comparing the derived quasi-LPV model with the
full nonlinear system dynamics, ensuring consistency and accuracy across the flight envelope. Third, the controller’s
performance is evaluated through a simulation-based analysis using a high-fidelity model of a hypersonic vehicle.

The paper is organized as follows: Section II provides an overview of the nonlinear dynamics model for the
hypersonic glide vehicle. Section III introduces the fundamental design principles of the cascaded controller-based NDI.
Section IV presents the quasi-LPV system approach used to convert the vehicle’s nonlinear dynamics into a quasi-LPV
state-space model. Additionally, Section V details the application of Eigenstructure assignment, offering an efficient and
straightforward control design workflow. This design framework aims to produce a nonlinear control architecture with
closed-loop poles at targeted locations, ensuring stability and robust performance across the flight envelope. Finally,
Section VI discusses a simulation-based evaluation of the proposed control system’s performance.

II. Nonlinear Flight Dynamics
The nonlinear simulation model of the Generic Hypersonic Glide Vehicle 2 (GHGV-2), which is the application

example of the methods presented in this paper, was developed with colleagues from the DLR Institute of Aerodynamics
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and Flow Technology. The simulation is implemented in MATLAB/Simulink and focuses on the flight control system
design of the regarded hypersonic flight vehicle. The relevant properties for this work are provided in the following,
but interested readers are referred to [12] for further details. In the current state, the aerodynamic database considers
static and dynamic aerodynamic effects modeled as static and dynamic derivative coefficients. The aerodynamic
coefficients were calculated by computational fluid dynamics using the DLR TAU code [13, 14]. Around 800 inviscid
calculations were performed for a broad set of Mach numbers, angles of attack, angles of sideslip, and control surface
deflection angles. The environmental conditions for each Mach number were based on the atmospheric conditions at a
specific altitude taken from a pre-determined trajectory. To consider viscous effects, fully viscous Reynolds-averaged
Navier-Stokes simulations were performed for selected trajectory points.

The modeled nonlinear flight dynamics of the GHGV-2 are based on classical Newtonian mechanics, in which the
vehicle is assumed as a rigid body. The notation convention used for the flight mechanical quantities follows the standard
notations for flight mechanical quantities from [15, 16]. Fig. 2 displays the components of the total external forces 𝑋 ,
𝑌 , 𝑍 and the total external moments 𝐿, 𝑀, 𝑁 expressed in the body-fixed frame of the vehicle. For the investigated
case, only the aerodynamic and gravitational forces and moments are considered relevant during the reentry and glide
phases since hypersonic glide vehicles are commonly unpropelled during those mission stages. Centrifugal and Coriolis
forces, that originate from motions within a moving reference system (consideration of Earth’s rotation), are additionally
computed and taken into account as external forces in the body-fixed frame. Atmospheric effects were modeled using
the International Standard Atmosphere (ISA) [17]: Eq. (1) and Eq. (2) present the generalized equations of motion for

𝑧𝑏

𝑦𝑏

𝑥𝑏

𝑥𝑎

𝑧𝑎

𝑦𝑎

𝛼

𝛽

𝑽

𝑟, 𝑁

𝑝, 𝐿

𝑞,𝑀

𝑋

𝑌

𝑍

Figure 2 Sketch of external forces and moments attacking on the GHGV-2 concept [12].

translation and rotation of a flight vehicle as:

®𝑅 =


𝑋

𝑌

𝑍

 = 𝑚

¤𝑢𝐾
¤𝑣𝐾
¤𝑤𝐾

 + 𝑚

𝑝𝐾

𝑞𝐾

𝑟𝐾

 ×

𝑢𝐾

𝑣𝐾

𝑤𝐾

 , (1) ®𝑄 =


𝐿

𝑀

𝑁

 = 𝐼

¤𝑝𝐾
¤𝑞𝐾
¤𝑟𝐾

 +

𝑝𝐾

𝑞𝐾

𝑟𝐾

 × 𝐼

𝑝𝐾

𝑞𝐾

𝑟𝐾

 . (2)

The used variables are defined as the mass 𝑚, the Moment of inertia 𝐼, the body-fixed rotational rates in the inertial
axes (𝑝𝐾 , 𝑞𝐾 , 𝑟𝐾 )𝑇 and the body-fixed translational velocity in the inertial axes (𝑢𝐾 ,𝑣𝐾 ,𝑤𝐾 )𝑇 , denoted by the index 𝐾 .
An important kinematic relationship that connects the time derivatives of the flight-path bank angle 𝜇𝐾 , the inertial
angle of attack 𝛼𝐾 and the inertial sideslip angle 𝛽𝐾 to the body-fixed rotational rates and the corresponding time
derivatives of the flight path angle 𝛾 and track angle 𝜒, can be stated as:
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
¤𝜇𝐾
¤𝛼𝐾
¤𝛽𝐾

 = 𝑇1


𝑝𝐾

𝑞𝐾

𝑟𝐾

 + 𝑇2

[
¤𝛾
¤𝜒

]
(3)

=


cos𝛼𝐾
cos 𝛽𝐾

0
sin𝛼𝐾
cos 𝛽𝐾

− cos𝛼𝐾 tan 𝛽𝐾 1 − sin𝛼𝐾 tan 𝛽𝐾
sin𝛼𝐾 0 − cos𝛼𝐾



𝑝𝐾

𝑞𝐾

𝑟𝐾

 +

cos 𝜇𝐾 tan 𝛽𝐾 sin 𝛾 + 𝑠𝑖𝑛𝜇𝐾 tan 𝛽𝐾 cos 𝛾

−cos 𝜇𝐾
cos 𝛽𝐾

− sin 𝜇𝐾 cos 𝛾
cos 𝛽𝐾

− sin 𝜇𝐾 cos 𝜇𝐾 cos 𝛾


[
¤𝛾
¤𝜒

]
.

Eq. (3) constitutes a kinematic relationship between various reference frames. In this equation, the rotational rates
𝑝𝐾 , 𝑞𝐾 , and 𝑟𝐾 are obtained from the integration of the moment equation of Eq. (2). Eq. (3) express a general kinematic
relationship that also stays valid for cases in which the described aerial vehicle operates in windy conditions. However,
to simplify the notation in this paper, wind effects are neglected. This assumption is commonly applied to hypersonic
vehicles because their speeds are significantly higher than typical wind velocities [18]. Consequently, the resulting
errors in the angle of attack and sideslip angle are negligible, allowing the simplification without a loss of generality. In
that case, the inertial axes correspond with the aerodynamic axes. This simplifies the notation during the rest of the
paper, describing the body-rate vector in the inertial axes, denoted by the index 𝐾 , without the corresponding index.

III. Cascaded Nonlinear Controller Design
Fig. 3 shows the integrated NDI-based feedback controller, with distinct linear controllers for the attitude and

body-rate control. The cascaded feedback control approach is based on the idea of time-scale separated nonlinear
dynamic inversion systems [7]. The developed NDI feedback control system is similar to the feedback control
architectures proposed in [6] and [5] but is adapted to match the technical realization of the controlled GHGV-2 [19].
The implementation of the feedback control system is introduced and discussed below.

𝐾1 Eq. (5) 𝐾2+ −− +

μr, αr, βr Ԧ𝜐c Control 

Allocation

δ
Eq. (7)

Plant & 

Sensors

μ, α, β

𝑄Ԧ𝜈 Ԧ𝑦𝑝𝑟 , 𝑞𝑟 , 𝑟𝑟

𝑝, 𝑞, 𝑟

Figure 3 Cascaded inversion-based nonlinear flight control architecture.

The linear outer-loop controller computes the required time derivatives of the aerodynamic angles ( ¤𝜇𝑟 , ¤𝛼𝑟 , ¤𝛽𝑟 )𝑇
needed for reference tracking based error vector (𝑒𝜇, 𝑒𝛼, 𝑒𝛽)𝑇 , which in turn is computed based on the state measurements
(𝜇, 𝛼, 𝛽)𝑇 and the obtained reference signals (𝜇𝑟 , 𝛼𝑟 , 𝛽𝑟 )𝑇 :

¤𝜇𝑟
¤𝛼𝑟
¤𝛽𝑟

 = 𝐾1


𝑒𝜇

𝑒𝛼

𝑒𝛽

 = 𝐾1
©­­«

𝜇𝑟

𝛼𝑟

𝛽𝑟

 −

𝜇

𝛼

𝛽


ª®®¬ , (4)

with 𝐾1 being a gain matrix. Given the kinematic relationship shown in Eq. (4), the commanded signal vector
( ¤𝜇𝑟 , ¤𝛼𝑟 , ¤𝛽𝑟 )𝑇 can be transformed into a commanded body-rate signal (𝑝𝑟 , 𝑞𝑟 , 𝑟𝑟 )𝑇 for the inner-loop controller with the
following inversion law:

®𝜔𝑟 =

𝑝𝑟

𝑞𝑟

𝑟𝑟

 = 𝑇
−1

1
©­­«

¤𝜇𝑟
¤𝛼𝑟
¤𝛽𝑟

 − 𝑇2

[
¤𝛾
¤𝜒

]ª®®¬ , (5)

with the 𝑇1 and 𝑇2 matrices defined in Eq. (3). The linear inner-loop controller calculates the overall virtual control
command vector ®𝜈 (angular acceleration commands) based on the tracking error vector (𝑒𝑝 , 𝑒𝑞 , 𝑒𝑟 )𝑇 , which is computed
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using the body-rate state measurements (𝑝, 𝑞, 𝑟)𝑇 and the obtained reference signals from the prior angular kinematics
inversion step:

®𝜈 = 𝐾2


𝑒𝑝

𝑒𝑞

𝑒𝑟

 = 𝐾2
©­­«

𝑝𝑟

𝑞𝑟

𝑟𝑟

 −

𝑝

𝑞

𝑟


ª®®¬ , (6)

with 𝐾2 being a gain matrix. The required moment vector is computed via:

®𝑄 =


𝐿𝑐

𝑀𝑐

𝑁𝑐

 = 𝐼

¤𝑝𝑐
¤𝑞𝑐
¤𝑟𝑐

 +

𝑝

𝑞

𝑟

 × 𝐼

𝑝

𝑞

𝑟

 . (7)

During the midcourse operation at atmospheric altitudes, the GHGV-2 commands a redundant set of control surfaces
(four integrated fins) used for the vehicle’s attitude control. Fig. 4 shows the available control effectors with the
connected deflections of the upper left fin 𝛿1, upper right fin 𝛿2, lower left fin 𝛿3 and lower right fin 𝛿4. Due to the

δ1 δ2

δ3 δ4

Control Surfaces of HGV

Figure 4 Rear view on GHGV-2 and available control effectors during endoatmospheric operations.

over-actuation of the system, a control allocation system is needed to translate the abstract moment vector ®𝑄 into a
control input vector ®𝛿. To do so, the following constrained min-norm control allocation problem is solved [20–22]:

arg min
®𝛿 ∈ R𝑚

∥ ®𝛿∥2

subject to ®𝑄 = 𝐵 ®𝛿,
®𝛿𝑚𝑖𝑛 ≤ ®𝛿 ≤ ®𝛿𝑚𝑎𝑥 ,

(8)

where ®𝛿𝑚𝑖𝑛, ®𝛿𝑚𝑎𝑥 ,®¤𝛿𝑚𝑖𝑛 and ®¤𝛿𝑚𝑎𝑥 are maximum and minimum magnitude and rate limits of the redundant set of actuators,
𝑚 the number of control inputs and 𝐵 being the control effectiveness matrix defined as the following Jacobian matrix:

𝐵 =



𝜕𝐿

𝜕𝛿1

𝜕𝐿

𝜕𝛿2

𝜕𝐿

𝜕𝛿3

𝜕𝐿

𝜕𝛿4
𝜕𝑀

𝜕𝛿1

𝜕𝑀

𝜕𝛿2

𝜕𝑀

𝜕𝛿3

𝜕𝑀

𝜕𝛿4
𝜕𝑁

𝜕𝛿1

𝜕𝑁

𝜕𝛿2

𝜕𝑁

𝜕𝛿3

𝜕𝑁

𝜕𝛿4


. (9)

Since the 𝑙2 norm is minimized, the optimization problem can be formulated as a quadratic programming control

allocation problem, cf. [20, 21].
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Remark 1 In the following sections, different concepts and notations for control inputs are used. Due to the over-
actuation of the considered hypersonic system, the integrated nonlinear controller described earlier does not directly
generate a usable control input for the system. Instead, it produces a virtual control command ®𝜈, which is fed into a
control allocation system to compute the control deflections ®𝛿. These deflections act as the actual control input to the
system. In subsequent sections, a generalized view of the control system is presented. To remain consistent with the
available literature, the generalized control input vector is denoted as ®𝑢. This vector corresponds with the virtual control
command ®𝜈 generated by the nonlinear controller in the later introduced methodology.

IV. Quasi-LPV Flight Dynamics Model
As discussed in the previous section, the considered dynamics can be interpreted as nested dynamics, in which

the changes in the moment vector lead to body-rate changes and consequently to changes in the vehicle attitude.
The following section introduces the general concepts of LPV-based control methodologies and their application
to control problems like the one at hand. Subsequently, the steps required to transform the previously introduced
nonlinear dynamics of the hypersonic glide vehicle into a parameter-dependent quasi-linear system are outlined. This
transformation is later shown to enable a more systematic derivation of the gains for the cascaded linear controllers
utilized within an NDI-based control scheme, as detailed in Sect. III, and to facilitate their tuning across different
operating points within the flight envelope.

A. Generalities and Grid-Based Quasi-LPV Structure
We consider the following general nonlinear parameter-dependent system:

®¤𝑥 = 𝑓 ( ®𝑥(𝑡), ®𝑢(𝑡), ®𝜎(𝑡) ), (10)

®𝑦 = ℎ( ®𝑥(𝑡), ®𝑢(𝑡), ®𝜎(𝑡) ), (11)

where ®𝑥(𝑡) ∈ R𝑛 is the system state, ®𝑢(𝑡) ∈ R𝑚 is the control input, ®𝑦(𝑡) ∈ R𝑝 is the output vector and ®𝜎(𝑡) ∈ R𝑞

represents the operating point parameter vector. In classical flight control approaches, the airframe is trimmed at an
operating point, defined by the parameter vector ®𝜎0, by finding the equilibrium controls ®𝑢0 such that the system state
derivative ®¤𝑥 = 𝜕 ®𝑥

𝜕𝑡
goes to zero. As long the system operates in proximity to the considered equilibrium ®𝜎0 while

maintaining the trim state ®𝑥0 and trim control input ®𝑢0 with additional small 𝛿®𝑥 and 𝛿®𝑢 perturbation terms, the dynamics
can be approximated using the state-space representation of the form:

𝛿®¤𝑥 = 𝐴(®𝜎0) 𝛿®𝑥(𝑡) + 𝐵(®𝜎0) 𝛿®𝑢(𝑡), (12)

𝛿®𝑦 = 𝐶 (®𝜎0) 𝛿®𝑥(𝑡) + 𝐷 (®𝜎0) 𝛿®𝑢(𝑡), (13)

where 𝛿®𝑥 = ®𝑥 − ®𝑥0 is the state perturbation vector, 𝛿®𝑢 = ®𝑢 − ®𝑢0 is the input perturbation vector, and 𝛿®𝑦 = ®𝑦 − ®𝑦0 is the
output perturbation vector. The matrices 𝐴(®𝜎0), 𝐵(®𝜎0), 𝐶 (®𝜎0), and 𝐷 (®𝜎0) represent the Jacobian linearization of the
nonlinear system around the trim point ®𝜎0 from Eq. (10) and Eq. (11) in the form of

𝐴 :=
𝜕 𝑓

𝜕𝑥

��� ®𝑥= ®𝑥0
®𝑦=®𝑦0
®𝜎= ®𝜎0

∈ R𝑛×𝑛, 𝐵 :=
𝜕 𝑓

𝜕𝑢

��� ®𝑥= ®𝑥0
®𝑦=®𝑦0
®𝜎= ®𝜎0

∈ R𝑛×𝑚,

𝐶 :=
𝜕ℎ

𝜕𝑥

��� ®𝑥= ®𝑥0
®𝑦=®𝑦0
®𝜎= ®𝜎0

∈ R𝑝×𝑛, 𝐷 :=
𝜕ℎ

𝜕𝑢

��� ®𝑥= ®𝑥0
®𝑦=®𝑦0
®𝜎= ®𝜎0

∈ R𝑝×𝑚.

Remark 2 In the case of HGVs, the notion of trim differs slightly from that of conventional subsonic or transonic
vehicles. Due to its glide-oriented operation and the absence of integrated propulsion systems after re-entry, the vehicle,
unlike standard aircraft, does not typically maintain a steady "1𝑔" horizontal flight. Instead, it continually changes speed
and altitude during its mission. For a conventional aircraft, trim is obtained by setting the vector ( ¤𝑢, ¤𝑣, ¤𝑤, ¤𝑝, ¤𝑞, ¤𝑟) = 01×6
[23]. However, for the HGV considered here, the trim condition is defined as ( ¤𝑝, ¤𝑞, ¤𝑟, 𝑝, 𝑟, ¤𝛼) = 01×6. This condition
implies the following: the vehicle is neither rolling nor yawing, and it is not subject to rotational accelerations
( ¤𝑝, ¤𝑞, ¤𝑟, 𝑝, 𝑟 = 0). Additionally, ¤𝛼 = 0 means that the angle of attack 𝛼 and the pitching rate 𝑞 are determined such that
the lift force generated at the given angle of attack balances the current flight path angular rate ¤𝛾. Furthermore, the
control surface deflections required to maintain a constant angle of attack are also specified under this condition.
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The obtained state-space system can be used to analyze the dynamics and to derive controllers for a region of
attraction around ®𝜎0. Since aerospace systems usually operate over a broad set of equilibria, referred to as flight
envelope, an equilibrium manifold must be obtained. Hence, the airframe is trimmed over the whole flight envelope.
The different controllers are then connected via interpolation and parameterized as a function of ®𝜎(𝑡); the method is
referred to as gain scheduling. NDI-based approaches, as presented in Sect. III, can substitute the gain scheduling by
continuously transforming the nonlinear dynamics into the linear domain using known plant dynamics [24].

The same goes for LPV methodologies, which use a state transformation to remove all the nonlinearities present in
the model that do not depend on the scheduling variables [25, 26]. The obtained point-wise linear model 𝑆( ®𝜌) can be
called an LPV system when its state-space matrices, which are parameterized by the parameter vector ®𝜌, exclusively
depend on the trimming vector, meaning ®𝜌 = ®𝜎. Fig. 5 illustrates the described idea behind the concept of LPV systems.
When ®𝜌 additionally depends on some system states ®𝑥, e.g. ®𝜌 = [𝑥1, 𝑥3, . . . , 𝜎], the derived model is called quasi-LPV

𝜎3 𝑺(𝝈𝟎)

𝜎2

𝜎1

Figure 5 Example for an equilibrium manifold with the parametrization vector ®𝜎 = [𝜎1, 𝜎2, 𝜎3]𝑇 and with an
LPV model 𝑆(®𝜎) at the trim point ®𝜎0.

[27]. The quasi-LPV model of a general nonlinear system presented in Eq. (10) and Eq. (11) is expressed in a generic
form as:

𝑆( ®𝜌) :

[
𝛿®¤𝑥(𝑡)
𝛿®𝑦(𝑡)

]
=

[
𝐴( ®𝜌) 𝐵( ®𝜌)
𝐶 ( ®𝜌) 𝐷 ( ®𝜌)

] [
𝛿®𝑥(𝑡)
𝛿®𝑢(𝑡)

]
, (14)

Several methods have been proposed to obtain the quasi-LPV model from nonlinear systems as defined in Eq. (10)
and Eq. (11), such as state transformation and function substitution [25, 28, 29]. A grid-based quasi-LPV model for
modeling the considered dynamics is used in this work. Within the approach, Jacobian linearized dynamics are obtained
for a sufficiently large number of operating points over the equilibrium manifold and then connected via interpolation
utilizing the parameter vector ®𝜌 [30]. Fig. 5 illustrates the described idea behind the concept of such grid-based LPV
system representations in the case of a three-dimensional dependency.

The flight envelope of a hypersonic glide vehicle system is typically defined by borders which are function of the
Mach number Ma and altitude 𝐻. Accordingly, an operating point for the system can be defined by the vector of flight
point parameters:

®𝜎 =

[
Ma 𝐻

]𝑇
. (15)

If only ®𝜎 were considered, the system could indeed be represented as a classical linear parameter-varying (LPV) system.
However, the system under consideration is nonlinear with respect to the aerodynamic angles of attack 𝛼 and sideslip 𝛽.
As such, relying solely on ®𝜎 to capture the system dynamics is insufficient. To address these nonlinearities, 𝛼 and 𝛽 are
included in the parameter vector:

®𝜌 =

[
𝛼 𝛽 ®𝜎𝑇

]𝑇
=

[
𝛼 𝛽 Ma 𝐻

]𝑇
. (16)

7

D
ow

nl
oa

de
d 

by
 J

oh
an

ne
s 

A
ut

en
ri

eb
 o

n 
Ja

nu
ar

y 
21

, 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
5-

19
08

 



This inclusion transforms the system into a quasi-LPV representation. Since the nonlinearities in 𝛼 and 𝛽 are accounted
for in the quasi-LPV model, the system dynamics are represented more accurately across the flight envelope.

For the case of midcourse attitude control of HGVs considered in this paper, as suggested in Sect. III, the state vector
®𝑥𝛿 and the input vector ®𝑢𝛿 of the considered hypersonic glide vehicle rotational dynamics are defined as follows:

𝛿®𝑥 =
[
𝛿®𝑥1 𝛿®𝑥2

]𝑇
=

[
𝛿𝜇 𝛿𝛼 𝛿𝛽 𝛿𝑝 𝛿𝑞 𝛿𝑟

]𝑇
(17)

𝛿®𝑢 =

[
𝛿 ¤𝑝 𝛿 ¤𝑞 𝛿 ¤𝑟

]𝑇
. (18)

with
[𝛿𝜇 𝛿𝛼 𝛿𝛽 𝛿𝑝 𝛿𝑞 𝛿𝑟]𝑇 = [𝜇 𝛼 𝛽 𝑝 𝑞 𝑟]𝑇 − [𝜇0 𝛼0 𝛽0 𝑝0 𝑞0 𝑟0]𝑇 .

[𝛿 ¤𝑝 𝛿 ¤𝑞 𝛿 ¤𝑟]𝑇 = [ ¤𝑝 ¤𝑞 ¤𝑟]𝑇 − [ ¤𝑝0 ¤𝑞0 ¤𝑟0]𝑇 .

It needs to be noted that for simplicity, in this paper, perfect measurement of the regarded state vector ®𝑥 is assumed,
which suggests ®𝑦 = ®𝑥 and leads to 𝐶 ( ®𝜌) = 𝐼𝑝×𝑛. Further, it is assumed that the control inputs do not have any direct
influences on the output vector ®𝑦 and hence 𝐷 ( ®𝜌) = 0𝑝×𝑚. Both assumptions are commonly used in flight control and
hence are not too limiting, as, for example, shown in [31]. However, if the state vector cannot be fully measured, the
approach must be extended to an output feedback controller.

B. Derivation of a Grid-Based Quasi-LPV Model for HGVs during the Midcourse Phase
The relationship from Eq. (3) relates the attitude angle time-derivatives ( ¤𝜇, ¤𝛼, ¤𝛽) with the body rates (𝑝, 𝑞, 𝑟) and

flight path angle ¤𝛾 and track angle time-derivatives ¤𝜒. For the application to the aerodynamic attitude control of the
hypersonic glider during the midcourse phase, this relationship can be simplified. We first consider the nonlinear
dynamics of ¤𝛾 and ¤𝜒, defined as:

¤𝛾 =
1
𝑚𝑉

[𝐿 cos(𝜇) −𝑊 cos(𝛾) − 𝑌 sin(𝜇) cos(𝛽)]︸                                                 ︷︷                                                 ︸
𝑓 ¤𝛾

, (19)

where 𝐿 is the aerodynamic lift force,𝑊 = 𝑚𝑔 is the gravitational force and 𝑌 is the aerodynamic side force for ¤𝛾. For
¤𝜒 Eq. (3) reads:

¤𝜒 =
1

𝑚𝑉 cos(𝛾) [𝐿 sin(𝜇) + 𝑌 cos(𝜇) cos(𝛽)]︸                                ︷︷                                ︸
𝑓 ¤𝜒

. (20)

To empathize the rationals behind the approach of simplification, a case is constructed in which the vehicle is considered
at a parameterized operating point ®𝜌0 = (𝛼0, 𝛽0,Ma0, 𝐻0). The dynamics for ¤𝛾 and ¤𝜒 around the considered point of
the equilibrium manifold can be described as perturbation-based dynamics, defined as:

𝛿 ¤𝛾 =
1
𝑚𝑉0

[
𝜕 𝑓 ¤𝛾

𝜕®𝑥0
(®𝑥0, ®𝑢0) 𝛿®𝑥 +

𝜕 𝑓 ¤𝛾

𝜕 ®𝑢0
(®𝑥0, ®𝑢0) 𝛿®𝑢

]
, (21)

and
𝜕 ¤𝜒 =

1
𝑚𝑉0

[
𝜕 𝑓 ¤𝜒

𝜕®𝑥0
(®𝑥0, ®𝑢0) 𝛿®𝑥 +

𝜕 𝑓 ¤𝜒

𝜕 ®𝑢0
(®𝑥0, ®𝑢0) 𝛿®𝑢

]
, (22)

where the variable 𝑉0 represents the, in comparison to the regarded attitude dynamics, slow varying travel speed at
the considered operating point, which can be expressed as 𝑉0 = Ma0 𝑎0, with 𝑎0 being the speed of sound at the given
altitude 𝐻0. During the majority of the mission, particularly the midcourse phase, the vehicle operates at high speeds,
suggesting high values of 𝑉0. This yields the following approximations:

𝑚𝑉0 ≫
���� 𝜕 𝑓 ¤𝛾𝜕®𝑥0

(®𝑥0, ®𝑢0) 𝛿®𝑥 +
𝜕 𝑓 ¤𝛾

𝜕 ®𝑢0
(®𝑥0, ®𝑢0) 𝛿®𝑢

���� ,
𝑚𝑉0 ≫

���� 𝜕 𝑓 ¤𝜒𝜕®𝑥0
(®𝑥0, ®𝑢0) 𝛿®𝑥 +

𝜕 𝑓 ¤𝜒

𝜕 ®𝑢0
(®𝑥0, ®𝑢0) 𝛿®𝑢

���� .
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These relationships suggest that, for the considered flight phase, the coupling between translational and rotational
dynamics via the terms ¤𝛾 and ¤𝜒 can be neglected. This leads to the following simplified and affine version of Eq. (3)
around any equilibrium point ®𝜌:

𝛿®𝑥1 =


𝛿 ¤𝜇
𝛿 ¤𝛼
𝛿 ¤𝛽

 = 𝑇1 ( ®𝜌)

𝛿𝑝

𝛿𝑞

𝛿𝑟

 , (23)

where 𝑇1 ( ®𝜌) is a transformation matrix with dependencies on 𝛼 and 𝛽 (cf. Eq. (3)). In many applications, the
contribution of the cross product in Eq. (2) can be assumed to be much smaller than the influence of the aerodynamic
moments [32]. This allows in the first to simplify Eq. (2) as:

𝛿®𝑥2 =


𝛿 ¤𝑝
𝛿 ¤𝑞
𝛿 ¤𝑟

 = I−1


𝛿𝐿

𝛿𝑀

𝛿𝑁

 . (24)

As discussed in Sect. II, only the aerodynamic, gravitational, centrifugal, and Coriolis forces and moments are initially
regarded as relevant during the reentry phase since hypersonic glide vehicles are commonly unpowered during these
mission stages. In a previous step, it was suggested that forces, and consequently also moments, induced by gravitation
can be neglected for the control problem considered here. The same applies to forces and moments arising from
centrifugal and Coriolis effects acting on the vehicle. Since these contributions have only a limited effect on the
regarded dynamics, it is often well justified to neglect them when considering the attitude control of a flight vehicle [33].
With these simplifications, only aerodynamic moments remain, which can be modeled as functions of the scheduling
parameter vector ®𝜌: 

𝛿𝐿 ( ®𝜌)
𝛿𝑀 ( ®𝜌)
𝛿𝑁 ( ®𝜌)

 = 𝑞 𝑆 𝑙︸︷︷︸
Γ


𝛿𝐶𝑙 ( ®𝜌)
𝛿𝐶𝑚 ( ®𝜌)
𝛿𝐶𝑛 ( ®𝜌)

 , (25)

with 𝑞 being the dynamic pressure, 𝑆 the aerodynamic reference area, and 𝑙 the aerodynamic reference length (same for
all axes here). The aerodynamic moment coefficients are usually nonlinear functions of the flow conditions, which
in our case depends on the current flight parameters ®𝜌 and the states ®𝑥. To obtain a quasi-LPV representation, a
Jacobian linearization approach was used in which the needed moment coefficient derivatives concerning the states
(𝜇, 𝛼, 𝛽, 𝑝, 𝑞, 𝑟) are modeled as functions of the scheduling parameters ®𝜌. That is, the nonlinear moment coefficients
(𝐶𝑙 ( ®𝜌), 𝐶𝑚 ( ®𝜌), 𝐶𝑛 ( ®𝜌)) are approximated as affine functions of the state vector (𝛿𝜇, 𝛿𝛼, 𝛿𝛽, 𝛿𝑝, 𝛿𝑞, 𝛿𝑟)𝑇 :


𝛿𝐶𝑙 ( ®𝜌)
𝛿𝐶𝑚 ( ®𝜌)
𝛿𝐶𝑛 ( ®𝜌)

 =

𝐶𝑙,𝜇 ( ®𝜌) 𝐶𝑙,𝛼 ( ®𝜌) 𝐶𝑙,𝛽 ( ®𝜌) 𝐶𝑙, 𝑝 ( ®𝜌) 𝐶𝑙,𝑞 ( ®𝜌) 𝐶𝑙,𝑟 ( ®𝜌)
𝐶𝑚,𝜇 ( ®𝜌) 𝐶𝑚,𝛼 ( ®𝜌) 𝐶𝑚,𝛽 ( ®𝜌) 𝐶𝑚,𝑝 ( ®𝜌) 𝐶𝑚,𝑞 ( ®𝜌) 𝐶𝑚,𝑟 ( ®𝜌)
𝐶𝑛,𝜇 ( ®𝜌) 𝐶𝑛,𝛼 ( ®𝜌) 𝐶𝑛,𝛽 ( ®𝜌) 𝐶𝑛,𝑝 ( ®𝜌) 𝐶𝑛,𝑞 ( ®𝜌) 𝐶𝑛,𝑟 ( ®𝜌)





𝛿𝜇

𝛿𝛼

𝛿𝛽

𝛿𝑝

𝛿𝑞

𝛿𝑟


. (26)

The linearization procedure is performed across the four-dimensional space of the scheduling variables ®𝜌 =

[𝛼 𝛽 𝑀𝑎 𝐻]𝑇 , delivering a multidimensional grid of aerodynamic coefficients needed to model the dynamics
of the system. Fig. 6 illustrates the nonlinear dependencies for two of the most important derivatives, 𝐶𝑚,𝛼 ( ®𝜌) and
𝐶𝑙,𝛽 ( ®𝜌), out of the 18 involved in Eq. (26). As the four-dimensional tables cannot be visualized, only two-dimensional
slices are represented as three-dimensional surface plots: for 𝐶𝑚,𝛼 ( ®𝜌) the (𝑀𝑎, 𝛼) slice corresponding to 𝐻 = 5000 m
and 𝛽 = 0° is shown in Fig. 6a. The slice of 𝐶𝑙,𝛽 ( ®𝜌) for 𝐻 = 5000 m and 𝛼 = 0° is shown in Fig. 6b. The partial and
incomplete view provided by these slices already shows that the model exhibits significant nonlinearities.

As explained earlier in Eqs. (8-9) and Fig. 4, the vehicle is over-actuated and a control allocation is used. The control
input vector 𝛿®𝑢 is defined as the perturbation virtual control command vector 𝛿®𝜈 = (𝛿 ¤𝑝, 𝛿 ¤𝑞, 𝛿 ¤𝑟)𝑇 and these inputs can
directly be injected into the equations of ¤𝑝, ¤𝑞, and ¤𝑟 .

Eventually, the following quasi-LPV representation is obtained:
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(a) 𝐶𝑚,𝛼 ( ®𝜌) for 𝐻 = 5000 m and 𝛽 = 0°.
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(b) 𝐶𝑙,𝛽 ( ®𝜌) for 𝐻 = 5000 m and 𝛼 = 0°.

Figure 6 Examples of as state affine modeled aerodynamic moments across the generated grid data set.

𝛿 ¤®𝑥 = 𝐴( ®𝜌)



𝛿𝜇

𝛿𝛼

𝛿𝛽

𝛿𝑝

𝛿𝑞

𝛿𝑟

︸︷︷︸
𝛿 ®𝑥

+𝐵( ®𝜌)

𝛿 ¤𝑝
𝛿 ¤𝑞
𝛿 ¤𝑟

︸︷︷︸
𝛿 ®𝑢

, (27)

where

𝐴( ®𝜌) =
[
03×3 𝑇1 ( ®𝜌)

Ξ( ®𝜌)

]
, (28)

with Ξ( ®𝜌) = I−1Γ


𝐶𝑙,𝜇 ( ®𝜌) 𝐶𝑙,𝛼 ( ®𝜌) 𝐶𝑙,𝛽 ( ®𝜌) 𝐶𝑙, 𝑝 ( ®𝜌) 𝐶𝑙,𝑞 ( ®𝜌) 𝐶𝑙,𝑟 ( ®𝜌)
𝐶𝑚,𝜇 ( ®𝜌) 𝐶𝑚,𝛼 ( ®𝜌) 𝐶𝑚,𝛽 ( ®𝜌) 𝐶𝑚,𝑝 ( ®𝜌) 𝐶𝑚,𝑞 ( ®𝜌) 𝐶𝑚,𝑟 ( ®𝜌)
𝐶𝑛,𝜇 ( ®𝜌) 𝐶𝑛,𝛼 ( ®𝜌) 𝐶𝑛,𝛽 ( ®𝜌) 𝐶𝑛,𝑝 ( ®𝜌) 𝐶𝑛,𝑞 ( ®𝜌) 𝐶𝑛,𝑟 ( ®𝜌)

 (29)

and with the following control effectiveness matrix 𝐵( ®𝜌):

𝐵( ®𝜌) =
[
03×3

𝐼3×3

]
. (30)

The defined control effectiveness matrix 𝐵( ®𝜌) allows designing the controller without directly having to consider the
control surface effectiveness. The controller virtual commands 𝜈 are transformed into moment commands using Eq. (7)
and solved through the control allocation problem in Eq. (8). This representation does not consider actuator dynamics.
In practice, if desired and when the actuators are able to follow the commands (i.e., not fully position- or rate-saturated),
generic actuator dynamics could be modeled on the virtual commands by using low-pass filters with the appropriate
bandwidth. This work focuses on the control architecture and the use of simplified models in an NDI-inspired approach,
and for simplicity, the actuator dynamics are neglected (i.e., assumed to be sufficiently fast).

Remark 3 It should be noted that the simplifications used for deriving the quasi-LPV dynamic model, particularly the
neglect of gravitational effects, result in a justifiable but unavoidable deviation between the derived quasi-LPV model
and the real nonlinear dynamics of the system. For instance, the gravitational force induces a constant downward
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acceleration that affects the time derivatives of the angle of attack and sideslip angle, depending on the flight path
bank angle. Additionally, despite the fact that the cross-coupling terms in Eq. (2) have little influence on the fast
dynamics and pointwise attitude changes, their neglect could lead to noticeable deviations in cases involving complex
maneuvers with non-trivial rotational dynamics (i.e., significant variations in 𝑝, 𝑞, and 𝑟). In the current state of this
work, these influences are neglected and not further discussed. However, in future work, such effects will be addressed
as disturbances on the dynamics to enhance the accuracy of the derived quasi-LPV model and provide better robustness
guarantees for controllers that are using the model for the control synthesis.

C. Comparison with LTI Models
During the derivation of the grid-based quasi-LPV model, several simplifications were made to transform the

nonlinear dynamic behavior of HGVs during the midcourse into a quasi-LPV representation in Eq. (27). A comparison
between local LTI models obtained by directly linearizing the full nonlinear model and simplified LPV model is
performed to check the differences in behavior between both models. In the study, the poles obtained on the derived
quasi-LPV model are compared to those of a local LTI model at the same flight conditions. The respective pole
migration with changing Mach number and altitude are shown in Fig. 7a and Fig. 7b. The pole locations from the LTI
model derived from the full nonlinear model are depicted using blue markers, while those from the simplified LPV
model are represented with red markers.

(a) Mach number variation at 𝛼 = 0°, 𝛽= 0°, 𝐻= 5000 m (b) Altitude variation at 𝛼 = 0°, 𝛽= 0°, 𝑀= 10

Figure 7 Pole-zero maps.

The presented analysis focuses on scenarios with variable altitudes and Mach numbers, maintaining zero angles of
attack (𝛼) and sideslip (𝛽). Fig. 7a shows the pole migration over Mach number variations (M=[5,20]) at an altitude of
5 km. For the results shown in Fig. 7b the Mach number was maintained at 10 to investigate the differences in the pole
location over variations in altitude. The good agreement between both models validates that only limited errors are
introduced through the simplifications made.

V. Gain Determination Using Eigenstructure Assignment
The state-space realization of the quasi-LPV approximation at a parametrized operating point ®𝜌 derived above, cf.

Eq (27), closely resembles the form of a generalized second-order system:

𝑀 ®¥𝜑 + 𝐷 ( ®𝜌) ®¤𝜑 + 𝐾 ( ®𝜌) ®𝜑 = 𝐹 ®𝑢𝜑 , (31)

where ®𝜑 is the generalized position vector (𝜇, 𝛼, 𝛽)𝑇 , ®¤𝜑 the generalized velocity vector ( ¤𝜇, ¤𝛼, ¤𝛽)𝑇 , 𝑀 the mass matrix,
𝐷 ( ®𝜌) the damping matrix, 𝐾 ( ®𝜌) the stiffness matrix, 𝐹 = [03𝑥3, 𝐼3𝑥3]𝑇 the control effectiveness matrix and ®𝑢𝜑 the
input vector( ¥𝜇, ¥𝛼, ¥𝛽)𝑇 [34]. Due to the generalized nature of the considered second-order dynamics, they can be
further abstracted to directly address the dynamical properties. By applying the following relationship, which is further
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discussed in [35], the differential equation can be rewritten in terms of the damping ratios 𝜁𝑖 ( ®𝜌) and natural frequencies
𝜔𝑖 ( ®𝜌) with decoupled eigenmodes:

®¥𝜑 +

2 𝜁𝜇 ( ®𝜌) 𝜔𝜇 ( ®𝜌) 0 0

0 2 𝜁𝛼 ( ®𝜌) 𝜔𝛼 ( ®𝜌) 0
0 0 2 𝜁𝛽 ( ®𝜌) 𝜔𝛽 ( ®𝜌)

︸                                                                 ︷︷                                                                 ︸
𝐷 ( ®𝜌)

®¤𝜑 +

𝜔2
𝜇 ( ®𝜌) 0 0
0 𝜔2

𝛼 ( ®𝜌) 0
0 0 𝜔2

𝛽
( ®𝜌)

︸                             ︷︷                             ︸
𝐾 ( ®𝜌)

®𝜑 = 𝐹 ®𝑢𝜑 . (32)

This equation is further reformulated to describe the regarded dynamics in a form similar to the previously derived
state-space system, cf. Sect. IV, leading to:

®¤𝑥𝜑 =

[
®¤𝜑
®¥𝜑

]
=

[
03𝑥3 𝐼3𝑥3

−𝑑𝑖𝑎𝑔(𝜔2
𝑖 ( ®𝜌)) −𝑑𝑖𝑎𝑔(2𝜁𝑖 ( ®𝜌)𝜔𝑖 ( ®𝜌))

]
︸                                                ︷︷                                                ︸

𝐴𝜑 ( ®𝜌)

[
®𝜑
®¤𝜑

]
︸︷︷︸

®𝑥𝜑

+
[
03𝑥3

𝐼3𝑥3

]
︸ ︷︷ ︸
𝐵𝜑 ( ®𝜌)

®𝑢𝜑 . (33)

Even though the derived relationship allows to define the damping and natural frequencies for a second-order system,
the current state-space realization does not match the presented state-space form of Eq. (27), since ( ¤𝜇, ¤𝛼, ¤𝛽) does not
equal (𝑝, 𝑞, 𝑟). Hence, a similarity transformation is applied to change the state vector definition of the last derived
state-space system from Eq.(33):

®𝑥𝜑 = 𝑇 ( ®𝜌)𝛿®𝑥, (34)

where 𝛿®𝑥 is the desired state vector (𝛿𝜇, 𝛿𝛼, 𝛿𝛽, 𝛿𝑝, 𝛿𝑞, 𝛿𝑟)𝑇 from Eq. (27) and 𝑇 ( ®𝜌) a linear transformation matrix,
defined by:

𝑇 ( ®𝜌) =
[
𝐼3𝑥3 03𝑥3

03𝑥3 𝑇1 ( ®𝜌)

]
.

Applying the given similarity transformation on Eq. (33) via Eq. (34), we obtain:

𝑇 ( ®𝜌)𝛿 ¤®𝑥 = 𝐴𝜑 ( ®𝜌)𝑇 ( ®𝜌)𝛿®𝑥 + 𝐵𝜑 ( ®𝜌) ®𝑢𝜑 . (35)

Rearranging Eq. (35) yields:

𝛿 ¤®𝑥 = 𝑇−1 ( ®𝜌)𝐴𝜑 ( ®𝜌)𝑇︸             ︷︷             ︸
𝐴( ®𝜌)

𝛿®𝑥 + 𝑇−1 ( ®𝜌)𝐵𝜑 ( ®𝜌)︸           ︷︷           ︸
𝐵𝜑 ( ®𝜌)

®𝑢𝜑 ,
(36)

where

𝐴( ®𝜌) =
[

03𝑥3 𝑇1 ( ®𝜌)
−𝑇−1

1 ( ®𝜌)𝑑𝑖𝑎𝑔(2𝜁𝑖 ( ®𝜌)𝜔𝑖 ( ®𝜌)) −𝑇−1
1 ( ®𝜌)𝑑𝑖𝑎𝑔(𝜔2

𝑖 ( ®𝜌))𝑇1 ( ®𝜌)

]
𝐵𝜑 ( ®𝜌) =

[
03𝑥3

𝑇−1
1 ( ®𝜌)

]
.

However, there is still a mismatch of the control input between the here derived generalized replacement model, which
uses ®𝑢𝜑 , and the state space system in Eq. (27), which uses 𝛿®𝑢. The input is transformed utilizing a method given
in [19, 36]: by differentiating Eq (3) with respect to time, the following relationship between the body rotational
accelerations and the angular accelerations is obtained:

¥𝜇
¥𝛼
¥𝛽

 = 𝑇1 ( ®𝜌)

¤𝑝
¤𝑞
¤𝑟

 + ¤𝑇1 ( ®𝜌)

𝑝

𝑞

𝑟

 + 𝑇2 ( ®𝜌)
[
¥𝛾
¥𝜒

]
+ ¤𝑇2 ( ®𝜌)

[
¤𝛾
¤𝜒

]
. (37)
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Neglecting the translation-related terms containing ¤𝛾, ¤𝜒, ¥𝛾, and ¥𝜒, and assuming a time-scale separation between the
considered dynamics and the matrix function ¤𝑇1 ( ¤𝑇1 ≈ 03×3 is only violated under very aggressive maneuvers) the
following simplification holds:

®𝑢𝜑 =


¥𝜇
¥𝛼
¥𝛽

 = 𝑇1 ( ®𝜌) ®𝑢 = 𝑇1 ( ®𝜌)

¤𝑝
¤𝑞
¤𝑟

 . (38)

This allows to formulate the following new control effectiveness matrix 𝐵 for the considerd replacement model:

𝐵( ®𝜌) =
[
03𝑥3

𝐼3𝑥3

]
, (39)

leading to:

𝛿 ¤®𝑥 = 𝐴( ®𝜌)𝛿®𝑥 + 𝐵( ®𝜌)𝛿®𝑢. (40)

The obtained state-space form allows solving the Eigenstructure assignment problem analytically by exploiting the
generalized second-order structure of the system. The analytical expressions for the feedback gains of the cascaded
nonlinear control are based on the terms previously derived for the quasi-LPV model from Eq. (27). Note, that the
possibility of defining the desired closed-loop dynamics as a function of the scheduling parameters ®𝜌 remains, but the
notation “( ®𝜌)” is dropped from now on, as it would be applied to most variables, affecting readability. The system is
controlled by means of a static full-state feedback matrix 𝐾 , such that the control input vector 𝛿®𝑢 can be defined as:

𝛿®𝑢 = −𝐾𝛿®𝑥. (41)

Applying the previously derived quasi-LPV model from Eq. (27) yields:

𝛿®¤𝑥 = 𝐴𝛿®𝑥 + 𝐵𝛿®𝑢 = 𝐴𝛿®𝑥 − 𝐵𝐾𝛿®𝑥 = (𝐴 − 𝐵𝐾)︸      ︷︷      ︸
𝐴

𝛿®𝑥, (42)

where 𝐴 is the desired closed-loop system matrix and is defined by setting the system matrix from Eq. (40) with desired
pole locations (𝜔𝑖 and 𝜁𝑖) and decoupled eigenmodes. By setting 𝐴 in this way, not only the poles are being placed, but
also the eigenvectors. Hence the following Eigenstructure assignment problem is solved for the considered generalized
second-order system:

𝐴 = 𝑉Λ𝑉−1, (43)

with
𝑉 =

[
𝜉1 . . . 𝜉𝑛

]
,

and

Λ =


𝜆1 . . . 0
...

. . .
...

0 . . . 𝜆𝑛

 ,
where 𝜉𝑖 are the 𝑛 eigenvectors and 𝜆𝑖 = 𝑎𝑖 ± 𝑏𝑖 the corresponding eigenvalues [37]. The feedback gain matrix 𝐾
follows as:

𝐾 = (𝐵𝑇𝐵)−1𝐵𝑇 (𝐴 − 𝐴). (44)

This approach allows computing the feedback control gain matrix 𝐾 by considering both the current system dynamics, cf.
Eq. (27), and the desired system dynamics, cf. Eq. (40). Hence, the presented method allows to place the closed-loop
dynamics directly through the the desired system matrix 𝐴. The resulting feedback control gain matrix 𝐾 takes the form
of an 𝑛 × 𝑚 matrix, typically structured as:

𝐾𝑇 =


𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝐾7 𝐾8 𝐾9 𝐾10 𝐾11 𝐾12

𝐾13 𝐾14 𝐾15 𝐾16 𝐾17 𝐾18

 . (45)
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In theory, the proposed controller method can be used as an online solution, with real-time calculation of the gains using
modern embedded systems. In this work, we opt for offline gain computation over the entire flight envelope. A gain
scheduling approach is implemented, and the preferred gains are stored in lookup tables for the entire flight envelope.
These gains can be directly utilized for full-state feedback, providing an approximately equivalent control approach

+

+

+

+

𝛿 Ԧ𝑥2

𝛿 Ԧ𝑥1

𝛿𝑢 𝛿 Ԧ𝑥
𝐺(𝑠)

𝐾2

𝐾2 𝐾1𝑇1(𝑠)

𝑲

𝑲∗

Figure 8 Illustration of abstracted cascaded inversion-based nonlinear flight control architecture.

to an NDI controller. Alternatively, the gains can be extracted for the cascaded NDI feedback control system. Fig. 8
illustrates how the feedback control matrix 𝐾 is re-interpreted into a cascaded inversion-based nonlinear flight control
architecture, where 𝐺 (𝑠) is the abstracted plant that includes the open-loop systems dynamics from Eq.(27). By using
the same assumptions as presented for the quasi-LPV model in Sect. IV for the derivation of Eq.(27), the gain matrix 𝐾
is partitioned into the matrix elements 𝐾2 and 𝐾∗:

𝐾 =


𝐾∗

𝐾2

 =


𝐾1 𝐾7 𝐾13

𝐾2 𝐾8 𝐾14

𝐾3 𝐾9 𝐾15

𝐾4 𝐾10 𝐾16

𝐾5 𝐾11 𝐾17

𝐾6 𝐾12 𝐾18


, (46)

where 𝐾2 is the inner-loop control gain matrix. As illustrated in Fig. 8, the other matrix element is given by:

𝐾∗ = 𝐾2𝑇1𝐾1. (47)

The gain matrix for the outer-loop controller is defined as:

𝐾1 = (𝐾2𝑇1)−1𝐾∗. (48)

A. Comparison analysis of closed-loop system with cascaded NDI and desired Poles
In the following investigation, the effectiveness of the proposed Eigenstructure assignment method is evaluated by

comparing the poles of the linearized closed-loop system with a cascaded nonlinear controller to the desired poles for a
single operating point. The operating point is defined by 𝛼 = 0°, 𝛽 = 0°, 𝐻 = 40km, and Ma = 12.5. The desired pole
locations are given in Table 1, and the closed-loop poles resulting from the proposed method are given in Fig. 9 and
numerically in Table 1.

The obtained pole locations closely approximate their desired values, indicating that the proposed quasi-LPV
approximation, in combination with Eigenstructure assignment, offers a valid method for determining the gain parameters
of the cascaded nonlinear controller structure. While the analysis focuses on a single operating point, it is essential to
note that similar results were obtained across various operating conditions. This suggests that desired pole locations can
be met by the presented approach, even in sub-hypersonic flight regimes.
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Table 1 Desired and obtained closed-loop poles of nonlinear cascaded controller.

Flight dynamics mode Desired pole pair Obtained pole pair

Bank angle related poles (𝜇, 𝑝) -6.8850 ±4.2669i -6.8851 ±4.2637i

Angle of attack related poles (𝛼, 𝑞) -10.2850 ±6.3741i -10.3048 ±7.2033i

Sideslip angle related poles (𝛽, 𝑟) -8.5850 ±5.3205i -8.5935 ±5.1123i
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Figure 9 Poles-zeros map: Comparison between the closed-loop system with the cascaded NDI applied to the
nonlinear model and the desired pole locations.

VI. Simulation Results
A nonlinear simulation examined the control performance of the cascaded nonlinear control architecture, as presented

in Sect. III, that uses gains determined via the proposed methodology. In the subsequent exemplary evaluation, the
closed-loop control system is evaluated for the control performance of the nominal closed-loop system w.r.t pitch, roll
and yaw maneuvers. The flight vehicle is trimmed and initiated at an altitude of 45 km and a Mach number of 12.5.

Fig. 10 presents the closed-loop system response to a sinusoidal input of increasing amplitude on the commanded
angle of attack 𝛼𝑟 . The reference command is in dash-dotted black, and the vehicle’s response is displayed as a solid
gray line.

The controller tracks the given reference signal on the angle of attack channel tightly. However, the closed-loop
tracks with a small time delay due to the defined frequency of the desired closed-loop response. The actuator position
limits are displayed in dashed red lines and are set to 20◦ for the upper limit and to 0◦ for the lower limit for each
flap. The control allocation described in Sect. III distributes the commands on the four control surfaces, as expected.
Upon reaching the position limits on the third and fourth actuators (a direct consequence of the increasing amplitude
of the test signal), the algorithms start to use the first and second actuators for compensation. The integrated control
allocation algorithm does not violate the defined limits and, as desired, no visible change in tracking behavior can be
observed when this occurs. It needs to be noted that the differences in the magnitude between the upper and lower flap
deflections can be explained due to the different flow conditions on the upper and lower side of the vehicle. This leads to
a significantly higher control effectiveness for the lower flaps for cases in which the angle of attack of the vehicle are
positive or zero. For cases with negative angle of attacks this effect turns around.

In the following lateral-directional maneuver case, 𝛼 is held at 0◦. The tracking performance in the roll channel
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Figure 10 Simulation results for sinusoidal reference signal on the 𝛼 channel. Displayed time series: angle
of attack 𝛼, normalized pitch rate, and fin deflections in ◦. Dash-dotted black: reference command, solid grey:
vehicle response, dashed red: actuator deflection limits.

is evaluated by providing a doublet reference command on the 𝜇𝑟 channel with a magnitude of 5◦ at the beginning
of the simulation. Later, the sideslip angle channel is tested also using a doublet command on the 𝛽𝑟 channel with a
magnitude of 1◦. The time series show that the controller is able to follow both commands properly. Even though the
sideslip reference command is smaller in magnitude, the control surface deflections are much more significant. This is
because the system is not designed for operation at large slip angles, and the yaw effectiveness of the control surfaces is
somewhat limited. The vehicle has good lateral static stability so that the directional stability quickly compensates the
limited yaw moment of the control surface during the slip. The system also exhibits a strong yaw-roll coupling, which
has to be compensated.

VII. Summary and Future Work
This paper introduces a gain-scheduling methodology for cascaded NDI-based controllers of HGVs. Grid-based

quasi-LPV models are leveraged to facilitate the gain-scheduling by working directly with a representative yet simplified
quasi-LPV model of the vehicle. While the approach can be used with a wide range of controller tuning techniques, it
was demonstrated on a parameter-dependent analytical eigenstructure assignment example. The considered application
and attitude control of a hypersonic glide vehicle yield a system dynamic approximated as a generalized second-order
system. Due to the generalization of the open-loop system as a second-order structure, the Eigenstructure assignment
problem is relatively easily solved analytically. The controller’s application to the nonlinear simulation model shows a
good agreement with the specifications used for the Eigenstructure assignment problem.

Future work will explore control methodologies capable of addressing bounded parametric uncertainties within the
derived quasi-LPV dynamics, such as those related to aerodynamic coefficients, and additional bounded disturbances
to account for modeling errors. The goal is to investigate robust control techniques that ensure reliable performance.
Furthermore, the memory footprint of the implemented grid-based quasi-LPV controller could be improved based on a
trade-off analysis between the grid-table size/resolution and the accuracy of the grid-based quasi-LPV model.
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Figure 11 Simulation results for doublet signal on the 𝜇 and 𝛽 channel. Displayed time series: aerodynamic
bank angle 𝜇, sideslip angle 𝛽, normalized pitch rate, and fin deflections in ◦. Dash-dotted black: raw reference
command, solid grey: vehicle response for NMFC without anti-windup system, dashed red: actuator deflection
limits.
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