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Abstract
Sentinel-2 satellite provides freely accessible multispectral images used in various remote sensing (RS) applications, where
spatial resolution is crucial. The Ground Sampling Distance (GSD) for Sentinel’s visible and near-infrared (VNIR) bands is
specified at 10 meters, but it may not accurately reflect ground resolution due to environmental effects. As a result, Ground
Resolved Distance (GRD) serves as an alternative measure for actual resolution, but information about Sentinel GRD is
lacking, calibration targets are not always available, and GRDmay vary across different tiles. This paper estimates Sentinel’s
GRD using a scene-driven approach that analyzes the edges of natural targets, reducing the challenges associated with
artificial targets. The method involves selecting suitable natural targets based on their geometric and spectral characteristics,
sub-pixel edge extraction, estimating the Edge Spread Function (ESF), generating the Line Spread Function (LSF), and
calculating the Full-width at Half Maximum (FWHM). Two tiles of Sentinel-2 imagery from the Shadnagar Calibration
Facility, India, and Baotou, China, were analyzed. The analysis of 40 natural targets revealed average GRD values of
12.65m, 12.40m, 12.49m, and 12.58m for the red, green, blue, and NIR bands, respectively, aligning closely with results
from calibration targets. The method demonstrated high accuracy and precision with a total RMSE of approximately 0.77m
and a total standard deviation of 0.19m, respectively.

Keywords Earth observation · Satellite imagery · Sentinel-2 · European Space Agency (ESA) · Ground sampling distance
(GSD) · Ground resolved distance (GRD)

1 Introduction

Earth observation satellites use remote sensing (RS) tech-
nology to capture geospatial imagery of Earth. The Sen-
tinel-2A and Sentinel-2B twin optical imaging satellites,
operated by the European Space Agency (ESA), provide
rich spectral information in visible and invisible parts of
the electromagnetic (EM) spectrum and high temporal res-
olution. These satellites operate as 13 spectral bands free of
charge. The spatial resolution varies for different spectral
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bands. The visible (red, green, and blue bands) and near-
infrared (NIR) bands, collectively known as VNIR bands,
offer a resolution of 10 meters (m). The resolution for other
invisible bands is 20–60m (Drusch et al. 2012).

Various parameters define an RS imaging system, includ-
ing spatial, spectral, temporal, and radiometric resolutions
(Joseph 2005). The assessment of spatial resolution in satel-
lite imagery has been a topic of regular research since the
emergence of RS imagers (Choi et al. 2019; Crespi and De
Vendictis 2009; NASA 1973; Stankevich 2020; Thomson
2009; Townshend 1981; Valenzuela et al. 2022; Valenzuela
and Reyes 2019; Wang and Li 1999). Spatial resolution is
commonly quantified using the Ground Sampling Distance
(GSD), representing the distance between adjacent pixels
on the ground (Lee and Sull 2019; Pampanoni et al. 2024;
Valenzuela et al. 2022). GSD is defined during sensor de-
sign and relies on the RS imaging geometry (Pampanoni
et al. 2024; Valenzuela et al. 2022). Essentially, it is based
on a mathematical formulation and is easily calculated us-
ing a formula (Sun et al. 2021). Therefore, it offers the
nominal spatial resolution of an RS system under ideal con-
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ditions (Cramer et al. 2020;Meißner et al. 2019; Topan et al.
2005), failing to consider the realities of data acquisition.
Due to environmental factors, GSD inadequately represents
the actual ground resolving power of an RS imaging system
(Crespi and De Vendictis 2009; Kim et al. 2008).

Ground Resolved Distance (GRD) estimates the small-
est feature size reliably resolvable by an imaging system
(Campbell and Wynne 2011). Unlike GSD, GRD consid-
ers environmental conditions such as lighting, atmospheric
particles, humidity, and air density (Kubišta and Surový
2021; Topan et al. 2005). GRD differs from GSD; ideally,
their ratio approaches 1 in optimal conditions. This ratio is
sometimes employed as an indicator to assess relative image
sharpness (Lim et al. 2018a). While the sensor’s nominal
GSD provides a theoretical measure, true resolving power
is assessed under actual imaging conditions using calibra-
tion targets and image analysis methods, such as ambiguity
circle or edge response analysis.

In various applications of Sentinel-2 imagery, such as
mapping, semantic segmentation, sub-pixel landscape fea-
ture detection, and object analysis (Belgiu and Csillik 2018;
Clabaut et al. 2024; Lasko et al. 2024; Li et al. 2024; Liu
et al. 2024; Mifdal et al. 2021; Nguyen et al. 2022; Radoux
et al. 2016; Saleem and Awange 2019; Samadzadegan et al.
2023; Toosi et al. 2022; Wu et al. 2024; Xu et al. 2024;
Zhao et al. 2019), the VNIR bands, with a GSD of 10m,
are critical to the dataset, surpassing the importance of other
bands, which have GSDs of 20 to 60m. However, as with
any RS system, the ground resolution of Sentinel-2 bands
often deviates from the nominal GSD values. Therefore,
estimating the GRD for Sentinel-2 imagery is necessary.

The primary approach for assessing GRD in RS imagery
involves using resolution calibration targets (Bushahab et al.
2014; Choi et al. 2019). These targets are predetermined
patterns printed on banners or painted on the ground (Li
et al. 2015). Orych (2015) provides an overview of state-of-
the-art targets. The imaging system captures these targets,
and subsequent analysis estimates the GRD (Kubišta and
Surový 2021; Lim et al. 2018a; Lim et al. 2018b). However,
creating large targets is challenging, making them suitable
only for high-resolution satellite and aerial imagery. Thus,
they are less used for medium-resolution satellites like Sen-
tinel and Landsat.

An alternative approach for estimating GRD involves
utilizing natural targets (Kim et al. 2010a; Kim and Kim
2011b; Li et al. 2014). Natural targets include structures
like building roofs (Javan et al. 2013; Kim and Kim 2011a),
particularly large industrial buildings, extensive roadways,
and boundaries between adjacent lands (Cenci et al. 2021;
Li et al. 2014; Pampanoni et al. 2020; Pampanoni et al.
2022; Pampanoni et al. 2024). These targets should have
straight, sharp edges and color or spectral characteristics
similar to artificial targets (Javan et al. 2013). The objects

must be large enough to be easily discernible and appro-
priate for resolution evaluation relative to the pixel size.
Examples include LUECKE farms1 (Robinson et al. 2004).

This paper introduces a semi-automatic edge-based
scene-driven approach to estimate Sentinel GRD for the
first time. This method addresses the impracticality of
creating large artificial targets for every Sentinel tile. The
paper’s contribution is twofold: it determines the true
spatial resolution of Sentinel imagery and explores the ac-
curacy and precision of resolution estimation using natural
targets—an approach previously unexplored for middle-
resolution satellite imagery.

2 RelatedWorks

Research on ground resolution assessment uses either artifi-
cial targets for airborne and spaceborne imagery, or natural
features.

2.1 Literature on Spatial Resolution Estimation of
RS Imageries Using Calibration Targets

Image spatial quality and resolvability assessment in the
field of RS and photogrammetry often rely on specially
manufactured artificial targets. These targets serve calibra-
tion, validation, and field testing purposes (Salamonowicz
1982; Schott et al. 2012). This requires specific arrange-
ments such as target size and orientation (Kim and Kim
2011b).

Topan et al. (2005) investigated and highlighted the dis-
tinction between the nominal GSD and the effective or true
GSD (tGSD) (Cramer et al. 2020; Meißner et al. 2019),
also known as GRD. They highlighted the impact of fac-
tors, including optics, and atmosphere, on the GRD of im-
ages. According to their findings, the effective GSD dif-
fers from the nominal value and can be evaluated through
edge analysis. Meißner et al. (2019) examined tGSD by
comparing methods for determining resolution using arti-
ficial targets. They compared bar test charts, slanted-edge
targets, and Siemens-Star targets. Additionally, they evalu-
ated the Slanted-Edge and Siemens-Star methods with ideal
images convolved using known parameters, demonstrating
the reliability of both techniques. Their evaluation method
was based on the measurement of model-based Modulation
Transfer Function (MTF) and Point Spread Function (PSF).
Choi et al. (2019) applied edge analysis in satellite im-
age fusion, employing edge targets. They manually cropped
portions of the targets and extracted the edges. Addition-

1 A forest was selectively cleared to spell the landowner’s name
“LUECKE” with the remaining trees. This feature is used for evaluat-
ing the resolution of astronaut photographs.
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ally, they estimated the signal-to-noise ratio (SNR) and the
Nyquist value of the MTF based on both the Edge Spread
Function (ESF) and the Line Spread Function (LSF). Tao
and Muller (2021) in research aiming at super-resolution
restoration of space-borne images used different types of
artificial targets for resolution evaluation of images. They
assessed their method by zooming in on the edges of the
targets to visually determine which super-resolution tech-
nique performed better. Additionally, they compared the
results with the slanted-edge profile measurements.

Scott et al. (2024) developed a Multi-Edge Slant Target
for unlocalized MTF measurement of airborne RS system
payloads. Their approach experimentally characterizes the
MTF of airborne assemblies in a laboratory environment.
Dubey et al. (2024) highlight oversights and errors in MTF
estimation using the slant-edge technique for high-resolu-
tion satellite sensors. They focus on optimal edge width
estimation and empirical modeling of the slant edge.

UAV-based RS images offer superior GSD and GRD
compared to satellites and manned aircraft due to lower op-
erational altitudes (Lim et al. 2018a), prompting researchers
to evaluate UAV image resolution using artificial targets
(Conran 2024). Dąbrowski and Jenerowicz (2015) and
Dabrowski et al. (2015) developed the Portable Imagery
Quality Assessment Test Field (PIQuAT) for assessing im-
age quality and resolution from UAV sensors. The PIQuAT
evaluates spatial, spectral, and radiometric resolution.

Lim et al. (2018a) employed an edge-based method to
derive image quality parameters, including Relative Edge
Response (RER), SNR, MTF, GRD, and National Imagery
Interpretability Rating Scale (NIIRS) (Leachtenauer et al.
1997). The results showed that changes in imaging altitude
impacted GSD and NIIRS, while GRD and image sharpness
were optimal at certain altitudes. The researchers extracted
edge details, providing measures to assess image resolu-
tion. The process involved estimating the ESF through edge
analysis, differentiating it to obtain the LSF, and perform-
ing a Fourier transform on the LSF to calculate the MTF.
Lim et al. (2018b) extracted GRD by analyzing the edge
calibration target at various altitudes. They used GRD and
the GRD-to-GSD ratio to evaluate image sharpness.

Cramer et al. (2020) emphasized the significance of
considering the concepts of GRD in assessing the quality
of UAV images. Siemens targets were employed as part
of their testing framework. Kubišta and Surový (2021)
identified the relationship between resolution and acquisi-
tion conditions. They tested different heights, flight speeds,
and light conditions for their impact on GRD. Height was
the most significant factor, followed by speed, while light
conditions had the least influence. Ghassoun et al. (2021)
discussed image quality, spatial resolution, and GRD in
UAV photogrammetry. They noted that a camera’s resolv-
ing power depends on criteria like the standard deviation

of the PSF, reflecting image space and comparing perfor-
mance, or its Full Width at Half Maximum (FWHM).

2.2 Literature on Spatial Resolution Estimation of
RS Imageries Using Natural Targets

Several scholars have conducted edge analysis of natural
targets to estimate GRD and NIIRS values. Kim et al.
(2008) proposed a method for estimating and validating NI-
IRS through image-based techniques, specifically tailored
for high-resolution satellite imageries. In their study, the se-
lection of natural target edges. Kim et al. (2010b) conducted
NIIRS estimation using edge analysis of natural targets. The
edges for their evaluation were extracted both manually and
automatically, and the analysis was performed on ESFs and
PSFs. Kim et al. (2010a) developed a method for measuring
GRD utilizing natural targets. They extracted edge points
from both artificial and natural targets and analyzed the pa-
rameters associated with the ESF and LSF. Kim and Kim
(2011a) and Kim and Kim (2011b) emphasized the need for
automated GRD and NIIRS estimation in high-resolution
satellite imagery through edge profile analysis of natural
targets. They developed a natural target-based method for
estimating NIIRS, reducing dependency on artificial targets.
Their evaluation method was based on semi-automatic edge
profile extraction and ESF. However, the selection of edges
in shadowed regions, building roofs, field boundaries, and
boundaries between land and water areas, had insufficient
contrast. This lack of contrast caused issues in generating
ESFs and subsequently in GRD evaluation.

Javan et al. (2013) proposed a method for assessing the
spatial quality of pan-sharpened high-resolution satellite
imagery. Their method involved an automated estima-
tion of an edge-based metric, focusing on the assessment
of natural targets. Li et al. (2014) evaluated the ZY-3
panchromatic band using the General Image Quality Equa-
tion (GIQE) (Leachtenauer et al. 1997). Their method
for resolution evaluation and NIIRS prediction was based
on the analysis of edges between adjacent land areas.
Mhangara et al. (2020) assessed the interpretability of the
nSight-1 nanosatellite, capturing images at 30–32m resolu-
tion, using Landsat-8 as a reference. They evaluated image
quality with the Blind/Referenceless Image Spatial Quality
Evaluator (BRISQUE) and quantified interpretability using
NIIRS.

Cenci et al. (2021) introduced a semi-automatic approach
to evaluate the sharpness of optical imagery using natural
targets’ edges. They focused on Landsat-8 data and demon-
strated that their method is capable of reliably assessing
the sharpness of the image. Pampanoni et al. (2020, 2022,
2024) developed an automatic method for sharpness as-
sessment and spatial resolution determination of satellite
imagery. Their research encompassed various types of im-
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agery with different spatial and spectral resolutions. Their
method identified different natural targets using analysis
of DN values. Their meta-analysis reported parameters in-
dicating spatial resolution and sharpness, illustrating their
relationship with the SNR of the image.

In summarizing the literature reviewed, it is evident that
while much attention has been given to ground resolution
assessment using calibration targets, research with natu-
ral targets has focused on UAV images or high/very high-
resolution satellite imagery. There has been a lack of stud-
ies evaluating GRD of middle-resolution satellite imagery
such as Sentinel-2. The absence of artificial calibration tar-
gets covering Sentinel tiles worldwide (which is practically
infeasible to achieve for every Sentinel imaging area), com-
bined with the considerable cost and effort required to cre-
ate such large targets, makes RS researchers explore natural
targets as substitutes for resolution assessment.

Despite interest in using natural targets, the reliability
of spatial resolution assessments particularly for medium-
resolution satellite imagery remains unverified. Testing the
applicability of natural target-based methods for resolution
evaluation of RS imagery needs investigation. Specifically,
the accuracy (validated against reference artificial calibra-

Fig. 1 Workflow of the pro-
posed method for estimation of
Sentinel-2 imagery GRD using
natural targets

tion targets) and precision (consistency across different nat-
ural targets) of these methods require examination.

Given that GSD may not accurately reflect the spatial re-
solving power of Sentinel Multispectral Instrument (MSI)
and with the growing emphasis on spatial resolution as-
sessment in satellite imagery (Cenci et al. 2021; Choi et al.
2019; Pampanoni et al. 2020; Pampanoni et al. 2022; Pam-
panoni et al. 2024), there is a need for more efficient criteria
to determine the actual resolution of imagery. This is espe-
cially crucial for Sentinel-2 data, which, due to their open-
access nature, have garnered significant attention.

Building on the aforementioned research and addressing
the identified gap, our method employs a natural target-
based approach to improve the accuracy and efficiency of
spatial resolution assessment in RS imagery, while using
artificial targets to verify the accuracy of the method. The
novelty lies in two aspects: firstly, evaluating the effective-
ness of natural targets in estimating the GRD of medium-
resolution satellite imagery in terms of accuracy and preci-
sion (this is the first research to test whether natural targets
provide accurate results comparable to those obtained from
calibration targets, and to assess the precision of these re-
sults), and secondly, providing an estimation of GRD for
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Sentinel-2 imagery for the first time. Due to the impracti-
cality of creating a large number of artificial targets of ap-
propriate size, and the limited availability of suitable edges
in low- to medium-resolution images, the contribution of
our paper regarding this type of satellite imagery would be
of interest to the RS community.

3 Materials andMethods

This section describes the methodology to estimate the
GRD of Sentinel-2 imagery. It also discusses the availability
of large artificial targets globally and the dataset used.

3.1 Methodology

The methodology for estimating GRD in medium-reso-
lution satellite imagery, specifically Sentinel-2 images, is
shown in Fig. 1.

3.1.1 Data Preparation

In the initial step of the proposed method, known as
the data preparation phase, a complete tile (granule) of
Sentinel-2 imagery is retrieved from the Copernicus Data
Space Ecosystem. The Sentinel-2 MSI sensor provides data
in two processing levels: L2A (geometrically and atmo-
spherically corrected, or surface reflectance) and L1C (top
of atmosphere reflectance). For our purposes, we opt for
the L2A surface reflectance data sourced from the data
repositories. To minimize cloud coverage, the data are fil-
tered based on the available filtration options. Furthermore,
by setting the time range, data from the desired date are
prepared.

3.1.2 Natural Targets Selection

The Sentinel tiles, which include artificial targets, are
cropped to generate subsets that only contain the target
area, with boundaries adjusted to fit the targets. A semi-
automatic method is employed for natural targets intended
to serve as resolution targets. Edge extraction is initially
conducted using Canny (Canny 1986) to identify edge loca-
tions with pixel-level accuracy. The algorithm parameters
are adjusted to ensure satisfactory edge extraction.

Subsequently, the Hough transformation (Duda and Hart
1972) is applied to the edge map to detect lines and extract
line parameters. Algorithm parameters are adjusted based
on the imagery’s characteristics. Only the strongest lines
are retained from the extracted lines by setting a threshold,
while others are removed. The selection of the strongest
lines uses a relative thresholding approach based on line
length. Lines are sorted by length, and the top Ntop longest

are retained. This method keeps only the most prominent
lines, likely representing significant edges for resolution
estimation. The value of Ntop is adjustable based on imagery
characteristics and the desired balance between sensitivity
and robustness in edge detection, allowing the approach
to adapt to the relative strengths of detected lines in each
image. Natural targets are required to exhibit characteristics
similar to artificial targets: a straight line separating two
areas, one dark (ideally black) and the other bright (ideally
white), creating a step-edge behavior.

The extracted lines are also reviewed by human experts,
and those where a square window containing them does not
exhibit sufficient spectral contrast between the two sides of
the Hough lines are deleted. In other words, we are search-
ing for eligible edges2 (see Cenci et al. 2021 for examples
of eligible and non-eligible edges). Finally, a variety of
candidate subsets are selected for use as natural targets.
Due to the low resolution of Sentinel-2 imagery, develop-
ing a fully automatic algorithm for extracting image subsets
is not straightforward, and therefore, is not pursued further.

3.1.3 Edge Analysis-based GRD Estimation

After acquiring subsets containing artificial and natural tar-
gets, the GRD estimation based on edge analysis involves
five sub-steps: precise edge location estimation with sub-
pixel accuracy, least-square line fitting and cross-section
creation, ESF generation, LSF generation, and GRD calcu-
lation.

a) Precise edge location estimation with sub-pixel accu-
racy: The objective is to extract precise sub-pixel edge
locations within subset images. The method employed
here was proposed by Trujillo-Pino et al. (2013). The
edge detection technique relies on an edge and acqui-
sition model derived from the partial area effect, which
avoids assuming continuity in image values. It achieves
precise extraction of edge position, orientation, curva-
ture, and contrast, in noisy images, blurred edges, low
contrast areas, or closely situated contours. Given the
common occurrence of these conditions in medium-res-
olution satellite imagery, this method is suitable for our
purposes.

The sub-pixel edge extraction yields discrete edge pixel
positions with sub-pixel accuracy. This output, rather than
constituting a continuous edge or line, provides a collection
of precise point locations. In the subsequent phase, these
discrete points undergo a line fitting procedure, wherein

2 Eligible edges are straight edges that exhibit a relatively step-like be-
havior and are contained within a window showing a suitable contrast
between the dark and bright sides.

K



PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science

Fig. 2 Precise sub-pixel edge location extraction (a), least square line
fitting (b) accompanied by profile generation (c)

a mathematical representation in the form of a linear equa-
tion is derived to approximate the edge.

b) Least-square line fitting and cross sections (profiles) cre-
ation: A least squares line fitting identifies the most suit-
able approximating line, minimizing the differences be-
tween the edge points on the approximating line and the
provided edge point values. Randomly scattered residu-
als around zero indicate a good fit; however, if patterns
are observed in the residuals, it may suggest that a linear
fit is not appropriate for the data. A least squares adjust-
ment derives the line parameters, namely slope (m) and
intercept (c) (Eq. 1). The final edge location can be de-
termined using the obtained line parameters. Fig. 2a de-
picts a sample of extracted edge locations, with the least
squares line.

Yf it = mXsub + c (1)

where (Xsub, Yfit) is a set of edge locations, m represents the
slope of the fitted line, and c is the y-intercept.

Due to the limitations of Eq. 1 in handling infinite slopes,
we exclude vertical lines from our analysis. This exclusion
strengthens our methodology and avoids potential compu-
tational problems. This limitation has little effect on our
results, as the remaining non-vertical lines provide enough
data for accurate resolution estimation.

It is important to distinguish between “edges” and
“lines”. Edges refer to pixels where significant changes
in digital number (DN) values occur. These edges may
manifest in various shapes, including straight or curved
configurations. Conversely, lines denote straight linear fea-
tures generated by fitting a linear model to edge pixels that
exhibit a linear arrangement.

It is important to note that no specific threshold has been
applied to the length of the fitted lines. As mentioned ear-
lier, we select the top Ntop lines from candidate lines. It
is recommended that the lines be long enough to cover at
least five pixels, more or less, to ensure the reliability of
subsequent steps.

Once the line has been fitted to the sub-pixel edge loca-
tion, cross-sections are generated perpendicular to the lines
(Cenci et al. 2021). Each fitted line is divided into Nseg equal
segments along the x-axis, denoted as XSub-divide. The value
of Nseg is determined by the number of pixels the fitted

line crosses. For each segment i, the perpendicular slope
(m0) and intercept (c0) to the fitted line at the corresponding
(XSub-divide[i], Yfit-divide[i]) point are computed. The perpendic-
ular slope is determined by m0 = − 1

m
, where m represents

the slope of the fitted line. Thus, the perpendicular intercept
is defined as Eq. 2.

c0 = Yf it−divideŒi � − m0 �XSub−divideŒi � (2)

The length of the perpendicular profile is a fraction of
the image width or a predefined size. Once these steps have
been completed, a variety of profiles, each with a predefined
number and equal length, is generated (Fig. 2b).

c) ESF generation: ESF represents the response of the
imaging system to an edge source (Pampanoni et al.
2024). Before generating the ESF, grayscale image in-
tensities are normalized to the range [0,1] by subtracting
the minimum DN value from the pixel’s DN value, and
then dividing the result by the difference between the
maximum and minimum DN values (Banik et al. 2009;
Javan et al. 2013; Mäkiharju et al. 2013). This normaliza-
tion ensures consistent processing across all images and
allows for meaningful comparisons of the ESF across dif-
ferent images. For each profile obtained in the previous
step, the intensity values along the profile are extracted3

and stored in the ESF matrix. The matrix has dimensions
L � Np , where L4 is the number of pixels along the
profile and Np is the number of profiles. Each column
in the ESF matrix represents the intensity values along
one profile. The mean of the intensity values across all
profiles is calculated, representing the average ESF with
L mean values. The averaging process is conducted on
a pixel-by-pixel basis. For instance, for the ith pixel, if
the DN values across L profiles are DN1, DN2, ... , DNL,
these values are averaged. This process is repeated for
each pixel position along the profile.

To smooth the ESF curve and reduce noise, various
functions can be fitted, such as Sigmoid, Fermi, and cu-
bic splines, as shown in previous studies (Cenci et al. 2021;
Crespi and De Vendictis 2009; Meißner et al. 2019).

3 Using the initial pixel (located on the fitted line) and the profiles
(which determine the directions to extend on both sides of the fitted
line), the intensity values of pixels along the transect can be easily re-
trieved.
4 The parameter L does not have a universally applicable constant
value. Rather, it should be calibrated to ensure that the DN value vari-
ations on both sides of the edges are accurately modeled. The optimal
value for L is determined through iterative testing. Based on previous
studies, values from 6 to 8 have proven adequate, although slight devi-
ations from this range may be necessary depending on image charac-
teristics.
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However, due to the low resolution of Sentinel-2 imagery
and the limited number of pixels along the profiles, approx-
imating the ESF may distort the MSI sensor’s behavior. We
avoid using Sigmoid approximation. Instead, we employ
linear interpolation to add points between neighboring ESF
points (see Algorithm 1).

d) LSF generation: Following the generation of the ESF,
differentiation is conducted, as outlined in Eq. 3.

LSF .n/ =
d

dn
ŒESF .n/� = ESF .n/ − ESF.n − 1/ (3)

where d
dn

Œ:� represents the differentiation operation. This
gives the LSF, which represents the response of the imaging
system to a line source (Pampanoni et al. 2024).

For higher-resolution imagery, a Gaussian function can
be used to smooth the LSF and reduce noise (Javan et al.
2013; Meißner et al. 2019). However, we use the original,
linear-interpolated LSF to maintain its true behavior, as fit-
ting a Gaussian distorts the limited points in the LSF and
affects GRD accuracy.

Algorithm1. ESF point augmentation using linear interpola-
tion
Inputs:

ESF: Original ESF vector
NoP: Number of points to insert between neighboring

points
Output:
ESFint: Interpolated ESF vector
Initialize ESFint with ESF [1]
n 1
While n≤ length(ESF)-1 do:
P1 ESF [n]
P2 ESF [n+ 1]
Add P1 to ESFint

Calculate Ptsint between P1 & P2
Add Ptsint to ESFint

n n+ 1
Add ESF[length(ESF)] to ESFint

End while

e) GRD calculation: The calculation of GRD relies on a pa-
rameter associated with the normalized LSF5, known
as the Full-Width at Half Maximum (FWHM) (Cenci
et al. 2021). FWHM represents the horizontal distance
between two points on the normalized LSF curve where

5 LSF is normalized within the range of [0-1] by subtracting the min-
imum LSF value from each LSF value and then dividing the result by
the difference between the maximum and minimum LSF values.

Fig. 3 FWHM estimation using linear interpolation technique

FWHM value indicates the difference between the ab-
scissas at 0.5 (see Fig. 3). This metric shows the actual
image resolution (Meißner et al. 2019). Smaller FWHM
indicates steeper slopes of LSFs, which are associated
with sharper images and higher resolution (Cenci et al.
2021).

To calculate the FWHM, typically employed when the
LSF exhibits a Gaussian-like shape with a normal distribu-
tion, the value of 2

p
2 ln 2¢ is utilized (Meißner et al. 2019).

However, in the case of an LSF derived from medium-
resolution Sentinel-2 imagery, we use the methodology of
Crespi and De Vendictis (2009), as the LSF in this scenario
lacks a continuous shape. As shown in Fig. 3, FWHM is
the distance between the left mid-point (LMP) (Eq. 4) and
right mid-point (RMP) (Eq. 5) identified through linear in-
terpolation (Eq. 6).

xLMP = .0:5 − y2/ :
x1 − x2

y1 − y2

+ x2 (4)

xRMP = .0:5 − y3/ :
x4 − x3

y4 − y3

+ x3 (5)

F WHM = xRMP − xLMP (6)

After obtaining the FWHM (in pixels), the GRD is de-
termined by multiplying the FWHM by the GSD (Eq. 7).

GRD = F WHM � PixelSi´e = F WHM �GSD (7)

3.2 Evaluation of Results

Upon the estimation of GRD through natural targets, their
accuracy is assessed by comparing them with the refer-
ence values derived from artificial targets. This evaluation
employs the Root Mean Square Error (RMSE), in Eq. 8.
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Fig. 4 Study areas: a overview of locations of two tiles containing Baotou and Shadnagar spatial calibration sites within the Sentinel tiling
grid system, b Zoomed views of Baotou and Shadnagar sites within the 49TCF (up) and 43QHU (down) tiles, respectively. Subfigure (a) is
a presentation of “S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml”, openly accessible
at https://sentiwiki.copernicus.eu/web/s2-documents

RMSE quantifies the extent to which the GRD estimated
from natural targets deviates from the reference values.

RMSE =

sPX
i=1 .GRDN T − GRDAT /2

X
(8)

where i denotes the natural target counter, X stands for the
total number of natural targets, GRDNT indicates the GRD

Fig. 5 Sentinel-2 dataset in the
true-color composite presenta-
tion: (a) Baotou site, and (b)
Shadnagar site

value acquired from natural targets, and GRDAT signifies the
GRD value obtained from the artificial target. It is notewor-
thy that for each data there is only one GRDAT value.

The precision of the GRD values is evaluated using the
standard deviation (or variance) for each band using Eq. 9.
The standard deviation tends to be lower when the GRD
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values are more consistent (i.e., have closer values to each
other), and vice versa.

�b =

sXX

i=1

�
GRDN T i − GRDN T

�2

X − 1
(9)

where σb is the standard deviation for each VNIR band, i
represents the natural target counter, GRDN T i refers to the
GRD value obtained from the ith target, and GRDN T de-
notes the mean value of all GRD observations from targets.

3.3 Study Areas and Datasets

Numerous spatial resolution calibration targets have been
developed by aerospace and RS organizations worldwide to
assess the ground resolution of aerial and high-resolution
satellite images (Bushahab et al. 2014; Choi et al. 2019).
Out of which, two prominent targets, namely the Shadnagar
CalVal and Baotou targets, offer the potential for evaluating
GRD in medium-resolution satellite imagery, particularly in
the context of our study with Sentinel imagery6. Figure 4
illustrates the locations of these targets as two study areas,
with details in Table 1.

Drawing from the dimensions of the Shadnagar and Bao-
tou artificial tarps as the most sizable one among the ex-
isting targets, this study utilizes two tiles of Sentinel-2 im-
agery from the Shadnagar CalVal and Baotou calibration
sites. Each tile covers an area of 100× 100km2 on Earth
(Fig. 4). The datasets are multispectral surface reflectance,
the L2A product. Figure 5 shows these datasets and Table 2
provides information.

4 Results

Following the workflow outlined in Fig. 1, the experiments
are conducted in two modes: the primary mode, central
to this research, focuses on estimating the ground resolu-
tion of Sentinel tiles using various natural targets; while
a secondary mode involves artificial targets to assess the
accuracy of the first mode.

4.1 Estimation of GRDUsing Natural Targets

The proposed method for calculating GRD based on nat-
ural targets was applied to both datasets. The Canny op-
erator was employed to extract image edges, followed by

6 Zuunmod in Mongolia, Songshan in China, Salon de Provence in
France, Peng-Hu in Taiwan, Stennis in the USA, and FGI Sjökulla
Aerial Test Range in Finland have smaller dimensions (70m× 70m),
making them unsuitable for medium- and low-resolution satellite im-
agery.

a Hough transform to detect lines. We manually selected
appropriate straight line candidates (image subsets contain-
ing these lines) for GRD calculation, eliminating unsuitable
ones. The extracted edges are displayed in Fig. 6.

Based on the edge maps, initial Hough lines were ex-
tracted from the Shadnagar and Baotou images, with num-
bers reported in Table 3. The final selection of lines, fol-
lowing human supervision, is presented in Fig. 7, along
with statistics on their number and length (Table 3). After
filtering, 40 lines were retained across both datasets.

Figure 8 showcases a collection of natural target image
subsets in all four VNIR bands. These subsets have been
cropped from each band. They are eligible edges that ex-
hibit step-edge behavior. A straight line divides two uniform
regions: one very dark and the other very light in color tone.
There are no mixed pixels neighboring the straight lines; in
other words, all pixels are uniform and pure.

The subsets containing these 40 lines exhibit the charac-
teristics of an artificial target. They show a notable contrast
in DN values perpendicular to the Hough lines, demonstrat-
ing proper spectral properties. These characteristics enable
the generating of image LSF. Of the 40 extracted edges,
five samples from each data are presented in Fig. 8.

For each selected natural target, sub-pixel edge locations
were determined, from which edge profiles were extracted
to derive ESF (detailed in Sect. “Material and Methods”).
After normalizing the ESF profile, the FWHM was calcu-
lated and multiplied by the GSD to estimate the GRD. This
process was repeated across all 40 natural targets.

The snapshots illustrating the GRD computation process
were presented in Fig. 9 and 10 for the Shadnagar and Bao-
tou case studies, respectively. One natural target exemplifies
the process in each case.

Besides profile length, the number of profiles is also
significant. Our rationale for determining the number of
profiles is that it should be proportional to the number of
pixels through which the least-squares fitted line passes. For
n pixels under the fitted line, n profiles suffice. Given that
the selected targets have pure pixels, lower values are also
acceptable, but for those who prefer caution, we recommend
determining the number based on the mentioned rationale.

The procedure depicted in Fig. 9 and 10 is applied to all
40 natural targets. The RMSE of residuals from the least-
squares line fitting are reported in Table 4. The GRD results
for each natural target are compiled in Table 5, alongside
mean GRD values for each case study. The values exhibit
consistency.

Beyond Table 5, statistical analysis is shown in the Box
& Whisker plots of Fig. 11. The plots show the distribu-
tion of the GRD values, with the minimum, maximum, first
quartile (Q1), median (Q2), and third quartile (Q3) for both
case studies. In the figure, the minimum and maximum val-
ues represent the lower and upper extremes of each chart.
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Fig. 6 Primary edge extraction
results (edge maps) in two case
studies
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Table 3 Statistical summary of
the extracted and selected lines

Case study Number of extracted
lines

Number of selected lines Length of selected lines (pixel)

Shadnagar 34 20 Min= 11, Max= 52, Mean= 20

Baotou 41 20 Min= 12, Max= 53, Mean= 24

Q1 and Q3 denote the lower and upper bounds of each box,
with Q2 indicated by a horizontal line within each box.

4.2 Estimation of GRDUsing Artificial Targets

Given the 10-m GSD of Sentinel imagery in the VNIR
bands, as well as the dimensions of existing calibration
targets worldwide, two of the largest targets were chosen
for experimental testing: the Shadnagar CalVal tarp and the

Fig. 7 Hough line extraction
results in two case studies

Baotou calibration tarp. Other targets’ dimensions do not
provide enough pixels perpendicular to the edge direction.
to generate ESF, LSF, FWHM, and GRD accurately. Thus,
these targets were not used.

This section was implemented separately for each of the
10-m VNIR bands of the target, proceeding band by band.
Subpixel edge locations were extracted from a manually
acquired target subset. A line was fitted to edges within
one panel, from which profiles were generated to record
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Fig. 8 Samples of selected im-
age subsets (natural targets) with
eligible edges in both datasets

DN values. The ESF was derived, enhanced through linear
interpolation, and used to estimate the LSF. Finally, the
FWHMwas calculated and multiplied by the GSD of VNIR
bands to determine the GRD.

The results of GRD estimation for the VNIR bands are
depicted in Fig. 12 for Shadnagar and Fig. 13 for Baotou. A
similar process has been done for the other three edges and
the average values are obtained. Based on the FWHM val-
ues, the estimated GRD values for the red, green, blue, and
NIR bands of the Shadnagar dataset are 13.61m, 13.39m,
13.56m, and 13.72m, respectively. For Baotou, the GRD
values are 12.19m, 11.70m, 12.91m, and 12.06m.

5 Discussions

We can assess both the accuracy and precision of the GRD
values derived from natural targets and discuss the feasi-
bility of the scene-driven approach for estimating Sentinel
GRD. To evaluate the accuracy, the results from natural
targets were compared against artificial targets, providing
insights into the degree of deviation.

Table 6 presents mean GRD values derived from natural
targets (GRDNT), the corresponding values from artificial
targets (GRDNT), the absolute difference, and RMSE val-
ues, which serve as indicators of accuracy for each band.
Results show a close alignment between GRD values ob-
tained from natural targets and those from artificial targets,
with an overall RMSE of 0.77m.

The performance of natural targets in estimating the
GRD of Sentinel-2 imagery is satisfactory, with an average
RMSE of <0.8m. Given the GSD of VNIR bands (10m),
this error is acceptable, suggesting natural targets are suit-
able for GRD estimation in tiles lacking artificial targets.

For the precision of GRD results from natural targets, the
standard deviation was computed for each band (Table 6).
Results show a slight variability across bands. The blue
bands showed less consistency, with an average standard
deviation of 0.255m in the two case studies. The red band
had the most consistency, with an average standard devia-
tion of 0.161m.

Despite slight variations, attributed to factors such as
errors in edge detection and line fitting, the GRD values
from natural targets remain consistent. The overall precision
of the mean value of 0.199m across all bands, confirms
the effectiveness of natural targets in estimating GRD in
Sentinel imagery. Thus, the proposed scene-driven method
demonstrates both accuracy and precision.

Our semi-automatic edge detection approach is an ad-
vancement compared to Li et al. (2014) and Kim et al.
(2008). Unlike manual edge selection on limited image
subsets from specific parts of the scene in prior studies,
our method offers a more efficient edge detection process.
It assesses the GRD for the entire image, giving a real-
istic average estimation for the whole scene. However, in
medium-resolution imagery, the difficulty in accurately de-
tecting edges remains challenging. To mitigate error effects
and improve the accuracy of edge detection, we adopted
the high-end sub-pixel edge location extraction method by
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Fig. 9 GRD estimation process
for a sample natural target in the
Shadnagar case study

Trujillo-Pino et al. (2013). Despite its usefulness, it requires
attention to potential errors that may arise.

Our edge analysis-based method for estimating GRD in
Sentinel (and other medium-resolution imagery) faces the
limited dimensions of natural targets, limiting the number
of pixels perpendicular to the edge orientation. We utilize
maximum pixels to create profiles. This ensures that the
ESF is generated from an adequate number of pixels, ac-
curately representing the behavior of edges. While profile
length is recognized as crucial in higher resolution assess-
ment (Javan et al. 2013), it is more critical here due to low
GSD.

Accurate edge location detection is crucial as it forms
the foundation of our edge analysis-based method, neces-
sitating attention to potential errors during the initial step.
Even one inaccurately detected edge point can impact the
least-squares fitted line. This affects ESF and LSF affecting
FWHM and GRD.

Due to the significance of this issue, this study introduces
a novel approach to assess the sensitivity of GRD calcula-
tions to sub-pixel variations in edge positions. The method-
ology begins with sub-pixel edge detection on a natural
target and then introduces controlled, random directional
sub-pixel shifts to the detected positions. These shifts are
applied in eight cardinal and intercardinal directions, with
magnitudes incrementally increasing across iterations. For
each iteration, the GRD is recalculated based on the shifted
edge positions. This analysis quantifies changes in GRD
relative to the initial, unshifted calculation, providing in-
sights into the robustness of GRD estimation under varying
edge detection accuracy.

For a target with an initial GRD of 12.593m, a maxi-
mum sub-pixel shift of 1m was applied to all edge posi-
tions randomly. The impact of these variations is presented
in Fig. 14. The results show that the mean (maximum) rel-
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Fig. 10 GRD estimation process
for a sample natural target in the
Baotou case study

Fig. 11 Statistical summary of GRD values of VNIR bands in two case
studies

ative change in GRD was 0.60% (10.73%), corresponding
to a mean (maximum) change of 0.076m (1351m).

An important aspect to note is that our method relies on
official reports from the ESA and information provided in
existing papers, such as Drusch et al. (2012), which detail
the specifications of the Sentinel RS system. The GSD for
the VNIR bands is specified as 10m for the nadir regions.
However, there may be slight variations in GSD values for
off-nadir areas (given Sentinel’s large field of view), which
can influence GRD. Thus, averaging GRD results from nat-
ural targets across the tile (both nadir and off-nadir areas) is
the most reasonable solution to accurately reflect the ground
resolution. Our method operates under the assumption that
the GSD provided by ESA in the metadata, accurately re-
flects a GSD of 10m for the VNIR bands.

GRD in satellite imagery may vary slightly in two di-
rections: along-track and across-track (Cenci et al. 2021;
Pampanoni et al. 2024). In our study, while Hough lines
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Table 4 RMSE (pixel) of the
residuals in LS line fitting

Shadnagar data Baotou data

NTs Red Green Blue NIR Red Green Blue NIR

NT1 0.0194 0.0275 0.0317 0.0135 0.0713 0.0804 0.0864 0.0989

NT2 0.2502 0.1461 0.2672 0.1500 0.0935 0.0967 0.1069 0.1177

NT3 0.1227 0.1954 0.2094 0.1198 0.0917 0.0963 0.1260 0.1006

NT4 0.1378 0.0816 0.1770 0.1728 0.1662 0.2802 0.2363 0.4357

NT5 0.0938 0.0849 0.1312 0.0579 0.0386 0.0479 0.0644 0.1600

NT6 0.0454 0.0179 0.0879 0.1929 0.0408 0.0345 0.0420 0.0705

NT7 0.0739 0.0607 0.1242 0.0732 0.1437 0.1412 0.1351 0.1484

NT8 0.1888 0.2521 0.1215 0.1116 0.0690 0.0627 0.0661 0.0422

NT9 0.0940 0.0425 0.0755 0.0750 0.0483 0.0613 0.0527 0.1061

NT10 0.1224 0.1036 0.1570 0.1411 0.0388 0.0437 0.0312 0.1752

NT11 0.0694 0.0399 0.0999 0.1081 0.0524 0.0858 0.0767 0.0701

NT12 0.1664 0.2191 0.2877 0.2530 0.0950 0.0957 0.1124 0.1129

NT13 0.0487 0.0518 0.0401 0.0373 0.1061 0.1901 0.1406 0.0691

NT14 0.0851 0.0823 0.1096 0.0653 0.4638 0.2932 0.4462 0.1991

NT15 0.1259 0.1054 0.1382 0.2083 0.1004 0.1239 0.1104 0.1745

NT16 0.0242 0.0165 0.0445 0.0268 0.1492 0.1135 0.1420 0.5041

NT17 0.1397 0.1287 0.1133 0.0690 0.5803 0.6951 0.5155 0.2779

NT18 0.1156 0.1374 0.1776 0.1022 0.8402 0.3457 0.6312 0.2177

NT19 0.0840 0.1212 0.1212 0.0407 0.0981 0.1024 0.1464 0.0843

NT20 0.1469 0.1507 0.0923 0.0534 0.1750 0.1985 0.1444 0.3222

Mean 0.1077 0.1033 0.1304 0.1036 0.1731 0.1594 0.1706 0.1744

Table 5 GRD (m) estimation
results for natural targets (NTs)
in VNIR bands of two datasets

Shadnagar data Baotou data

NTs Red Green Blue NIR Red Green Blue NIR

NT1 12.91 12.39 12.65 12.34 13.06 12.74 12.38 12.95

NT2 13.19 12.81 13.84 13.03 13.39 12.29 12.50 12.63

NT3 12.94 13.82 13.40 12.96 12.82 12.51 11.96 12.28

NT4 12.81 12.67 13.06 13.10 13.38 13.11 13.49 12.96

NT5 12.20 12.61 12.26 13.05 13.06 12.67 12.71 12.99

NT6 12.87 13.01 12.57 12.65 12.53 12.29 11.81 12.34

NT7 12.06 12.63 12.00 12.16 12.58 12.33 13.06 12.07

NT8 13.10 13.32 12.30 12.79 12.78 12.95 12.43 12.69

NT9 12.86 12.62 12.53 13.43 12.76 12.58 12.22 13.10

NT10 13.35 13.68 13.26 13.34 12.44 12.22 12.95 13.40

NT11 13.13 12.99 13.03 13.31 12.76 12.69 12.79 12.95

NT12 12.14 12.17 12.79 12.62 12.58 12.83 12.55 13.27

NT13 12.13 12.71 13.09 12.55 13.08 12.84 13.15 13.23

NT14 12.58 12.91 12.62 12.68 12.18 13.01 12.40 13.47

NT15 12.20 11.89 11.24 11.78 12.31 12.10 12.56 13.16

NT16 12.92 12.31 12.60 12.21 12.12 12.92 13.29 12.89

NT17 13.28 12.53 12.96 13.15 12.83 13.06 12.19 12.57

NT18 12.81 13.36 13.09 12.99 12.64 12.93 12.38 12.37

NT19 13.01 12.40 12.11 11.62 12.25 12.09 12.33 12.54

NT20 12.16 12.29 12.90 12.31 13.12 12.56 12.61 12.79

Mean 12.74 12.76 12.71 12.70 12.73 12.64 12.59 12.83
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Fig. 12 GRD calculation in
VNIR bands using Shadnagar
target

Table 6 Accuracy and precision assessment of GRD obtained from natural targets

Shadnagar Baotou

GRDNT(m) GRDAT(m) |�|(m) σ(m) GRDNT(m) GRDAT(m) |�|(m) σ(m)

Red 12.74 13.61 0.87 0.184 12.73 12.19 0.54 0.139

Green 12.76 13.39 0.63 0.247 12.64 11.70 0.94 0.106

Blue 12.71 13.56 0.85 0.323 12.59 12.91 0.32 0.189

NIR 12.70 13.72 1.02 0.259 12.83 12.06 0.77 0.152

Mean 12.73 13.57 0.84 0.253 12.69 12.26 0.43 0.147

RMSE(m) – – 0.85 – – – 0.68 –
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Fig. 13 GRD calculation in
VNIR bands using Baotou target

are present in all directions, the effects of edge directions
have not been separately investigated. However, the aver-
age GRD reflects the combined impact of both directions
simultaneously. Following the findings of Pampanoni et al.
(2024), who observed no significant differences in edge
directions (e.g., along-track and across-track) in their au-
tomatic edge detection method applied to medium-resolu-
tion satellite imagery, our research doesn’t categorize re-
sults based on edge orientation.

In our investigation of edge direction, we examined two
classes of edges: aligned with the satellite’s path (along-
track) and perpendicular to it (across-track). Using metadata
from the Shadnagar and Baotou datasets, we determined

that for Sentinel-2, which employs a pushbroom sensor and
moves in a descending orbit (north to south), the along-
track direction is north-south, while the across-track is east-
west. We classified horizontal edges (east-west) as across-
track and vertical edges (north-south) as along-track. Our
analysis, presented in Fig. 15, encompasses four along-track
and four across-track targets from two datasets. The results
do not indicate a consistent pattern of GRD being larger in
either the across-track or along-track direction. This finding
aligns with Pampanoni et al. (2024), suggesting that edge
direction doesn’t systematically influence spatial resolution.

Supporting previous works, by Cenci et al. (2021), Ja-
van et al. (2013), Kim et al. (2008, 2010a, b), Kim and
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Fig. 14 Impact of sub-pixel edge position variation on GRD

Kim (2011a, b), Li et al. (2014), and Pampanoni et al.
(2020, 2022, 2024), regarding the feasibility of using nat-
ural targets for resolution estimation our research confirms
that carefully chosen targets support resolution assessments,
following to the guidelines outlined.

Our research doesn’t align with the findings of Pam-
panoni et al. (2024), who discussed the relationship be-
tween sharpness, spatial resolution, and SNR of satellite
images in terms of the mean value (µ) of FWHM. Their
FWHM values are higher than those observed in our study.
Their results were not validated using calibration targets,
and no representation of the automatically extracted edges
was provided to assess the quality and types of edges. This
discrepancy could be attributed to several factors, notably
the total number of edges included in their analysis, which
is higher than ours. Due to the semi-automatic nature of
our method, we are confident that all natural targets exhibit
the characteristics of a calibration target, both in terms of
having a straight, step-like edge and spectral characteristics.
Their automatic target detection method relies on thresholds
of DN values, so there is no guarantee that all targets have
pure pixels, as one or more mixed pixels may affect the
results. We couldn’t confirm the existence of as many tar-
gets as reported by them within the Sentinel imagery. Since
each target should have eligible edges for all bands, finding
a target that could be eligible in VNIR bands is challenging,
and such targets are seldom found. As there is no represen-
tation of their edge-based analysis, especially the numerous
edges, and they are not compared with calibration targets,
we can’t explicitly comment on their contributions and the
differences with ours.

To examine the position dependency of GRD, specifi-
cally to identify potential variations across the image, three
target classes—left, nadir, and right—were analyzed, as-
suming along-track positioning has no effect. For this anal-
ysis, the two Sentinel images were divided into three sec-
tions: left, center, and right. Targets were then categorized

Fig. 15 Impact of edge direction on GRD

based on their placement in one of these sections. The re-
sults are presented in Table 7.

The analysis revealed spatial variations across the sen-
sor’s field of view, with consistently higher GRD values
in the center position. For the Shadnagar site, the center
position exhibited a mean GRD of 12.85± 0.13m, higher
than the left (12.63± 0.09m) and right positions (12.65±
0.07m). Similarly, at the Baotou site, the center position
showed a mean GRD of 12.84± 0.13m, exceeding both left
(12.75± 0.07m) and right positions (12.49± 0.10m).

6 Conclusions

This study addressed the resolution of one of the most
widely used satellite imagery, namely Sentinel-2. We pro-
posed a semi-automated scene-driven approach to estimate
GRD as an alternative to GSD. The feasibility of utiliz-
ing natural targets for estimating GRD in Sentinel-2 im-
agery was verified using calibration targets within the same
tile. The GRD estimation method demonstrated an average
RMSE of 0.77m and a total standard deviation of 0.19m.
Natural targets, with straight edges and spectral contrast,
can effectively be used in evaluating GRD in satellite im-
agery, particularly Sentinel-2 imagery.

The average GRD for Sentinel-2 surface reflectance
cloud-free product was determined as 12.65m, 12.40m,
12.49m, and 12.58m for the red, green, blue, and NIR
bands, respectively, based on two tiles featuring artificial
targets in Shadnagar and Baotou. Considering the GSD of
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Table 7 The position-dependency analysis of GRD (m)

Shadnagar data Baotou data

Left Center Right Left Center Right

Red 12.69 12.81 12.71 12.94 12.85 12.61

Green 12.55 12.99 12.55 12.78 12.79 12.47

Blue 12.54 12.91 12.70 12.48 12.72 12.38

NIR 12.73 12.69 12.63 12.81 13.02 12.53

Mean 12.63 12.85 12.65 12.75 12.84 12.49

Std Dev ±0.09 ±0.13 ±0.07 ±0.07 ±0.13 ±0.10

10m, the ratio of GRD to GSD for these bands is 1.25. In
an ideal scenario, this ratio could be as close as possible
to 1. An ideal scenario would involve moderate weather
conditions and minimal atmospheric particles.

Several avenues for future investigation remain. Firstly,
estimating GRD values for other bands of Sentinel-2 using
this methodology warrants exploration. This requires arti-
ficial calibration targets with larger dimensions, along with
natural targets of increased size.

As a second research avenue, analyzing the spatial vari-
ation of GSD and GRD across different parts of a Sentinel
tile warrants investigation. Due to Sentinel’s large field of
view, and considering that GRD is closely related to GSD,
these metrics differ between the nadir and margin areas of
the swath, being influenced by the satellite’s yaw, roll, pitch
angles, and its distance from the center of the field of view.
While data providers typically report GSD values for the
nadir area of the imagery, understanding how these metrics
vary across different parts of the tile is not straightforward.
Such analysis could determine whether these variations be-
tween center and margin areas are significant, quantify their
magnitude, and identify underlying patterns.

Studies of the temporal changes of GRD values across
different tiles acquired during various months of the year
constitute a third research topic. Since factors like sunlight
azimuth, air particle concentration, air density, and air tem-
perature affect ground resolution, evaluating their impact
on GRD provides valuable insights for the RS community.

This study computed GRD based on surface reflectance
imagery that underwent atmospheric correction (L2A).
Hence, a fourth research avenue could investigate the in-
fluence of atmospheric effects by calculating GRD using
top-of-atmosphere (TOA) reflectance data and comparing
the results with surface-reflectance products. L1A and L1B
products are not available to users and there is no possibility
to investigate their GRD. Since L2A and L1C products are
resampled, future studies can investigate this resampling’s
impacts on the GRD.

Proposing a fully automated method for GRD evaluation
of medium-resolution satellite imagery presents a fifth re-
search opportunity. This could involve developing a method
that automatically assesses the Hough lines’ surroundings

to ensure the presence of pure pixels and adequate contrast
to exhibit step-edge behavior. The method should not only
analyze edge surroundings in terms of DN values (as used
by Cenci et al. (2021) and Pampanoni et al. (2020, 2022,
2024)) but also ensure the absence of mixed pixels in the
subset area. Considering the similar concepts of NIIRS and
GRD, future research could explore the potential of using
natural targets for estimating NIIRS.

As noted in Table 1, we assessed two Sentinel tiles:
one flat (Shadnagar) and one mountainous (Baotou). Topo-
graphic variations, especially in mountainous regions, may
affect GRD, particularly at swath edges with large off-nadir
angles. Future research could explore the impact of topog-
raphy on GRD. No suitable targets with straight edges and
spectral capability were found in mountainous areas.

In conclusion, this research provides a valuable contribu-
tion to the RS scientific community, particularly for those
studying Sentinel-2 imagery where accurate GRD estima-
tion is crucial. The methodology has broader applicabil-
ity across various geospatial datasets, regardless of sensor
type. It can be applied to coarser-resolution imagery includ-
ing Landsat and finer-resolution datasets, e.g., commercial
high-resolution satellite imagery and aerial images.
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