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Gradient-Free Aerodynamic
Optimization With Structural
Constraints and Surge
Line Control for Radial
Compressor Stage
The concept and design of high-temperature heat pumps (HTHP) including their compo-
nents for specific temperature needs is a time-consuming and interdisciplinary task. Espe-
cially, the design of compressor geometries have a big impact on the overall performance
and the initial costs of the system. For this reason, in this work, an automated aerodynamic
gradient-free optimization including structural constraints for the geometry of a radial com-
pressor impeller blade as well as diffusor vane geometry for water steam, that is applied in a
reverse Rankine cycle-based HTHP, is presented. The objective of the optimization is the
isentropic efficiency in the aerodynamic design point (ADP) of the compressor. The require-
ments for the cycle simulation of the whole HTHP system and structural needs are satisfied
by constraints for pressure ratio, mass flowrate, and limits for stresses in the blade and disk
geometry. The optimization method is based on evolutionary algorithms and stochastical
surrogate models. Additionally, a highly throttled operating point is regarded to achieve
an acceptable distance to the surge line. These types of optimization problems are often
characterized by many unconverged iterations due to unstable computational fluid
dynamic (CFD) simulations. To encounter this, a study of the optimization process with dif-
ferent surrogate models is presented. The results are discussed with respect to convergence
history as well as objective and constraint improvement. [DOI: 10.1115/1.4067687 ]

Keywords: radial compressor, aero-structure optimization, water steam, centrifugal
compressors and pumps, computational fluid dynamics (CFD), turbomachinery blading design

1 Introduction
Global warming is one of the key challenges of the 21st century

with wide-ranging impact on ecosystems as well as human systems
[1]. Especially, the industrial sector is responsible for almost 25% of
greenhouse gas emissions. Besides reducing the usage of primary
energy sources, the reuse of waste heat is key for achieving reduc-
tion targets. The investigation of high-temperature heat pumps
(HTHP) is a promising approach to achieve a leap-frogging step
in the decarbonization of industrial processes. One of the key com-
ponents of a high-temperature heat pump is the compressor. In
many heat pump systems with heat sink temperatures below
100 ◦C, displacement compressor systems are used. However, tur-
bocompressors are a promising alternative due to higher efficiencies

and the ability to operate at high-pressure ratios [2,3]. Especially for
the application of heat pump systems in industrial processes, the
demand for optimized compressors is rising. In the case of medium-
sized systems, centrifugal compressors are suitable due to higher
pressure ratios and lower mass flowrates (Cordier diagram [4]).
The optimization of a radial compressor is an interdisciplinary

task because of aerodynamic and structural-mechanical require-
ments, manufacturing limitations, and demands on acceptable
operating range. Furthermore, the aerodynamic evaluation of com-
pressor geometries with computational fluid dynamic (CFD)
methods is very time-consuming; thus, high-performance comput-
ing systems are needed.
Besides the operating efficiency, the pressure ratio requirements

for the specific application defines the design objectives of turbo-
compressors. Because of that, many optimization problems are
either constrained by pressure ratio limitations or the pressure
ratio is one of the objectives. This leads to shifted aerodynamic
design points near the surge line in the performance map of the
compressor. To counter this, different strategies can be found in
the literature. A common way is to regard a highly throttled
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operating point (HTOP) near the surge line during the optimization
[5,6]. By using that operating point, it is possible to define the
Cumpsty margin, which is a measure of the distance between the
ADP and the surge line. This can be used during the optimization
to generate geometries that have a specific distance to the surge
line [7]. Otherwise, if the distance is not directly necessary, the
highly throttled operating point achieves optimization results that
are not located at unstable operating conditions. Another approach
is presented by Ratz et al. [8] by using local flow parameters to
define an objective function for the surge margin, that does not
need a highly throttled operating point during the optimization.
The advantage is a more stable optimization process, but the
initial computational cost is higher because of preliminary surge
line calculations. It could be shown, that the optimization result
with an objective function based on flow parameters is comparable
to a common approach with a highly throttled operating point.
Similar suggestions can be found in Refs. [9,10].
The greater number of optimization parameters of the compressor

geometry requires an automated optimization process. Gradient-
based and gradient-free methods could be successfully applied to
radial compressor optimization tasks [11–13]. The advantage of
gradient-free methods is that they are suitable to reach a global
optimum and can handle nondifferentiable objectives and even
unconverged simulations but suffer from the number of objective
evaluations. In contrast, gradient-based methods require fewer
objective evaluations because of derivative information but will
most likely converge to a local minimum. In their work, Hottois
et al. [14] showed by applying a gradient-free and a gradient-based
optimization on a turbine vane that both methods revealed similar
results. Nevertheless, their findings also proved that gradient-based
methods can reach the global optimum in the case of highly
complex optimization problems. To accelerate gradient-free
methods, surrogate models are commonly used [12,13,15]. The
general idea of a surrogate model is to use information based on
already successfully calculated compressor geometries and create
a fast-to-evaluate mathematical function for the objective. Now
the algorithm can be used to run the optimization with the surrogate
model instead of the complex and exact compressor evaluation.
Nowadays, Kriging-based methods (also known as Gaussian
process regression) are frequently used as surrogate models. The
Kriging surrogate model can be evaluated in different ways. The
most common infill criterion is expected improvement and predic-
tion minimization, which is also known as volume gain in the liter-
ature. A third way is entropy maximization, but this is a less
frequent application of that method, because of the very explorative
character and so it is used effectively only in the beginning of an
optimization. Another surrogate model is neural gas, based on self-
organizing maps, that can be used to predict well-performing geom-
etries. Further information can be found in Refs. [16–18].
During an optimization, it is possible to use different infill crite-

ria. In the literature, we could find only one publication with such an
optimization methodology [16]. Aissa and Verstraete presented a
gradient-free aero-structure optimization with alternating infill crite-
ria with expected improvement and prediction minimization. The
application was a radial compressor impeller geometry. But so
far, to the best knowledge of the authors, a comprehensive study
of different infill criteria during an aerodynamic optimization with
the goal of finding optimal combinations is an innovative investiga-
tion. Probable causes are, on the one hand, side the enormous
amount of cluster contingent to run an optimization multiple
times with different infill criteria and, on the other hand, the
sparse availability of different surrogate models implemented in
the used design suites.
The structure of the article is as follows: the following section

presents the optimization methodology and the parametrization of
the compressor geometry. Furthermore, details of the meshing
process, CFD calculations, computational structure mechanics
(CSM) calculations and post-processing of the data will be pre-
sented. The third section gives an overview of the applied surrogate
models and infill criteria. The next section presents the optimization

results. This is followed by comparing the baseline and optimized
geometry. Finally, an automatic hyperparameter tuning (AHPT) is
carried out.

2 Optimization Methodology
For solving the optimization problem, AutoOpti is used, see Refs.

[12,19]. It implements a gradient-free evolutionary algorithm accel-
erated with different surrogate models and infill criteria. The evalu-
ation of geometries during each iteration step is enabled by a
user-defined process chain. AutoOpti is highly parallelized by mul-
tiple process chain evaluations at the same time, with the goal of fast
optimization convergence. The general optimization procedure is
shown in Fig. 1. The optimization is initiated with a randomly
sampled database, followed by the training of surrogate models.
Surrogate models that are implemented in AutoOpti includes
Kriging approximation and neural gas. Furthermore, infill criteria
implemented for Kriging approximation are expected improvement
and prediction minimization. An overview of the surrogate models
and criteria will be given in Sec. 3. After successful training of sur-
rogate models, an infill criterion is selected, which is subsequently
implemented by randomized selection with user-defined probabili-
ties for each infill criteria. By using that procedure, it is possible to
combine exploitative and explorative system behavior. The next
steps describe the geometry parametrization of the impeller and dif-
fusor and CFD as well as CSM evaluation. Details are given in Sec.
2.1. After successful process chain evaluations, the convergence cri-
teria are checked. We are using a maximum number of successful
process chain evaluations and a time limit for terminating the opti-
mization process.

2.1 Parametrization. The first step of the geometry parametri-
zation is the flow path, which is designed by a hub and shroud curve
in the meridional plane (Fig. 2). Impeller and diffusor are located
inside the flow path and are visualized with a black mesh. In
order to modify the flow path of the compressor, the hub and
shroud curve are splined by control points. The first and second
control points for the shroud curve are used to modify the impeller
inlet diameter. The first free variable #1 is used for both control
points to achieve a straight inlet, by modifying the radial compo-
nent. The next three control points are individually shifted in the
normal direction from hub to shroud by free variables #2–#4.
Because of the big influence of the flow path along the impeller
length of the ADP, three control points are used. For simplifying
the manufacturing of the diffusor area, a constant shroud contour
is preferred. For the realization, six control points are included
with an axial degree of freedom, that are controlled by free variable

Fig. 1 Schematic overview of optimization methodology
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#5. In contrast, the hub curve is only parametrized by one free var-
iable #6, because of the reduction of free variables. The location of
the control point is within the area of highest curvature, because of
the biggest influence in aero- and structural mechanics and can be
shifted in an orthogonal direction to the hub curve.
With defined flow path shifts, the parametrization of blade and

vane can be conducted. The first step is the parametrization of the

leading edge of the blade (Fig. 3). In the literature, comparable
radial compressor impeller optimization has shown that huge
geometry modifications of the leading edge can occur during an
automated optimization [6,12]. Because of that, five equally distrib-
uted control points for the parametrization of the leading edge are
used. For each of these control points, free variables #8–#12 for
the axial shift are applied. Furthermore, an overall shift in the merid-
ional plane of the leading edge is regarded by free variable #7, by
modifying the slope of the blue dashed line (Fig. 2). By using
that scheme, the limit of free variables #8–#12 can be reduced,
due to the overall shift by free variable #7. This kind of scheme
should result in a more stable blade parametrization.
The shape of the blade camber line is designed by a distribution

of β angle in (m′, θ) coordinate system. The angle β is defined as the
angle between the meridional plane and S, that is calculated by inte-
gration of ds, which is:

ds =
������������������������
(dx)2 + (dr)2 + (rdθ)2

√
(1)

The meridional plane is defined by the arc length

dm =
��������������
(dx)2 + (dr)2

√
(2)

and m′ can be defined as differential normalized arc length with
respect to the impeller radius r in the meridional plane by

dm′ =
dm
r

(3)

With the notation defined previously, the β angle can be defined
as

tan β =
rdθ
dm

(4)

The definition of β, S, m, and θ can be seen in Fig. 4. Further
information can be found in Refs. [4,20].
Because of prescribed notations, it is sufficient to define the β

angle distribution in (m′, θ) coordinate system. Furthermore, the cir-
cumferential coordinate θ has to be defined. The blade is defined by
two profiles along the span, one located at the hub and the second at
the shroud contour. The vane is constant in spanwise direction, to
reduce the number of free variables. Due to the strong impact of
the blade on the overall compressor performance, more free vari-
ables are defined for parametrization. The circumferential coordi-
nate for the hub profile of the blade is defined as free variable
#13, the shroud profile is free variable #14, and the vane profile
is free variable #40. For each profile, the β angle distribution can
be seen in Fig. 5. The shape of the profile is parametrized by

Fig. 3 Parametrization of leading edge contour by control
points in meridional plane Fig. 4 Definition of β and θ angle

Fig. 2 Parametrization of flow path in meridional plane
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control points. The profiles of the blade consist of five and the
profile of the vane consists of four control points, respectively.
The blade β angle at the leading edge is parametrized by free vari-
ables #15 and #16 and at the trailing edge by free variables #17 and
#18 for the hub and shroud profile. The meridional coordinate of the
second and fourth control points is fixed and the β angle is being
derived by the β angle at the leading and trailing edge, respectively,
because of continuous and differentiable conditions of the overall
profile shape. The meridional coordinate and β angle of the third
control point are parametrized for both profiles. The β angles are
shifted by free variables #19 and #20 and the meridional coordinate
by free variables #21 and #22 in the case of the hub and shroud
profile. The choice of the control points and the degrees of
freedom is a good compromise between the reduction of the
number of free variables and the variability of the blade parametri-
zation. The β angle of the leading and trailing edge of the vane is
parametrized by free variable #27 and free variable #28, respec-
tively. The intermediate control points are located at 33% and
66% of vane meridional length. The only degree of freedom is
described by the meridional coordinates of the control points, that
are parametrized by free variables #29 and #30. Furthermore,
blades and vanes that are defined by multiple control points result
in wavy geometries with high manufacturing costs.

The definition of the rake angle, the free variables of the fillet
parametrization, and the thickness of the impeller blade can be
seen in Fig. 6. The rake angle is defined by the positive angle
between the line, that connects the trailing edge points of both
design profiles and the vertical line that intersects the hub profile
at the trailing edge location. The rake angle is controlled by the cir-
cumferential shift of the shroud profile with free variable #25. The
thickness of the blade at the leading edge is kept constant at 1.3mm.
To satisfy structural-mechanical requirements, the blade thickness
at the trailing edge position is parametrized by free variable #26.
The intermediate thickness is linearly interpolated between the
leading and trailing edges. The fillet is designed by two free vari-
ables. The first free variable #23 controls the blow curve which is
the increased profile at the hub surface, where the smooth connec-
tion between blade and disk starts. The blade curve, which is an
intermediate profile between hub and shroud profile, is designed
by free variable #24. Based on these two profiles, the fillet is
designed as a slightly smoothed curve between them. A perfect cir-
cular fillet could not be used, since the fillet radii are lower than
1 mm, which results in hard-to-manufacture geometries. The free
parameters for fillet design can be seen in Fig. 6.
To satisfy structural-mechanical requirements, it is not only suf-

ficient to consider the blade but also the disk geometry of the radial
compressor. The parametrization of the disk is shown in Fig. 7. The
overall thickness of the disk is designed by free variable #31. Inter-
mediate shifts of the rear side according to the x direction are con-
trolled by free variables #32–#36. The shift locations start at the
radius of the trailing edge of the blade and end at the radius of
the leading edge.
Furthermore, the general radii of impeller and diffusor are consid-

ered. The parametrization can be seen in Fig. 8. The impeller radius
is controlled by free variable #37, the vaneless space by free vari-
able #38, and the radius of the diffusor by free variable #39. Addi-
tionally, a constraint is regarded that the vaneless space is always
positive and at least 5 mm. Moreover, the location of the mixing
plane is always shifted in the middle of the vaneless space. In the
same way, the outlet domain is moved right behind the trailing
edge.
All of the parametrization of blade geometry is done with the

DLR internal tool BladeGenerator. The number of blades is
being kept at 19 and the number of vanes at 14. For more informa-
tion, see Ref. [19].

2.2 Computational Fluid Dynamic Mesh Generation and
Grid Convergence. For evaluation of compressor performance, a

Fig. 5 β angle distribution of blade and vane in meridional plane

Fig. 6 Definition of rake angle γ, lower blade thickness, and fillet
structure

Fig. 7 Parametrization of rear side of disk

091018-4 / Vol. 147, SEPTEMBER 2025 Transactions of the ASME



CFD calculation of impeller and diffusor geometry is carried out.
Based on the parametrized geometry, the CFD mesh is computed
by using a DLR internal meshing tool PyMesh [21]. It implements
an O-C-H mesh topology, with shape modifications done by cell
spacings, block relationships, and dimensions. Because of the
coupled rotor-stator computation, two individual meshes are calcu-
lated. The connection is done at the mixing plane (Fig. 8). To run
low-Reynolds CFD models, the mesh was iteratively refined. The
evaluated y+ values at boundaries are below 1. An exception is
the tip clearance of the impeller geometry, where wall functions
are used to reduce the mesh dimension. The complete compressor
mesh is visualized in Fig. 9 and a detailed view of the leading
edge mesh is shown in Fig. 10. Both visualizations show the
mesh at 50% span.
For proofing the mesh resolution, a grid convergence study is

carried out. Therefore, the mesh was coarsened two times with a
refinement ratio r of approximately 1.2 in every dimension. The
process was done by adapting the major block dimensions and
constant near boundary cell spacing to enable successful simulation
without the necessity of wall functions, except for the tip clearance.
Based on the fact, that only integer numbers of block dimensions
are modified, the theoretical refinement ratio of 1.2 could not be
reached exactly at some mesh modifications. The CFD simulation
is solved on every mesh.
To compare the results to a theoretical on an infinitesimal fine

mesh, the method of Richardson extrapolation is applied. The

theory behind the Richardson extrapolation can be described by
the relation E = C × hp, where E is the error, p is the convergence
order, and h is spatial discretization. By applying Taylor approxi-
mation, the value of the computed parameter f on an infinitesimal
fine mesh h = 0 can be calculated by Eq. (5)

fh=0 = ffine +
ffine − fmedium

r p − 1
. (5)

The calculation of p can be seen in Eq. (6).

p =
ln

fcoarse − fmedium

fmedium − ffine

( )

ln(r)
(6)

With the help of the Richardson extrapolation, the error between
every solved mesh and the solution on the theoretical infinitesimal
fine mesh can be calculated. After that, the grid convergence index
(GCI), which is a measure to display the grid quality, can be calcu-
lated for refinement steps from coarse to medium and medium to
fine by

GCIcoarse, medium =
Fs × εcoarse, medium

r p − 1
(7)

and

GCImedium, fine =
Fs × εmedium, fine

r p − 1
(8)

with Fs as a safety factor, which is usually around 1.25 and
εcoarse, medium and εmedium, fine are the relative errors between coarse
and medium and medium and fine grid, respectively. Finally, it is
possible to ensure, that all grids are in the asymptotic range (AR).
That can be done by calculating

AR =
GCIcoarse, medium

r p × GCImedium, fine
(9)

For AR, Eq. (9) has to be close to 1.0. The results of the CFD cal-
culations for isentropic efficiency ηtt and total to static pressure ratio
πts on every mesh as well as the results of the Richardson extrapo-
lation can be seen in Table 1. Furthermore, the relative error for ηtt
and πts between Richardson extrapolation and mesh solution is
plotted in Fig. 11. The error of ηtt is higher for coarse meshes com-
pared to the error of πts because of the more complex structure andFig. 9 Finest mesh of impeller and diffusor at midspan

Fig. 10 Finest mesh of impeller leading edge at midspan

Fig. 8 Definition of diameters of impeller and diffusor
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dependencies of the efficiency definition. The corresponding
asymptotic ranges are 0.99959 in case of πts and 1.0017 for ηtt.
Further information on the Richardson extrapolation and grid con-
vergence studies can be found in Refs. [22,23]. For the optimiza-
tion, the finest mesh was used.

2.3 Computational Fluid Dynamic Simulation. The perfor-
mance of the radial compressor stage is carried out by CFD calcu-
lation of steady-state Reynolds-averaged Navier–Stokes equation.
The inlet and outlet domains can be seen in Fig. 8. Because of
the periodicity of the geometry, only one segment is calculated.
Therefore, a mixing plane is used between the rotating and station-
ary stage. For the calculation of the thermodynamic properties of
water steam, the ideal gas model is applied. The viscosity is calcu-
lated by using the Sutherland model. The influence of the turbulence
is considered by the Menter shear stress transport turbulence model.
The solver is back-pressure controlled and a second-order spatial
discretization scheme is used. At the compressor inlet, the stagna-
tion pressure and stagnation temperature and at the outlet the
static pressure are defined, respectively. For successful conver-
gence, the variation of mass flowrate, pressure ratio, and isentropic
efficiency between inlet and outlet have to be smaller than 0.0005
for 200 time-steps. The calculation is initialized by a circumferential
averaged solution of the baseline geometry. The simulation is con-
ducted by using the solver TRACE [24].

2.4 Computational Structure Mechanics Simulation. For
the satisfaction of structural-mechanical requirements, a static
CSM simulation for the rotating stage is executed. The meshing
process is implemented by using a DLR internal meshing software.
The blade and disk geometry are individually discretized by hexa-
hedral mesh and connected by multi-point constraints (MPC).
Based on the aerodynamic simulation, the pressure and temperature

loads are considered. In addition, the rotation of the geometry is a
further mechanical load for the system. By using cyclic boundary
conditions, only one blade and disk segment is taken into
account. For the solution, the open source solver CALCULIX with
compiled solver SPOOLES is applied [25]. Because of the MPC,
stresses in the connection area are potentially unreliable. To
encounter this, the MPC cells are not taken into account for auto-
matic post-processing during the optimization process. The CSM
mesh and the cells, that are neglected in post-processing, are
shown in Fig. 12. Besides that, the first 5% of the blade height is
neglected to not sophisticate the post-processing process. Prelimi-
nary simulations revealed that the maximum stress values are not
located in that region; therefore, the limited post-processing has
no influence on the final CSM result.

2.5 Objective and Constraints. The optimized compressor
geometry will be integrated into an HTHP with water steam as
the working fluid. To achieve a high-temperature lift, the heat
pump consists of three compressor stages. The goal of the presented
optimization methodology is to maximize the efficiency in the ADP
of the second stage. Because of already existing performance maps
of the first and third stages, constraints for the mass flowrate and the
pressure ratio are necessary. The mass flowrate in the ADP should
be above 0.175 kg/s to reach the design criteria of the heat exchang-
ers and below 0.275 kg/s to satisfy the power consumption limit of
the gear system. Furthermore, the pressure ratio of the compressor
stage should be above 2.3. The material of rotor and stator will be
the titanium alloy Ti-6Al-4V; hence, the stresses in the impeller
should be below 600 MPa. Besides the ADP, a highly throttled
operating point will be regarded, to ensure a decent distance of
the ADP to the surge line. That operating point will be at the
same speed line, but with an increased back pressure of 2%.
During the optimization, no surge margin distance will be calcu-
lated; therefore, no Cumpsty margin is calculated either. For the
highly throttled operating point, only the convergence of CFD is
required. The objective will be the maximization of the efficiency
in the ADP. The initial design does not satisfy the pressure ratio
and structural-mechanical needs and is derived from the design of
an already existing compressor test rig. The optimization problem
can be formulated as

Minimize Obj ≡ −
ηtt

ηBaselinett

subject to Constraint 1 ≡
ṁ

0.25 kg/s
∈ [0.7, 1.1]

Constraint 2 ≡
πts
2.3

∈ [1, inf ]

Constraint 3 ≡
σmises

600 MPa
∈ [0, 1]

Constraint 4 ≡ HTOP CFD converged

(10)

Table 1 Results of grid convergence study for radial
compressor stage

# cells πts ηtt (%)
Rel. error

πts
Rel. error

ηtt

Coarse grid 580,944 1.97294 0.68261 0.000968 0.006947
Medium grid 883,932 1.97594 0.67644 0.000553 0.002156
Fine grid 1,413,027 1.97514 0.67762 0.000147 0.000413
Richardson
extra.

1.97485 0.67790 0 0

Fig. 11 Relative errors between different mesh resolutions and
Richardson extrapolation

Fig. 12 CSM mesh for blade and disk (a) and ignored cells (red)
in stress post-processing (b)
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3 Surrogate Models
Gradient-free optimization approaches suffer from low conver-

gence rates; hence, new designs are created by genetic operations
like mutation or crossover. To counter this, surrogate models are
used. In this section, three different types of surrogate models are
presented at a glance. For detailed explanations, as well as imple-
mentation strategies, further references in the literature are given.
A classical and well-known surrogate model is the Gaussian

process regression, also known as Kriging. In the case of ordinary
Kriging, the idea is to approximate the function by the main trend
with one regression function combined with a Gaussian random
process with zero mean. The covariance of the random process is
assumed to be only dependent on the distance of two arguments mul-
tiplied by a constant variance. The free parameters of the regression
function and of the random process are determined, such that the
Kriging model is the best linear unbiased predictor. This process is
called the training of the surrogate model. The result is a surrogate
model that does not only give predictions of function values but
also a value of the variance of the prediction. The variance of the pre-
diction is small in the area of already existing datasets and increases
away from it. Based on that, it is possible to define the different infill
criteria. The first and very common approach is called expected
improvement (E). The idea is to scan the surrogate model for argu-
ments with the biggest chance of getting better than the current
best dataset in the database. Another infill criterion is called predic-
tion minimization (P), with the goal in only going to minimize the
value of the prediction without consideration of the variance.
Further information on Kriging surrogate models can be found in
Refs. [16,17].
Another surrogate model is called neural gas (N). The idea is to

use self-organizing maps, also known as Kohonen net, which is a
kind of artificial neural network. Each neuron of the Kohonen net
consists of a weight out of the argument set and a position in a
2-dimensional space. Higher dimensions are also possible. During
the training phase, the weights of the neurons are adapted, such
that similar samples are located closer and adjective samples far
more apart. New samples are generated through the evaluation of
the artificial neural network. Further information on neural gas
can be found in Ref. [18]. For the optimization process, individual
surrogate models are created for the objective and each constraint.

4 Optimization Problem
The optimization process is started with 100 randomly generated

geometries based on the baseline geometry. Next, all of the new
iterations are generated by surrogate model evaluations. The rota-
tional speed in the ADP is 100.000 rpm. The inlet condition was
defined by a total pressure of 3.8 bar and a total temperature of
420.0K. The infill criteria are selected by a random process with
weight wE for expected improvement, wP for prediction minimiza-
tion, and wN for neural gas. Each weight has to be in
R+ : = [0, inf ). The ratio w·/(wE + wP + wN ) describes the proba-
bility of selecting the surrogate model ·. A maximum number of
1500 iterations was used for terminating the optimization process.

4.1 Optimization Results. The first optimization run was con-
ducted with infill criteria probabilities (wE , wP, wN) = (3, 1, 1).
Because of the stochastic nature of both the infill criteria selection
and the surrogate model structure as well as the evolutionary algo-
rithm for solving the optimization problem, the optimization was
repeated five times. The optimization process can be seen in
Fig. 13. The figure shows only iterations, that satisfy all of the con-
straints and have a converged highly throttled operating point. It can
be seen that neither the baseline geometry nor one of the 100 ran-
domly generated members for the initial dataset satisfies all of the
constraints. Moreover, the first member that fulfills all of the con-
straints can be found after approximately 300 iterations. Besides
the objective decrements, a confidence interval with a 95% level

is shown. It can be seen that the confidence interval is wide in the
early phase and narrow in the late phase of the optimization. Possi-
ble reasons are the strong dependence of the objective decrement on
the infill criteria selection, which is in the early phase very different
from the defined selection criteria. During the ongoing optimiza-
tion, the ratio of the selected infill criteria converges to the prede-
fined probability distribution; hence, the confidence interval
decreases. Besides that, all objective decrements are not fully con-
verged within the iteration limit. This motivates to investigate dif-
ferent infill criteria probabilities.
The comprehensive study is shown in Fig. 14. The conver-

gence trajectories with only one kind of surrogate model
(wE,wP,wN)=(0,0,1), (wE,wP,wN )=(0,1,0), and (wE ,wP,wN)=
(1,0,0) are shown with squares as symbol, combinations
of two different surrogate models (wE,wP,wN)=(1,1,0),
(wE,wP,wN)=(1,0,1), and (wE ,wP,wN)=(0,1,1) are visualized by
circles and those combining three (wE,wP,wN)=(3,1,1),
(wE,wP,wN)=(1,3,1), and (wE,wP,wN )=(1,1,3) are plotted using
diamonds. No further combinations were conducted. It can be
seen that the convergence behavior of only N (squares, resulting
in objective value of −1.145) is the least optimal. Similar results
can be observed for P (squares, resulting in −1.192). Possible
reasons are the very exploitative and no explorative strategy of
these surrogate models. Only two infill criteria combinations
(wE,wP,wN)=(1,3,1) and (wE ,wP,wN )=(1,1,3) reach the best
solution with an objective decrement of −1.285. For both trajecto-
ries, a good convergence behavior can be noticed. The other com-
binations of surrogate models perform similarly to the first
investigated combination and are in the area of the confidence
interval.
Further statistical comparison of three different infill criteria

combinations are shown in Fig. 15. Because of limited cluster
contingent, only the combinations (wE , wP, wN) = (3, 1, 1),
(wE, wP, wN) = (1, 3, 1), and (wE, wP, wN) = (1, 1, 3) are carried
out. Each confidence interval was calculated based on five optimi-
zations. It can be clearly seen that the mean of confidence interval of
(wE, wP, wN) = (1, 1, 3) is lower than the means of the other confi-
dence intervals. The least optimal mean has a combination
(wE, wP, wN) = (3, 1, 1). Furthermore, the width of all three confi-
dence intervals is comparable.

4.2 Result Interpretation. The baseline geometry is com-
pared with the last iteration of the optimization run with infill crite-
ria combination (wE, wP, wN ) = (1, 3, 1). The geometry is the same
as the result of optimization run with infill criteria combination

Fig. 13 comparison of three optimization runs with same infill
criteria and calculated 95% confidence interval
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(wE, wP, wN) = (1, 1, 3). The flow path variation and the radial start
and end positions of blade and vane can be seen in Fig. 16. Only
slight modifications of the flow path can be noticed. The diameter
of the impeller was nearly kept constant, but the radial starting posi-
tion of the vane, which was decreased by free variable

#38 : 0.062 → 0.0585 as well as the diameter by free variable
#39: 0.084 → 0.0788. The optimizer was able to reach the required
pressure ratio without increasing the impeller diameter, which often
leads to higher losses due to higher outlet Mach numbers. The
decrement of the vaneless space reduces the logarithmic path of
the fluid behind the impeller caused by the guided stream path by
the vaned diffusor. The reduction of the diffusor diameter reduces
friction losses. The optimized disk geometry is shown in Fig. 17.
Slight modifications in the rear side can be identified by adapting
free variable #35 : 0 → 0.0003. The overall disk thickness was
kept constant.
The blade parametrization was highly modified. Figures 18 and 19

show the redesigned inlet geometry with a modified lean angle and
the optimized leading edge contour with a one-sided S-shaped
contour. The β angle was decreased in the case of the hub surface
by free variable #16: −5 deg → −9.98 deg and for the casing by
free variable #15: −15 deg→ −19.4 deg. The β angles at the trailing
edge did not change significantly. The leading edge contour was
designed by a huge increment of free variable #9: 0 → 0.2, which
is the upper limit for the optimizer. With an increased limit, the opti-
mizer would probably select bigger shifts. The shock losses could be

Fig. 15 Comparison of three 95% confidence interval of infill cri-
teria combinations

Fig. 16 Baseline geometry (straight leading edge) and opti-
mized flow path (curved leading edge) in meridional plane

Fig. 14 Convergence history of different combinations of infill
criteria

Fig. 17 Baseline and optimized disk geometry in the meridional
plane
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significantly avoided by shifting the impeller from a transonic to
nearly subsonic behavior. The β angle of the vane was slightly
decreased at the leading edge by free variable #27: 83.5 deg →
82.73 deg and at the trailing edge by free variable #28: 69.5 deg →
65.3 deg. The θ angle was reduced by free variable #40: 160 deg →
157.1 deg.
The resulting flow based on the shape modifications can be seen in

Fig. 20. TheMach number at 50% span is shown. The flow is success-
fully decelerated at the inlet and outlet area of the impeller. Addition-
ally, the flow on the suction side is homogenized, which leads to
reduced losses due to secondary flow phenomena. The flow in the dif-
fusor passage is kept constant, but with a decreased diffusor diameter,
which reduces the friction. A detailed view on the passage flow of the
impeller is shown in Fig. 21. It can be seen that the redesigned lean
angle of the leading edge and the complex leading edge contour
reduce the Mach number significantly. Again, a detailed view of the
flow inside the impeller passage is given that shows the deceleration
of the flow at the suction side that results in lower flow separation.
The comparison of the flow at the outlet of the impeller can be seen
in Fig. 22. Due to the optimized rake angle by free variable
#25 : 0 → 0.0276, the passage flow is reduced, hence the transforma-
tion of kinetic energy to static pressure in the diffusor area is improved.
The aerodynamic loading of the impeller blade at 50% span is

shown in Fig. 23. The upper, intersecting lines show the isentropic

Mach number of the baseline geometry and the loading of the opti-
mized geometry is shown by the lower graphs. Two highlighted
areas can be identified with negative loading of the baseline impel-
ler. The optimized geometry has no areas with negative loading.
Furthermore, the overall loading behavior is homogenized through-
out the blade, which results in higher efficiencies. Furthermore, the
Mach number is successfully decreased during the optimization.

Fig. 18 Comparison of baseline (lean angle 90°C) and optimized
(lean angle 45°C) geometry with focus on inlet

Fig. 19 Single blade and vane comparison of baseline (straight
leading edge) and optimized (curved leading edge, reduced
vaneless space) geometry

Fig. 20 Flow comparison of absolute Mach number at 50% span
between baseline (a) and optimized (b) geometry

Fig. 21 Comparison of absolute Mach number in passage at
inlet and intermediate position between baseline (a) and opti-
mized (b) geometry

Fig. 22 Comparison of absolute Mach number in passage at
impeller outlet between baseline (a) and optimized (b) geometry
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The performance map of the radial compressor stage is shown in
Figs. 24 and 25. The first figure visualizes the ratio of total and static
pressure for three speed lines, starting at n = 80% up to n = 100%.
The ADP with a pressure ratio of 2.3 and a mass flowrate of
0.26 kg/s has a decent distance to the surge line, at the speed line
with n = 100%. Without the integration of the highly throttled oper-
ating point, the optimizer would possibly shift the ADP up to the
surge line. The isentropic efficiency with respect to the mass flow-
rate is shown in Fig. 25. It can be noticed, that the ADP is at the
maximum of the speed line n = 100%. Furthermore, higher efficien-
cies are possible by reducing the rotation speed of the compressor
that leads to lower pressure ratios.

5 Automatic Hyperparameter Tuning
The results of the comprehensive study for different infill criteria

combinations shown in Fig. 14 motivate further investigation of the
best choice for the values of the model parameters wE, wP, and wN .
This is carried out by an AHPT. The hyperparameter tuning is done

by an implemented Bayesian optimization approach. The optimiza-
tion process is supported by a Gaussian process regression surrogate
model. Due to the fact that only the ratio of wE to wP and wN are
influencing the performance of the optimization process, wE, wP,
and wN can be considered in the interval [0, 1] without loss of gen-
erality. The optimization process is initialized by two randomly
generated samples of model parameter combinations. Further
iterations are generated by evaluating the surrogate model. The
result of the AHPT is shown in Fig. 26. It can be seen that iteration
eight has the lowest objective value and is more optimal than the
best found solution within the comprehensive study. An objec-
tive value of −1.2918 could be achieved with model parameters
(wE, wP, wN) = (0.344, 0.310, 0.346).
Thegeometrymodifiedby theAHPT iscomparedwith theoptimized

geometry with infill criteria combination (wE, wP, wN) = (1, 3, 1).
Significant changes in the circumferential coordinates, the control
points of the β angle distribution, and the control points of
the leading edge interpolation were noted. The circumferential
coordinate was further optimized by modifying #13: 60.83 deg →
63.00 and #14: 60.00 deg → 57.99. Slight modifications of the

Fig. 23 Comparison of aerodynamic loading of baseline (upper,
intersecting lines) and optimized (lower lines) geometry at 50%
span

Fig. 24 Performance map with total to static pressure ratio of
optimized geometry

Fig. 25 Performance map with isentropic efficiency of opti-
mized geometry

Fig. 26 Convergence history of automatic hyperparameter
tuning
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β angle control points #20 : 0.06 → 0.10, #21 : 0.60 → 0.55, and
#22 : 0.073 → 0.032 further optimized the intermediate shape of
the impeller geometry. Another modification could be observed of
the leading edge control points: #8: −0.033 → −0.076, #9: −0.023
→−0.013, #10: 0.028→ 0.060, and #12:−0.10→ 0.024. The result-
ing geometry of the AHPT and the geometry with the model param-
eters (wE , wP, wN ) = (1, 3, 1) is shown in Fig. 27.

6 Conclusion
The article presents an aerodynamic optimization for a radial

compressor stage with application in an HTHP test rig. The
working fluid is water steam. The rotational speed was kept constant
at 100,000 rpm.
The optimization was done by a gradient-free algorithm, that is

accelerated by surrogate models. The blade and vane are parame-
trized by 40 free variables. A highly throttled operating point is
regarded, to achieve a descent distance of the ADP to the surge
line. Three different surrogate models and infill criteria were inves-
tigated. The best combination of infill criteria was found to be
(wE, wP, wN) = (1, 3, 1) and (wE , wP, wN) = (1, 1, 3).
The optimized geometry satisfies all constraints. The required

pressure ratio of 2.3 could be realized. An isentropic efficiency of
nearly 75% in the ADP for the compressor stage was calculated.
The effect of negative loading could be successfully avoided in
the optimized impeller geometry.
Furthermore, an automated hyperparameter tuning was carried

out to investigate the most optimal combination of infill criteria.
The result was a geometry with an improved isentropic efficiency
of about 0.68 percentage points compared to the result of the opti-
mization with (wE, wP, wN) = (1, 3, 1).
Finally, the optimized compressor stage was analyzed in terms of

aerodynamic performance. Special features, like β angle, rake angle,
and leading-edge contour were described quantitatively. During the
optimization, the leading-edge parametrization reached the parame-
ter limit. Further optimization with refined leading edge control
points could generate more optimal solutions. That will be investi-
gated in the next design steps of turbocompressors for HTHP.
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Nomenclature
h = Spatial discretization
m = Meridional coordinate
n = Rotational speed (1/min)
r = Radial coordinate (m)
r = Refinement ratio
p = Order of convergence
E = Discretization error
M = Mach number
S = Meridional length
ṁ = Mass flowrate (kg/s)
wE = Weight of expected improvement
wN = Weight of neural gas
wP = Weight of prediction minimization
m′ = Normalized meridional coordinate

Greek Symbols
β = Beta angle of blade (deg)
γ = Rake angle (deg)
η = Isentropic efficiency (%)
θ = Circumferential coordinate (deg)
π = Pressure ratio
σ = Von Mises stress (MPa)

Superscripts and Subscripts
ts = Total to static property
tt = Total to total property

Abbreviations
ADP = Aerodynamic design point

AHPT = Automatic hyperparameter tuning
AR = Asymptotic range

CFD = Computational fluid dynamic
CSM = Computational structure mechanics

E = Expected improvement
GCI = Grid convergence index

HTHP = High-temperature heat pump
HTOP = Highly throttled operating point

N = Neural gas
P = Prediction minimization
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