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Abstract: West Africa faces a complex range of challenges arising from climatic, social,
economic, and ecological factors, which pose significant risks. The rapidly growing pop-
ulation, coupled with persistently low agricultural yield, further exacerbates these risks.
A state-of-the-art monitoring and data derivation of agricultural systems are crucial for
improving livelihoods and enhancing food security. Despite smallholder farming systems
accounting for 80% of cultivated cropland area and providing about 42% of the total em-
ployment in West Africa, there exists a lack of a comprehensive overview of Remote Sensing
(RS) products and studies specifically tailored to smallholder farming systems, which this
review aims to address. Through a systematic literature review comprising 163 SCI papers
sourced from the Web of Science database (Filter I), followed by a full-text review (Filter II),
we analyze the RS sensors, spatiotemporal distribution, temporal scales, the crop types
examined, and thematic foci employed in existing research. Our findings highlight the
predominance of high to very high-resolution, multispectral sensors as the primary data
source and we observe that a wide array of available sensors and datasets, along with
increasing computing capacities, have shaped the field over the last years. By highlighting
existing knowledge, this study identifies the potential of RS and pinpoints the key research
gaps. This sets the stage for future investigations aimed at addressing critical challenges in
West African smallholder agricultural systems.

Keywords: Africa; West Africa; review; remote sensing; earth observation; agriculture;
farming; food security; monitoring; sustainable intensification

1. Introduction
1.1. Small-Scale Agriculture in the Context of Global Change

Food security is one of the world‘s most pressing challenges in the face of a con-
tinuously increasing world population, and even more so as climate change puts more
pressure on the natural resources we depend on [1]. As of 2023, approximately 733 million
people worldwide are chronically undernourished, including 298 million in Africa, with
33.1 million in West Africa [2]. In West Africa, smallholder farmers cultivate > 80% of
the cropland, employing about 42% of the labor force [3–6]. Smallholders are defined as
small-scale farmers who manage areas from less than 1 ha up to 10 ha and are charac-
terized by family-focused motives such as favoring the stability of the farm household
system, using mainly family labor for production, and using part of the yields for fam-
ily consumption [6]. Their limited resources and rainfall-dependent farming practices
make them highly sensitive to the effects of climate change [7]. Among the regions where
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smallholder farming is predominant, West Africa is considered one of the most important
because of its geographical size and the potential for yield growth in the coming decades [4].
However, the large increase in population urgently demands enhanced production and
improvements in the governance of food production systems. These improvements are
also a prerequisite for achieving the United Nations (UN) Sustainable Development Goals
(SDG). Food security plays a prominent role in SDG2 “Zero Hunger” as well as SDG1, as
the agriculture and food sector is key to eliminating poverty for many people [1,8]. More
specifically, SDG target 2.3 aims to double the agricultural productivity and the incomes
of small-scale food producers by 2030, in particular for women, indigenous peoples, and
family farmers [8]. Smallholder systems are characterized by large yield gaps [9,10], which
arise from the numerous challenges they face. These challenges include their small plot size,
often less than 1 ha, environmental variability, low soil fertility, mixed cropping systems,
and suboptimal practices. These obstacles continue to impede sustainable improvements
in agricultural productivity and quality [11–14]. As a result, a large proportion of these
households are themselves food insecure and fall below the poverty line. The probability
of smallholders escaping poverty depends directly on their ability to increase the pro-
ductivity of their crops [5,15]. These constraints may be reduced through integrated soil
fertility management (ISFM), improved crop–livestock integration, multi-purpose crops,
and various other sustainable intensification (SI) practices [10,16,17]. Previous research
showed that small-scale irrigation can play a pivotal role in agricultural production, reduce
farmer reliance on the varying rainfall patterns that characterize the climatic conditions of
sub-Sahara Africa, facilitate economic transactions, and improve community livelihood,
wealth, and infrastructure [18,19]. However, these solutions must consider a dynamic
socio-economic and climatic context, where evolving urban demand, market access, IT
dissemination, and social differentiation present both risks and opportunities [11,16,20,21].

As the challenges of ensuring food security and sustainable agricultural practices
become more complex there is a need for precise, data-driven solutions. Remote Sensing
(RS) offers a powerful opportunity for monitoring, assessing, and optimizing agricultural
activities across the heterogenous landscape of West Africa [1,12,18,22,23] as an increase in
agricultural productivity is imperative [24–26].

1.2. Remote Sensing Perspective

RS techniques are widely used in agriculture and agronomy [27–30]. The monitoring
and mapping of agricultural systems benefit particularly from RS due to specific challenges
not common in other sectors [27,31]. Agricultural production follows strong seasonal
patterns related to the phenology of crops. The production depends on heterogenous
environmental factors such as soil type and properties, climatic-driven variables, and agri-
cultural management practices, all of which are highly fluctuative in time and space. RS can
contribute considerably to providing a timely and accurate perspective of the agricultural
sector, as it gathers information over large areas with high revisit frequency [27,29,32]. Var-
ious techniques for gathering this information, such as imaging spectroscopy, fluorescence
spectroscopy, and thermal and microwave RS, provide different insights into agricultural
systems [28,33,34]. RS offers physical measurements of crop areas, capturing their temporal
and spatial development. This approach indirectly integrates key factors influencing crop
productivity [35], such as sowing dates [36], pest infestations [37], irrigation practices [19],
and levels of intensification [38], that are challenging to access or too costly to measure
directly [33]. For example, satellite data can be particularly useful for assessing the extent
of irrigation and identifying irrigated cropland over time. This information is crucial for
mitigating the impacts of extreme weather and climate variability [19,39].
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Optical data, which depend on weather conditions, are particularly affected by cloud
cover and therefore, may be less effective, especially in southern West Africa. Very high-
resolution commercial satellites, such as IKONOS, QuickBird, WorldView, Planet, etc.,
can capture small fields with greater detail, but their high costs restrict their use in small-
scale studies and limit their application for large assessments [40–42]. Instead, high-to-
moderate-resolution satellite imagery such as from the Landsat and Sentinel missions,
are generally more suitable for larger-scale studies. Landsat provides a long-term, multi-
decadal record of moderate-resolution images (30 m), making it useful for tracking changes
in arable land over time. In contrast, Sentinel-2, launched in 2015, provides higher spatial
resolution (10–20 m compared to 30 m), higher return frequency (5 days versus Landsat‘s
16 days), and additional narrow bands in the red-edge and near-infrared regions. These
features help to detect finer changes in crop status and improve the accuracy of mapping
agricultural systems [29,32]. Sentinel-1 Synthetic-aperture Radar (SAR) data, available
since 2014, complements optical data by providing consistent measurements that are
almost unaffected by cloud cover. This is particularly valuable for monitoring small
fields in cloud-covered areas of West Africa. For example, Sentinel-1’s SAR sensor offers
detailed information on crop canopies and moisture status, which, when combined with
Sentinel-2, enhances the ability to distinguish between different crop and land cover
types [29,32]. Open data archives such as those of Landsat, MODIS (Moderate-resolution
Imaging Spectroradiometer), or the Sentinel fleet enable research on all geographical
scales from local to global at high temporal and spatial resolution [43,44]. MODIS sensors
offer data more continuously due to their high temporal resolution and their globally
uniform acquisition scheme, but the spatial resolution of 250 m or less is not satisfactory to
delimit small-scale agricultural areas [43,45]. However, the growing trend towards sensor
constellations is overcoming this limitation, a trend also evident in the development of
high-resolution commercial satellite constellations [43].

Additionally, integrating various data sources can overcome individual limitations
and improve mapping accuracy, especially in regions with variable weather conditions. The
inclusion of other data sources, such as GEDI or UAV data further expands the potential
of RS for mapping smallholder agriculture and cropping systems in West Africa [22,46].
The need for improvements in cropland area assessment in this region, coupled with the
potential for improvements made possible by using higher resolution data, also increases
the need for computational resources, new methods, and technical skills for effective
processing and analyses [47]. Recent studies have supported the hypothesis that data
fusion can improve crop mapping [48,49]. The success of RS applications hinges on both the
quality of the data and the analytical techniques used. Machine learning (ML) offers a range
of techniques, including conventional models like Random Forest, Support Vector Machine,
Decision Trees, and k-nearest neighbors. In contrast, Deep Learning is a specialized subset
of ML that focuses on models like (convolutional) neural networks (CNN) and multi-layer
neural networks for effectively analyzing big datasets and complex tasks [40,50].

1.3. Structure and Objectives of This Review

As the above information shows, food security in West Africa is increasingly threat-
ened by rapid population growth, low agricultural productivity, and the impacts of climate
change. Smallholder farmers, in particular, face substantial challenges due to limited
resources and their reliance on rainfall. RS technologies offer a promising solution to
address these challenges, providing valuable data for improving agricultural monitoring,
enhancing productivity, and supporting sustainable practices in the region. This review
aims to provide a comprehensive overview of RS products and studies focused on small-
holder farming systems, assessing the potential of Earth Observation (EO) for mapping
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small-scale agriculture and cropping systems in West Africa. We analyzed 163 scientific
papers published between 1 January 2000 and 30 April 2024, with the overall structure of
the review outlined below:

• The introduction in Section 1 presents the relevance of the potential of RS to monitor
and map agricultural and cropping systems in West Africa amid increasing and
multidimensional challenges of global change.

• Section 2 first provides a geographical overview of the study area and secondly
explains the literature selection process by providing an overview of the literature
databases used and the filters applied.

• Section 3 presents the results of the review process. It aims to identify the potential of
EO for mapping small-scale agriculture and cropping systems in West Africa. First,
the evolution of the research field over time is described. This is followed by a detailed
spatial breakdown based on the affiliation of the first authors, the origin of the study
funding and the location of the study area. The sensors used and the temporal and
spatial scales are presented in the next subsection. Section 3 concludes with an in-
depth analysis of the research foci. The classified studies are analyzed on their main
findings, RS potential and their challenges and limitations in order to identify relevant
research gaps.

• The discussion of the results, the limitations of the review, the need for integrating
high-resolution RS data and future research directions are presented in Section 4.

• Section 5 highlights the main findings, and concludes with the potential of RS to detect the
impacts of global change in West Africa and how RS can support sustainable intensification.

2. Materials and Methods
2.1. Study Area—West Africa

The area of interest for this literature review is West Africa as defined by the United
Nations (UN) in the M49 standard [51], comprising the following countries: Benin, Burkina
Faso, Cabo Verde, Côte d’Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali,
Mauretania, Niger, Nigeria, Saint Helena, Senegal, Sierra Leone, and Togo. Covering
approximately one quarter of Africa, West Africa contains a broad range of ecosystems,
bioclimatic regions and habitats from rainforest to desert. From the arid Sahara in the north
to the humid southern coast, five distinguishable broad east–west belts characterize the
West African climate and vegetation [52] (Figure 1a,b).

Figure 1 shows the terrestrial ecoregions delineated based on the biogeographic distri-
bution of species, communities, and endemic genera by Olson et al. [53]. Rainfall levels
and temperature also can be used [52,54] to derive gross biophysiological features resulting
in the Saharan, Sahelian, Sudanian, Guinean, and Gunieo-Congolian regions. The Sahara
Desert stretches across the whole north extent of West Africa. It is characterized by arid
landscapes, dune fields, gravel plains, and rugged mountains. Average annual rainfall
ranges from 0 to 150 mm per year. The Sahel is a broad semiarid belt averaging about
350 km wide. Climatically it is characterized by an average rainfall of between 150 and
600 mm, with great variability of amount and timing in a given year, and by a dry season
lasting 8 to 9 months (Figure 1). It is also home to countless small wetlands as well as
large water features including the Senegal River, the Inland Niger Delta, and the Lake
Chad Area. It transitions in the south to the Sudanian Region, which is the domain of
savanna, ranging from open tree to wooded savannas and to open woodlands. Annual
rainfall is between 600 and 1200 mm and the dry season lasts 5 to 7 months. Further south,
the Guinean Region is generally defined by an average annual rainfall of between 1200 and
2200 mm and is the domain of seasonally wet-and-dry deciduous forests. Canopy cover is
dense and closed with tree heights averaging 18 to 20 m. It has a distinct dry season of 7 to
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8 months, which distinguishes it from the Guineo-Congolian Region. This is the wettest
in West Africa with 2200 to 5000 mm annual rainfall. Here, there are two rainy seasons,
one long and a short one interrupted by short, drier periods [52,53,55]. The rainfall and
temperature patterns are illustrated in Figure 1c, using climate diagrams that present the
average temperature and precipitation data from 1991 to 2020. These graphs span from
northern to southern regions, showcasing Mauretania and Niger as representative of the
Sahel zone, Senegal for the Sudanian region, and Ghana and Sierra Leone as a blend of the
Guinean and the Guineo-Congolian zone. Sierra Leone exhibits notably high precipitation
amounts characteristic of the Guineo-Congolian zone, while also displaying the distinct
dry season of the Guinea region, reflecting national averages. Southern Ghana lacks the
extended dry season, instead exhibiting a shorter one, alongside two rainy season peaks.

The diversity of bioclimatic zones across West Africa influences the land use and there-
fore, the types of crops cultivated in the region. Each zone provides distinct environmental
conditions that support specific crops, leading to a variety of cropping systems and agri-
cultural outputs essential for both domestic consumption and export. Major staple crops
include maize, millet, sorghum, rice as well as groundnut, cassava, and yams [2,53,54].
Millet, for instance, is widely grown due to its adaptability to semi-arid conditions, where
other crops often require irrigation, and its high nutritional value [55]. Groundnut is a
key crop in several countries, including Nigeria, Mali, Côte d’Ivoire, Burkina Faso, Ghana,
and Senegal [54]. Similarly, cotton serves as an important cash crop in areas such as Mali,
Nigeria, Benin, Togo, Côte d’Ivoire, and Burkina Faso [56–58], significantly impacting
local livelihoods. In contrast, the Upper Guinean forests, particularly in Ghana and Côte
d’Ivoire, are renowned for cocoa production, which engages approximately two million
farmers throughout West Africa. This diversity of crops across various regions highlights
the distinct agricultural practices shaped by local environmental conditions [59–61].

Agriculture is not only central to West Africa’s economy but also to its demographic
makeup. Population characteristics such as rural and urban distribution, labor force
participation, and dependency ratios, illustrate the critical relationship between the region’s
people and their agricultural livelihoods. According to the UN [26], 441 million people
live in West Africa, 43% of which work in the agricultural sector. This marks a substantial
decline from the year 2000, when 75% of the population was engaged in agriculture
(Figure 1d,e). The median age in West Africa is 18, highlighting a young population that
will continue to shape agricultural practices and labor availability [26]. While crop types
vary across bioclimatic zones, farm size also plays a crucial role in determining agricultural
productivity. Understanding the average farm size across the region sheds light on the
scale of operations and the challenges that farmers face in different areas. Despite the large
number of individuals engaged in agriculture, productivity levels vary widely, often due to
disparities in farm size, access to resources, and the efficiency of agricultural techniques.
For instance, Ghana serves as a representative case for West Africa, with small-scale farms
averaging 1.56 hectares and a national average of 2.56 hectares [58]. These differences
highlight the diverse farming structures and operational challenges across the region.
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2.2. Review Process

A structured literature search on the potential of EO for mapping small-scale agricul-
ture and cropping systems in West Africa has been conducted using the Web of Science
(WoS) platform (last accessed 1 May 2024). The platform enables an in-depth literature
search on the basis of search strings and additional filter criteria such as language, discipline
or publication year. We employed conditional statements to ensure the studies addressed
each of the three topics: Remote Sensing, West Africa, and Small-Scale Agriculture. To allow
some leeway, several synonymous search terms for each topic were employed (Table 1).

Table 1. Criteria entered in the WoS search string. The asterisk (*) represents any group of characters,
including their absence.

Criteria Conditions

Remote Sensing and
Earth Observation

“remotely sensed” OR “remote sensing” OR “earth observation*” OR “satellite” OR
“IKONOS” OR “Quickbird” OR “WorldView” OR “Pleiades” OR “Rapideye” OR
“GeoEye” OR “Planet” OR “skycat” OR “SPOT 4” OR “SPOT 5” OR “SPOT 6” OR
“SPOT 7” OR “SPOT-Vegetation” OR “Landsat” OR “Sentinel” OR “AVHRR” OR

“MODIS” OR “Envisat” OR “Aster” OR “ALOS” OR “TanDEM-X” OR “TerraSAR-X”
OR “DESIS” OR “PRISMA” OR “EnMAP” OR “Hyperion” OR “GEDI” OR ”optical

imagery“ OR ”optical satellite“ OR “Synthetic Aperture Radar” OR “Radar“ OR
“RadarSat” OR “COSMO” OR “SRTM” OR “microwave satellite” OR “multispectral

satellite” OR “hyperspectral satellite” OR “imaging spectroscopy” OR “thermal
satellite” OR “airborne laser scanning” OR “unmanned aerial vehicle*” OR “NDVI”

West Africa

“ECOWAS” OR “West* Africa*” OR “Togo” OR “Benin”, OR “Ghana” OR “Ivory Coast”
OR “Côte d’Ivoire” OR “Burkina Faso” OR “Cape Verde” OR “Gambia” OR “Guinea”

OR “Guinea-Bissau” OR “Liberia” OR “Mali” OR “Mauritania” OR “Niger” OR
“Nigeria” OR “Senegal” OR “Sierra Leone” OR “Saint Helena” OR “Ascension”

OR “Tristan da Cunha”

Small-Scale Agriculture
and Cropping Systems

“agri*” OR “agriculture” OR “crop*” OR “farm*” OR “cowpea” OR “groundnut” OR
“maize” OR “sorghum” OR “soy*” OR “yams” OR “shea*” OR “cassava” OR “cocoa”
OR “rice” OR “corn” OR “cotton” OR “millet” OR “palm*” OR “peanut” OR “cashew”

OR “above*ground biomass” OR “vegetation productivity” OR “intercropping”

Language English

Document Type Article

Date 1 January 2000–30 April 2024

This search string was applied to the ‘topic’ (TS) term, which returns results based
on title, abstract, and keywords. First, we looked for studies that incorporate RS using a
list of commonly used sensors and EO terms. The second search element was concerned
with geographical terms defining the study area of West Africa. Third, the search terms
for the small-scale agricultural systems are set. Terms like “agri*” were selected to com-
prehensively cover various crops and agricultural practices relevant to West Africa. It
should be noted that the keyword “field*” was excluded as it yielded only a few additional
relevant articles that could be captured through other keywords during the search string
development, while predominantly introducing articles with a divergent focus. Similarly,
the keyword “small*scale” did not return additional studies and was therefore excluded
from the search string. The search is limited to English papers, classified as “articles”
document types that were published between 01.01.2000 and 30.04.2024. This confirms that
the publications considered have undergone peer review and are both comprehensive and
current, providing a thorough overview of the literature on small-scale agriculture in the
region. The year 2000 aligns with the launch of MODIS [59], a major EO mission, which
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began providing critical data, and with the rapid increase in related scientific publications
accelerated by opening vast archives, such as Landsat’s data repository in 2008 [60].

Figure 2 depicts the workflow, which involves two filters after the initial WoS result
with n = 853 publications. In the first step, we scanned the results by title and abstract
and only included publications with a clear focus on RS and agriculture. Land use and
land use change (LULUC) studies were only included if they have a crop-specific focus,
e.g., mapping maize cropland in northern Nigeria [61,62]. All aquaculture, mangrove, and
urban studies were excluded. Publications analyzing forests were excluded, except studies
on agroforestry, e.g., cocoa. This first filter resulted in n = 260 publications, which were
fully read in the next filtering step and then further reduced to a total of n = 163 relevant
articles for this review topic (Figure 2).
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3. Results
The following section presents the main findings of the reviewed articles on the

potential of EO for mapping small-scale agriculture and cropping systems in West Africa:

• First, the distribution of publications in different journal categories over time is shown
in Section 3.1.

• In Section 3.2., the publications are subdivided spatially, both with regard to the
affiliation of the first author, the origin of the funding and with regard to the study area.

• The analysis of the sensor name and sensor type, as well as their carrier system, is
presented in Section 3.3.

• In Section 3.4, the spatial and temporal resolutions, as well as the different study
periods, are analyzed in detail.

• This is followed by an in-depth examination of the crops of interest in Section 3.5, in-
cluding the comparison of the crops represented in the studies versus their contribution
to the overall agricultural economic value and their proportion of agricultural land.
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• Subsequently, in Section 3.6, an in-depth analysis of the thematic foci of the respective
studies is presented in order to identify conclusive research gaps.

3.1. Development of Research Interest over Time

The development of the research field can be assessed by the number of publications
over time. Composite Figure 3 presents both a bar chart and a donut chart, providing a
comprehensive visualization of the annual publication count for each journal category and
overall distribution. Four journal categories are selected to classify each publication to a
specific group: “Remote Sensing”, “Agronomy”, “Environmental Science”, and “Other”.
The category “Other” includes all journals that do not fit into one of the three categories,
such as the journals “Global Healthaction”, “Engineering of Applications of Artificial
Intelligence”, or “American Journal of Tropical Medicine and Hygiene”.
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The bar chart on the left side of Figure 3 shows that, as of the end of April 2024, only six
publications had been released during the year. This is likely due to the limited time frame.
The overall trend depicted in the figure shows a clear increase in the number of publications
over time, with 2023 reaching a peak of 24 publications. Notably, 53% of all publications
have been released since 2019, highlighting the recent increase in output. “Remote Sensing”
stands out as the most frequent category in nearly every year, especially in recent times,
reflecting a growing emphasis on this field. Nearly half of the 163 publications (47.9%) fall
under this category. “Environmental Science” is also consistently represented, though less
frequently than “Remote Sensing”, comprising 27.6% of the total publications. “Agronomy”
shows a steady presence, accounting for 17.2% of the publications, with noticeable activity
in 2020, 2022, and 2023, suggesting a slight increase in focus on this area recently. In the
earlier years (2000 to 2014), there were fewer publications and categories, with “Remote
Sensing” still dominant but less frequent overall, followed by an expansion in the later
years. Twelve publications (7.4%) could not be classified into any of these categories.

3.2. Spatial Analysis on Affiliations and Study Areas

As shown in Figure 4, France and the United States lead with the most first author
affiliated publications, each contributing 25, followed by Germany with 19. Senegal follows
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next with the most publications of the West African countries (8), alongside with the
Netherlands. These five countries already represent over 50% of the studies. Belgium,
Nigeria, and Denmark each contribute seven studies, followed by China contributing six
articles, more than any other Asian country. There is a wide distribution of countries
affiliated with less than five publications.
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Europe accounts for almost half of the publication affiliations (49.7%), followed by
Africa (20.9%), North America (17.2%), Asia (9.8%), and South America and Australia each
contributing two publications. The top West African countries in terms of first author
affiliation are Senegal and Nigeria (seven studies) and Burkina Faso with five studies.

One author, G. Forkuor [34,63–66] from WASCAL (West African Science Service Centre
on Climate Change and Adapted Land Use) in Burkina Faso and University of Würzburg
has five publications. Two authors have four publications: L. Leroux [33,67–69] from
CIRAD (French Agricultural Research Centre for International Development), Senegal and
E. Vintrou [45,70–72] from CIRAD France. M.A. Diuk-Wasser has three publications [73–75].
All other authors have two or fewer publications.

Figure 5 displays the studied areas. Some studies were conducted in multiple regions
rather than in a single country or with a coverage larger than a country area. Those are listed
several times. In addition, there are ten studies covering West Africa, which are excluded
from this graph for a more concise representation. Most studies have been conducted
in Burkina Faso and Senegal (37 each), followed by Mali (32). These three countries
constitute over 50% of the reviewed articles. Nigeria (22), Ghana (21), and Niger (19) are
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also frequently the subject of research. Benin (nine), Mauretania, and Côte d’Ivoire (each
have eight) show a moderate level of research interest, with several studies carried out.
Gambia, Guinea, and Togo are studied less frequently, whereas Guinea Bissau, Sierra Leone,
and Liberia (and St. Helena and Cabo Verde) are not represented in the articles in the
context of this review besides the ten studies covering all of West Africa.
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Figure 5. Map showing the spatial distribution of study areas by country, with numbers indicating
the exact number of studies conducted in each country. Ten studies covering the entire West Africa
region are excluded from this map. Individual studies may be associated with multiple countries.

The origin of a study’s funding in relation to the study area is displayed in the
Sankey graph in Figure 6. If a publication does not specify a funding source, the first
author affiliation is taken as a proxy of the origin of the funding. The majority of the
studies indicate a funding source. No distinction is made regarding the type and sources
of funding—whether from governmental agency funding programs, NGOs, or private
contributions. Only the country of origin is considered relevant. For instance, the “Bill
and Melinda Gates Foundation” (BMGF) is categorized as USA funding and the German
“German Federal Ministry of Education and Research” (BMBF) is identified as a German
funding source. Additionally, there is international funding, in specific for the European
Union, as well as one study that is solely financed by WorldBank, which is classified
under “Other”. In cases of multiple funding sources, the first mentioned source is used for
the analysis.

Studies that receive funding from a country represented by only one instance are
categorized under “Other”, including Pakistan, Saudi Arabia, Australia, Columbia, Japan,
Morocco and an international funding solely through WorldBank. The largest share of
funding comes from the United States, which accounts for 59 studies. Germany follows
with 40 studies. Together, these two countries account for 47% of the studies. France
contributes funding to 30 studies, bringing the combined total from these three countries
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to over 61%. Additionally, 15 studies are financed exclusively by West African project
funding, categorized as “self-referential”, e.g., Nigeria is the source of funding for a study
in Nigeria [76,77]. Fourteen studies were funded by China, while the European Union has
directly supported nine publications. Summing all country distributions together reveals
that Europe accounts for 54% of the funding for the reviewed articles.

Land 2025, 14, x FOR PEER REVIEW 13 of 48 
 

 

Figure 6. Sankey diagram showing the connections between funding countries (left nodes) and 

study areas (right nodes) of the reviewed publications. Self-referential connections indicate studies 

funded by sources within the studied country. The categorization represents the country of origin, 

without differentiating between types of funding source, such as governmental programs, non-gov-

ernmental organizations (NGOs), or private investments. If no specific funding source was listed, 

the first authors primary affiliation was used as the funding organization. The category “Other” 

includes all countries with only one study’s funding source. The color scheme categorizes funding 

sources by continent: blue for Europe, orange North America, grey for Asia, and yellow for Africa. 

The numbers represent the study counts. 

Studies that receive funding from a country represented by only one instance are 

categorized under “Other”, including Pakistan, Saudi Arabia, Australia, Columbia, Japan, 

Morocco and an international funding solely through WorldBank. The largest share of 

funding comes from the United States, which accounts for 59 studies. Germany follows 

with 40 studies. Together, these two countries account for 47% of the studies. France con-

tributes funding to 30 studies, bringing the combined total from these three countries to 

over 61%. Additionally, 15 studies are financed exclusively by West African project fund-

ing, categorized as “self-referential”, e.g., Nigeria is the source of funding for a study in 

Nigeria [76,77]. Fourteen studies were funded by China, while the European Union has 

directly supported nine publications. Summing all country distributions together reveals 

that Europe accounts for 54% of the funding for the reviewed articles. 

3.3. Sensors and Sensor Types 

The choice of sensor is mainly determined by the study’s focus and specific objec-

tives. Different sensor technologies exhibit varying degrees of suitability for mapping 

small-scale agriculture and cropping systems. Furthermore, the characteristics of the 

Figure 6. Sankey diagram showing the connections between funding countries (left nodes) and study
areas (right nodes) of the reviewed publications. Self-referential connections indicate studies funded
by sources within the studied country. The categorization represents the country of origin, without
differentiating between types of funding source, such as governmental programs, non-governmental
organizations (NGOs), or private investments. If no specific funding source was listed, the first
authors primary affiliation was used as the funding organization. The category “Other” includes all
countries with only one study’s funding source. The color scheme categorizes funding sources by
continent: blue for Europe, orange North America, grey for Asia, and yellow for Africa. The numbers
represent the study counts.

3.3. Sensors and Sensor Types

The choice of sensor is mainly determined by the study’s focus and specific objectives.
Different sensor technologies exhibit varying degrees of suitability for mapping small-scale
agriculture and cropping systems. Furthermore, the characteristics of the study area are
influenced by the sensor selection. There are several types available, each suited to distinct
applications. For measurements in visible and infrared wavelengths, active sensors such as
Light Detection and Ranging (LiDAR) are employed, while passive sensors rely on the elec-
tromagnetic energy from the sun which is reflected by the earth and subsequently received
and measured. Passive sensors operating across the visible to infrared spectrum are broadly
classified as optical sensors, with further differentiation based on their radiometric resolu-



Land 2025, 14, 171 13 of 47

tion, including multispectral, hyperspectral, and thermal sensors [27,68,70]. Microwave
RS can either be passive or active. Passive microwave sensors, such as radiometers can
measure the emitted microwave wavelengths, but their intensity is relatively low. Active
microwave sensing, achieved through Radio Detection And Ranging (RADAR) enables the
assessment of measuring terrain properties, canopy structural properties, moisture status,
or flooding [29,71,72].

RS is a vital tool for EO, offering timely, repetitive, and cost-effective information
on the Earth’s surface. It allows for data collection without direct physical contact, and
advances in RS technology have led to numerous techniques for capturing data across the
electromagnetic spectrum [27,68,70]. The utilized sensors, sensor types, and platforms are
shown in Figure 7, respectively. It is important to note that all sensors utilized in each study
are enumerated; consequently, multiple entries per study may be present.
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Figure 7. Overview of the different RS sensors, their platform, and the sensor type combination used
in the reviewed publications. Abbreviations: MODIS, Moderate Resolution Imaging Spectrometer;
UAV, Unmanned Aerial Vehicle; AVHRR, Advanced High-Resolution Radiometer; SPOT, Satellite
Pour l’Observation de la Terre; GEDI, Global Ecosystem Dynamics Investigation; ENVISAT, Envi-
ronmental Satellite; ALOS, Advanced Land Observing Satellite; SMAP, Soil Moisture Active Passive;
ASAR, Advanced Synthetic Aperture Radar; PALSAR, Phased Array L-band Synthetic Aperture
Radar; SRTM, Shuttle Radar Topography Mission; ERS, European Remote Sensing Satellite.

Multispectral sensors are predominantly used in the reviewed studies, accounting for
88.3%. The main share is allocated to Sentinel-2 (48 studies), Landsat (47), and MODIS
(41), followed by multispectral UAV surveys (17). Other than these three mainly used
multispectral satellite sensors, a wide range of other sensors have been used for multi-
spectral analyses. As for RADAR analyses, the use of Sentinel-1 sensor is predominant.
The only LiDAR sensor used in three publications is GEDI, a sensor mounted on the In-
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ternational Space Station, ISS [46,78,79]. Three studies employed PAN imaging for their
analyses [22,74,75]. Two studies use thermal imaging [23,76]. There are no studies that
focus on hyperspectral data. The donut chart on the left side of the figure shows that
UAV missions account for 9.1% of the platforms used, while aerial is 4.5% and 86.4% is
satellite borne. The UAV studies employ a variety of optical sensor systems, here classified
as multispectral [77,80,81]. The aerial platform is not necessarily mounted on an airplane,
e.g., Gerard et al. [82] used a balloon as a platform. There is a clear focus on the satellite-
mounted sensors. The donut chart on the right shows that 41.7% of the reviewed articles
employed more than one sensor as a source of data.

3.4. Temporal and Spatial Resolution

The following section analyzes the temporal and spatial resolution of RS data in the
reviewed articles. Figure 8 illustrates the time periods covered by the RS data in relation
to the publication dates of the studies, providing a visual comparison of data collection
timelines and the timing of the study’s release. Each study was classified according to the
best spatial resolution of the sensors used, with the following categories: very high spatial
resolution (below 10 m), high-resolution (10 to below 30 m), medium resolution (30 to
below 50 m), medium–low resolution (50 to below 1000 m), and coarse resolution (above
1000 m). UAV dominate the very high-resolution category. The high-resolution category
is defined by a threshold below 30 m, distinguishing between Sentinel-2 (10–20 m) and
Landsat (30 m). MODIS falls within the medium-low group, while AVHRR is categorized
under coarse resolution.

The temporal aspect of RS data is grouped into four categories: mono-temporal (single
observation), multi-temporal (with multiple observations within one year), multi-temporal
(multiple years with single observations), and time-series (with at least eleven timesteps
and multiple recordings over several years).

The timeline graph shows that a large number of mono-temporal studies are catego-
rized as high to very high-resolution, while most UAV studies are mono- or multi-temporal
(intra annual). In terms of investigated time periods, 39.4% are time-series, 31.9% are
multi-temporal intra-annual, 15.6% are multi-temporal inter annual studies, and 13.1%
are mono-temporal studies. For example, time series studies include Maselli’s work [80],
which utilizes AVHRR data from 1982 to 1990 to create ten-day composite NDVI values,
and Lee’s 2022 [81] study, which employs a mix of MODIS and AVHRR data from 1981 to
2021. Multi-temporal (inter-annual) studies involving multiple years of single observation
can be seen in Thiam’s research [83], which used Landsat images from 1984, 1994, 2007,
and 2017 to monitor land use and soil salinity changes in coastal landscapes of Senegal.
Similarly, Traore’s study [84] assessed changes in the agricultural irrigated area in Burkina
Faso using Landsat images from 1987, 2000, and 2005. In contrast, multi-temporal studies
(intra-annual) with multiple observations in a single year are exemplified by Forkuor’s
article [64], which integrates six RapidEye scenes and six TerraSAR-X images to enhance
crop discrimination in the Vea watershed in the Sudanian Savanna. Lastly, mono-temporal
studies focus on a single point in time, such as Roupsard’s [85] UAV mission in Octo-
ber 2018, which evaluated the influence of individual standing trees in the Senegalese
parklands on millet yields.
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Figure 8. Overview of the time periods covered by the RS data in relation to the publication dates
of the studies, providing a visual comparison of data collection timelines and the timing of the
studies release.

Figure 9 shows the study area in relation to the pixel size. For studies using multiple
datasets, the dataset with the highest spatial resolution has been considered in this analysis.
The study area size is categorized as local (<100 km²), regional (>100 km² but smaller than
district/federal level), federal/district level, national, and multinational. A total of 25.3%
of the studies focus on a local-scale study area and 21% combining this local focus with
a pixel size smaller than 30 m. Regional areas, defined as those greater than 100 km² but
smaller than district/federal level are covered by 40.7% of the publications reviewed across
all spatial resolution levels. Among these, 33.3% employ very high, high, or medium
spatial resolution. As the study area size increases, the spatial resolution of the sensors
used tends to increase analog. Nearly 10% (9.3%) of studies cover federal/district level,
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while 11.7% examine national-level areas and 13% investigate multinational area or cover
whole West Africa. In terms of spatial resolution, 28.4% of studies employed very high
spatial resolution data with a pixel size smaller than 10 m. Data with a spatial resolution
below 30 m is used in 53.7% of the reviewed articles. Medium spatial resolution data were
applied in 17.3% of the articles. In total, more than 70% of the reviewed articles used a
spatial resolution lower than 50 m to assess small-scale agriculture in West Africa.
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Figure 9. Overview of the study area compared to the pixel size used in the reviewed publications.
(a) Scatterplot showing the study area compared to pixel size, with scatter size indicating the propor-
tion of each category in the total reviewed articles. (b) Donut chart displaying the distribution of the
study area coverage. (c) Donut chart showing the distribution of the spatial resolution of RS data
used in the studies.

3.5. Croptype Analyses

This section provides information about the crop types investigated in the reviewed
articles. Figure 10 shows a histogram displaying all the studied crops and a color-coded
categorization for clarity. Notably, some studies examine multiple crops, thus multiple
entries per article are possible, e.g., one study includes millet and peanut [86] or millet
and sorghum [87]. Within the cereal’s category, millet is the only representative, yet it is
featured in 41 articles. This, in combination with the following crop types, are the four most
frequently studied in the literature analyzed for this review: maize/sorghum (59 articles),
trees (29 studies), and rice (25 studies). The majority of studies in the category tree are
focused on cocoa [78,88] or palm oil [46,89,90]. In addition, the category “Other”, investi-
gated by 21 articles, is designed to encompass crops that do not fit into the main categories.
Cassava and sugarcane are low represented in the reviewed literature. Despite there being
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15 studies on cotton, it is classified as “Other” as it is a non-food crop, whereas most cate-
gories emphasize staple food crops. Peanuts, referred to as groundnuts in some literature,
appear in 13 studies. This is complemented by the categories of the beans/legumes and
mixed vegetables, each represented 11 times. Overall, the literature addresses the primary
staple crops in West Africa as stated by the FAO in Section 2.1.
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Figure 10. Histogram showing the distribution of analyzed crops by type.

Figure 11a displays a heatmap illustrating the frequency with which different crop cat-
egories have been studied across the West African countries. This provides a clear overview
of the specific crop categories of interest in the reviewed articles, focusing solely on the
West African countries that have been examined. The RS analyses of “Maize/Sorghum”
are most prominent in Mali (21 studies) and Burkina Faso (19), followed by Senegal (9)
and Nigeria (8). “Cereals” are also primarily studied in those countries and additionally in
Niger. “Beans/Legumes” are predominantly studied in Burkina Faso, with fewer studies
in Senegal, Nigeria, and Ghana. “Groundnut” studies are concentrated mainly on the area
of Senegal and Mali, with five studies each. The category “Other” includes ten studies in
Mali, with fewer in Burkina Faso (four) and Nigeria (three). In other countries fewer than
three studies have been conducted in this category. Rice appears in the reviewed articles
in nearly all countries, with the exception of Côte d’Ivoire and Togo. In Côte d’Ivoire, the
“Trees” class dominates, accounting for almost all studies conducted in this study area
(eight studies), except for one in the “Other” category. Ghana and Nigeria follow with
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seven studies each on “trees”, while Burkina Faso has five studies focused on that category.
Vegetables have the least research interest within the framework of this review, with only
three studies in each Burkina Faso, Niger, and Nigeria, and one study each in Senegal,
Ghana, and Benin. The heatmap additionally indicates that all crop categories have been
studied in Burkina Faso and Nigeria, followed by Ghana and Senegal missing only one
category. In contrast, only two and three crop categories have been examined in Togo and
Côte d’Ivoire, respectively.

This scatterplot (Figure 11b) provides a visual comparison between the importance of
different crop types within a country’s agricultural sector, using two key metrics:

• Crop area proportion (blue scatters): the size and color of the blue scatters represent
the proportion of agricultural land dedicated to each crop category within a country.
Larger scatters indicate a higher percentage of the country’s total agricultural land
is allocated to that specific crop. This metric reflects the physical footprint of crops,
showing their relative importance in terms of land use.

• Economic value contribution (red scatters): the size and color of the red scatters corre-
spond to the contribution of each crop category to the country’s overall agricultural
economic value. A larger red scatter means that a particular crop plays a more im-
portant role in generating agricultural revenue. This metric highlights the financial
impact of crops, regardless of their land usage, providing insides into which crops are
economically more important.

The values are averages of the years 2000 to 2020 based on the FAO STAT data [57]. All
data on crops provided have been incorporated and classified, but another class for animal
and livestock was created and has been excluded as it is not within the scope of this review.
Comparing the importance of agricultural areas to the economic value of a crop type in
each country provides valuable key insights. For example, a crop may occupy a large area
(large blue scatter) but contribute less to the economic value, e.g., a subsistence crop (small
red scatter), suggesting low profitability or market value. Conversely, a crop with a small
land footprint but a large economic impact indicates high profitability or market value.

“Beans/Legumes”, while underrepresented in the reviewed literature, hold a remark-
able agricultural importance across several West African nations. In Côte d’Ivoire, Ghana,
Niger, and Mauretania, more than 20% of cropland is dedicated to leguminous crops.
Although their economic distribution is modest, accounting for mainly around 10% and
over 20% in Côte d’Ivoire of agricultural revenue, they serve as both subsistence and cash
crop. Additionally, they play a crucial role in regional food security [7].

The category “Cereals” is extensively studied, particularly in Burkina Faso, Mali,
Senegal, and Niger. This research focus mirrors the economic and land use prominence of
cereal cultivation in these regions. Niger, in particular, stands out with cereals occupying
over 30% of its agricultural land and contributing an essential share of economic output,
making them a cornerstone of the country’s agrarian economy.

In Senegal, a large agricultural area is referred to as “Groundnut basin”, which ex-
emplifies the crop’s importance in both terms of land area and economic output. Almost
40% of the reviewed literature on groundnuts focuses on Senegal and Mali, whereas the
importance of groundnuts in Mali is far less [91].

However, the category “Maize/Sorghum” accounts for the largest shares of agricul-
tural land in most countries, with the exception of Senegal, Côte d’Ivoire, Niger, and Ghana,
where it still plays a considerable role. The highest share in Mauretania is remarkable,
though the country is underrepresented in the studies analyzed. As a key subsistence crop
for smallholder farmers, their importance is reflected both in the reviewed literature and
real-world agricultural data based on FAO [57], underscoring their central role in food
production systems across the West African region.
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The crop category “Other”, which includes cassava, demonstrates higher economic
than spatial importance due to its status both a cash and a subsistence crop [92]. The general
share of this category is nevertheless remarkably distributed across most countries, with
the exception of Mauretania and Niger. In contrast, the reviewed studies focus particularly
on Mali. This is due to the discrepancy between the studies in Mali focusing on cotton and
sugarcane and the underrepresentation of cassava compared to the actual importance of
the crop.

“Rice”, while generally low in terms of cultivated area, shows its largest shares in
Mali and Mauretania. In these countries, rice cultivation appeals economic attention,
particularly in Mauretania, with over 30% of agricultural revenue, positioning it as a crop
of considerable economic importance. Côte d’Ivoire, Nigeria, and Senegal show a certain
degree of rice cultivation in terms of both proportion of area and contribution to agricultural
economic value. It is notable that no studies have been conducted on rice in Côte d’Ivoire
and only two in Mauretania, in contrast to five studies in Burkina Faso. The distribution of
the remaining literature, as illustrated in the heatmap, reinforces the findings presented in
the scatterplot.

“Tree” category crops play a minor role in most countries, except in Ghana and
Côte d’Ivoire, where the cultivation of cocoa and oil palm contributes substantially to
both land use and economic returns. Nigeria and Benin also have a considerable area
under cultivation and economic importance. Those observations correlate closely with the
regional distribution of relevant studies.

“Vegetables”, despite their limited land use, consistently rank high in economic value,
with Nigeria standing out for its large share of agricultural land devoted to vegetable
farming. Vegetables account for over 40% of Nigeria’s agricultural revenue, highlighting
a contrast between vegetables economic weight, and their relatively small agricultural
footprint. Notably, this prominence is less reflected in the heatmap of reviewed articles,
hence the topic of the review, signaling a potential gap in these high-value crops.

3.6. Focus of the Studies

The focus of the study (Figure 12) has been split into five categories, namely the
monitoring of crops, agroforestry, land use, and land use change (LULUC) analyses with
specific focus on crops, climate impact, and the variables causing them and a category
“Other” for the articles not classified in the abovementioned categories. Studies that analyze
broad LULUC without focusing on specific crops/croplands or employ single NDVI image
analyses have been excluded from this review due to their insufficient informational value.
An increase in studies in “Crop Monitoring” and “Agroforestry” are the main drivers of an
increased number of articles over time covering the topic of this review. “Climate Impacts”,
which covers drought analyses, soil moisture and evapotranspiration modeling as well as
large-scale phenology of crops (greening/browning) follows.

The chosen focus is thematic, emphasizing the possibilities and limitations of RS
data across various fields of application. A concise overview is provided of each study’s
contributions and focus. Detailed information on specific methodologies is available in
the referenced original studies. It is important to note that while vegetation indices are
frequently used in methodologies, this review was not specifically designed to give a
comprehensive overview of VIs and their relationship to crop monitoring. Instead, the aim
was to showcase the broad potential of RS applications in small-scale agriculture in West
Africa. For in-depth discussions on VIs for crop monitoring and discrimination, readers
may refer to specialized reviews such as those by Vidican et al. [93] or Xue and Su [94].
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Figure 12. Histogram showing the distribution of the main thematic focuses of the reviewed publica-
tions over time.

The following categories are strict thematic divisions, as each study addresses different
aspects, while exploring various possibilities of RS and facing similar challenges. This
overview (Table 2) aims to provide a comprehensive summary of the RS research conducted
on small-scale agriculture in West Africa:
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Table 2. Overview Table summarizing the main findings, RS potential, and remaining challenges for each research focus category.

Study Focus Category Main Findings and Remote Sensing Potential Challenges Sources

Crop Monitoring

Agricultural Productivity Estimating crop yields in a heterogenous
small-scale agricultural landscape

Limited reference data for assessing
accuracy of satellite-based estimates;

high spatial variability
[7,33,67,80,81,95–106]

Crop-Type Mapping
Combining optical and SAR data and a

variety of methods for multi-sensor
data analysis

Heterogeneity, accuracy of final
products; reference data scarcity

[11,25,34,45,47,61–
64,70,71,86,100,107–118]

Plant Parameters LAI, soil amendments, vegetation
monitoring, evapotranspiration

Large within and between field
variations in yield, LAI,

chlorophyll, etc.
[12,82,119–128]

Field Characteristics Derivation of field boundaries, soil moisture
and type

Small feature extraction; limitations of
Proxy Use [4,29,65,69,129–131]

Management Detection Water management performance; timing,
impact and responses of crop management

Sustainability monitoring, reference
data, data variability within fields [1,10,37,38,77,87,132–142]

Agroforestry

Cocoa and Palm Oil Accurate mapping of cocoa and palm oil
plantation including encroached areas

Limited reference data and reference
data refinement [22,46,78,88,90,143–145]

Fruit Trees Fruit tree disease surveillance system Lack of validation data [40,146–149]

Above Ground Biomass in
Agroforestry systems

Spatially explicit AGB estimates for
reporting reduction emission efforts

Site complexity, poor-quality reference
data, spectral variability within the
same class and mixed pixels from

fragmented landscapes

[79,89,150–152]

Semi-arid Parklands Mapping agroforestry parklands and their
influence on crop yields

Upscaling individual tree level to
landscape level (diversity of tree

species and mix of crop types)
[68,85,153–157]

LULUC (with
crop focus)

Data Consistency Improved accuracy (data fusion and
very high-res.) Lack of consistent LULUC maps [30,158,159]

Classification Accuracy Supporting decision-making for
multiple objectives Low agreement among RS datasets [18,32,43,66,84,160–165]

Mapping Approaches
Diverse and new methodologies and

various data integration for improved
mapping of LULUC

Similar phenological signatures
complicate mapping [73,166–168]
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Table 2. Cont.

Study Focus Category Main Findings and Remote Sensing Potential Challenges Sources

Climate Impacts

Evapotranspiration Data fusion for daily field-scale LST and
ET estimates

Lack of bias-free validation and
high-resolution thermal data [23,169,170]

Drought and Dry Spills Vulnerability to climate change Limitations of RS indices [91,171–174]

Phenology and Greenness
Impact analysis on drivers of trends in

cropland productivity, phenology
and greenness

Downscaling coarse NDVI data of
large area [35,107,175–185]

Others -- -- Flood risk management, health risks, locust
habitat, fallow land assessment

Reference data scarcity, spatial
resolution of RS data [65,73,74,76,83,186–192]
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Several studies (19 in this review) have explored the use of RS data for predicting crop
yields and assessing agricultural productivity in West Africa. Maselli et al. (2000) [80] pio-
neered a cost-effective approach using AVHRR NDVI data to forecast millet and sorghum
yields in Niger. Tottrup and Rasmussen [104] (2004) focused on evaluating the capacity
of RS methods to assess long-term trends in crop productivity in Senegal’s Groundnut
Basin using similar time series data. Brown et al. (2006) [103] examined the relationship
between satellite vegetation measurements and millet prices in Burkina Faso. In 2016,
Leroux et al. [67] combined vegetation and thermal indices to estimate crop yields in the
Sahel, while Imran et al. [102] aimed to predict sorghum yields and uncertainty across
Burkina Faso’s variable environmental conditions. Lambert et al. [101] addressed the
challenge of assessing crop productivity in Mali’s cotton belt due to spatial variability in
farming practices, soil fertility and rainfall, using Sentinel-2 data and ground information
to achieve 80% accuracy in crop type classification and improve yield predictions through
incorporating parcel boundaries retrieved from very high-resolution imagery and leaf area
index modeling. Leroux et al. (2019) [33] advanced a novel approach that integrated RS,
crop modeling, and statistical methods, explaining 46% of maize yield variability two
months before harvest in Burkina Faso. The Random Forest model incorporating soil mois-
ture and canopy temperature data demonstrated the method’s potential for regions with
limited field data. In 2020, Karst et al. [7] utilized high-resolution Sentinel-2 data to predict
household-level crop yields for various crops in Burkina Faso and assessed the suitability of
different crop types using multiple linear regression. Lobell et al. [99] highlighted the vari-
ability within and between sorghum cultivars and harvest index (ratio of grain to total crop
biomass), emphasizing the promise of growing high-resolution satellite data availability
for monitoring plots. Sentinel-1 and 2 data were employed by Ouattara et al. [106] to map
irrigated crops around Lake Bam, estimating productivity through regression analysis of
fragmented small-scale farms with seasonal changes. Pignède et al. [105] explored methods
for anticipating sugarcane production prior to harvest in Côte d’Ivoire using cropping
practice, meteorological, and satellite data. Gbodjo et al. [97] assessed the potential of
deep learning approaches with SAR and optical data compared to traditional regression
methods, aiming to enhance crop yield estimation with limited reference data. In addition,
yield forecasts throughout the cropping period assisted in determining how well RS-based
modeling can help accelerate the collection of crop production information in the study site.
Adewopo et al. [98] highlight the use of UAV-derived vegetation indices to understand
yield variability at the field scale and the importance of very high-resolution imagery for
rapid agronomic monitoring and robust decision support. Lee et al. (2022) [81] investi-
gated out-of-sample forecasting skills and evaluated the benefits of enhanced temporal
resolution and non-standard EO data to improve grain-yield forecasting and food security
warnings across Africa. Gachoki and Muthoni (2023) focused on improving maize yield
predictions under different management practices using a Random Forest model [95], while
Schwarz et al. (2023) [96] aimed to develop a valid crop yield model based on a three-year
in situ dataset in northwestern Burkina Faso. The aim was to reduce the need for extensive
ground data collection while ensuring accurate household-level yield estimates through
Sentinel-2 satellite-based crop yield models [96].

A total of 26 publications focus on the mapping of cropland areas and crop types in
West Africa. In their 2011 study, Marshall et al. [112] generated unbiased estimates of crop
area during Niger’s principal crop-producing season in 2005, using medium-resolution
satellite imagery along with high-resolution imagery. Junge et al. (2010) [25] examined his-
torical and contemporary aerial photographs and satellite images to investigate changes in
land use and cover, as well as soil degradation in Nigeria and Benin, revealing an expansion
of agricultural land at the expense of forests, shrubs, fallow areas, and uncultivated land.
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Ibrahim et al. (2021) [107] evaluated the accuracy of mapping maize, potato, and mixed
cropping systems in Nigeria by employing the complete dataset from Sentinel-2, while
also analyzing the distribution of various crop types across the study region and among
different field sizes. In 2018, Soti et al. [86] developed a replicable sampling methodology
using very high-resolution optical imagery to explore how landscape composition influ-
ences crop pest incidence and biological control, specifically focusing on the millet head
miner. Hall et al. (2018) [110] concentrated on the delineation of maize cultivation areas
within complex cropping systems in Ghana, employing UAV imagery for their analysis.

Expanding the scope, Vintrou et al. (2012) [45] and Samasse et al. (2018) [100] con-
ducted a detailed performance assessment of various global landcover datasets, such as
GLC2000, GLOBCOVER, MODIS V05, and ECOCLIMAP-II for the AMMA zone to accu-
rately map the cultivated area in Sahelian West African countries. They employed very
high-resolution imagery as reference data. Furthermore, Vintrou et al. applied various
methodological approaches to map fragmented landscapes, for instance, data mining based
on MODIS or utilizing coarse resolution satellite-derived metrics (spectral, textural, tem-
poral and spatial) to assign pixels to defined crop production system in Mali [70,71]. In
another study in Mali, Pitarch et al. (2015) [115] built an accurate classifier through extracted
multidimensional sequential patterns with MODIS time series combined with field data.
Rian et al. [118] employed MODIS data paired with 600 ground survey points to create a
landcover map of Mali. They claim the ability to detect small-scale, but important, wetland
features such as rice cultivation areas for regional-scale studies. Samasse et al. (2020) [47]
used more than 400,000 land-cover training data points for the year 2013, paired with
Landsat images to train locally optimized Random Forest models predicting the presence
and absence of rainfed and irrigated agricultural fields across the non-desert area of West
Africa. Irrigated areas, especially those dedicated to rice cultivation, are the subject of
several publications on crop type mapping. Gumma et al. [111] mapped irrigated areas
in Ghana using Landsat and MODIS, Ujoh et al. [109] identified suitable areas for rice
cultivation in Nigeria, and Higginbottom et al. [114] mapped the distribution of croplands
under active irrigation between 1987 and 2020 along the Senegal River based on Landsat
imagery, whereas Traore et al. [116] focused on the Kou river in Burkina Faso between
1988 and 2009. In a second study, Gumma et al. [113] identified critical spatial data layers
for assessing land suitability that pinpoints optimal rice cultivation areas in inland valley
wetlands.

In 2020, Fiorillo et al. [108] investigated rice cultivation by combining Sentinel 1 and
2 datasets to leverage the individual advantages of each data source. Forkuor et al. [63,64]
aimed to enhance the classification accuracy of multi-sensor crop mapping in West Africa
by similarly combining two data sources. However, Forkuor employed optical and SAR
data in a sequential masking classification to address the region’s spatial heterogeneity. In
a third study from 2017, Forkuor et al. [34] estimated fractional cropland cover using a sub-
pixel approach based on MODIS and Landsat to improve the accuracy. Abubakar et al. [61]
proposed a framework for integrating Sentinel-1 and 2 imagery to map maize crops, focus-
ing on the ideal combination of Sentinel-1’s dual-polarization to complement Sentinel-2
for effective agricultural applications. In a second study from 2023, Abubakar et al. [62]
conducted pioneering research in Nigeria by examining the potential of the Google Earth
Engine platform and machine learning techniques for mapping maize croplands in Nigeria
from 2016 to 2019. For a comprehensive crop distribution map in southern Mali, in 2018,
Aguilar et al. [11] evaluated a cloud-based multi-temporal ensemble classifier, integrating
WorldView images and various machine learning approaches. Mohammadi et al. [117]
used deep learning techniques that have recently shown promising results in crop mapping.
However, the lack of labeled samples limits the classification performance. Consequently,
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there is a need for methods that are capable of exploiting label-rich environments to classify
crops in label-scarce regions. While few-shot-learning methods have successfully adapted
this issue in a computer vision for natural images, their application in crop mapping using
time-series data remains largely unexplored.

Field characteristics encompass a broad range of factors, but the reviewed studies here
specifically addressed parameters such as field boundaries, textural features, soil properties
or the share of trees and tree species on a field.

Accurate delineation of smallholder farm boundaries is challenging due to the field’s
small size, irregular shapes, and mixed cropping systems. Persello et al. [4] use very
high-resolution WorldView-2/3 data and a fully convolutional neural network to achieve
promising results in Nigeria and Mali for detecting field boundaries. Trivedi et al. [29]
emphasize the importance of satellite-derived textural features as a valuable complement
to spectral and polarimetric features, finding that textural features in this study comprise
half of the total significant feature analyzed. This indicates that the spatial arrangement
of pixels is more important than their intensity values, as these arrangements can be
described by measures of contrast, homogeneity, randomness, or variability, such as entropy
or variance. The study by Sawadogo et al. [129] focused on diagnostic performance
indicators such as depleted fraction, evapotranspiration, and crop water productivity
to evaluate the performance of irrigated rice, aiming to identify areas with good and
poor performance. The depleted fraction provides insights into water efficiency or losses
from drainage or percolation. Their parameters were derived using the PySEBAL model
driven by Landsat images to analyze spatiotemporal patterns. Moussa et al. [130] aimed
to identify potential soil salinity areas by integrating Sentinel-2 with field measurements,
employing two approaches: assessing salinity through the Salinity Index and monitoring
vegetation behavior over eight growing seasons from 2016 to 2019 in the arid Niger River
basin in rice fields. Forkuor et al. [65] present the results of a soil mapping approach that
combined multi-temporal RapidEye, Landsat imagery, along with ASTER Global DEM
terrain derivatives and soil samples to enhance the availability of spatial soil information in
rural West Africa. In 2022, Leroux et al. [69] demonstrated that both tree species diversity
and tree cover in semi-arid parklands are crucial for food production and enhance food
security, utilizing an integrated landscape approach with current RS data and advanced
data analysis methods. They advocate for land management policies that acknowledge
the importance of co-benefits within the agricultural landscape diversity-food security
nexus. Rilwani et al. [131] presented an approach for assessing land suitability for precision
agriculture in Nigeria, combining field data on soil properties of plots with remotely sensed
land use suitability.

Twelve studies addressed retrieving plant parameters. Gerard et al. (2001) [82] inves-
tigated the effects crop residues and phosphorus application have on fallow vegetation
after repeated millet cultivation in the Sahel, measuring residual effects on herbaceous dry
matter two years post-experiment and evaluating an RS method for herbaceous dry matter
estimation. Their findings indicate that soil amendment impacts on fallow vegetation
have to be considered in analyzing agro-pastoral systems. In a separate study Gerard and
Buekert [126] (2001) tested non-destructive methods for spatially estimating millet growth
and yield. This involved testing aerial photography, georeferenced radiometric, and chloro-
phyll measurements in an experiment in Niger. Sawadogo et al. (2020) [123] employed the
PySEBAL model to estimate actual evapotranspiration over large areas throughout the crop
growing season for water resource management. Kergoat et al. (2015) [125] used SWIR
bands to detect dry season vegetation mass and cover fraction with a ground radiometer
and MODIS data, which is a key parameter for forage, erosion, and fire risk assessment
in semi-arid areas. Bégue et al. (2023) [122] analyzed growth vegetation anomalies pro-
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duced by the crop monitors of the main early warning systems for the 2010 to 2020 period.
As a comparative measure, they used NDVI-based vegetation anomaly indicators. The
convergence of EO data streams, advancements in methodologies, and cloud computing
infrastructure calls, according to Defourny et al. (2019) [124], for a paradigm shift in op-
erational agricultural monitoring. They assessed whether the Sen2-Agri platform can be
effectively applied to different cropping systems to provide essential agricultural infor-
mation with high accuracy. Their outputs include monthly vegetation status indices, crop
masks and crop type maps, with vegetation status being derived from NDVI and LAI. The
LAI as a plant parameter is the subject of several studies: Fensholt et al. (2004) [121] evalu-
ated MODIS LAI and fAPAR against in situ measurements, and Gano et al. (2021) [120]
employed UAV-based vegetation indices to estimate the temporal dynamics of leaf area,
shoot biomass, and plants height within a sorghum panel representative of the genetic and
phenotypic diversity of African sorghum under contrasted water situations. Furthermore,
Gomez et al. (2022) [147] evaluated the accuracy of the 2019 Digital Earth Africa cropland
masks, developed an LAI retrieval method from Planet surface reflectance data, created a
maize classification dataset for Ghana, and examined the relationship between maximum
LAI and crop yield. The findings indicate that linking the yield with EO-derived metrics
like maximum LAI is challenging due to significant variability in yield within individual
fields. Better co-located yield and LAI measurements could improve the understanding of
uncertainties in mapping canopy variables to LAI. Dembele et al. (2024) [127] calibrated and
validated successfully sorghum varieties LAI values estimated from UAV at different grow-
ing seasons in Senegal and Mali. Ekwe et al. (2024) [128] assessed the LAI at the seedling
stage after conducting a field experiment with rainfed groundnut based on Sentinel-2
data. In future work, they plan to include high-resolution UAV hyperspectral, RGB, and
multispectral image data in the modeling process. Lastly, Diack et al. (2024) [12] addressed
the limited focus on the fraction of green vegetation (FCover) due to challenges in collecting
reference data. The study introduces a novel framework that effectively combines FCover
data from UAVs and Sentinel-2 images to estimate FCover for millet at landscape scale in
Senegal’s groundnut basin.

Seventeen studies can be related to detecting agricultural management practices.
Nguru et al. (2023) [132] calculated the Normalized Difference Water Index over nine years
to identify flood-prone areas and assess their suitability for flood residual water cultivation
based on crop reference evapotranspiration. Sawadogo et al. [133] (2020) investigated
irrigation management and performance of the Kou Valley using several Landsat-derived
parameters to reveal spatial differences in crop areas related to water stress, identifying
low-performing water management during early and late phenological stages. Borgia et al.
(2012) [136] similarly analyzed irrigation, drainage, and productivity patterns in Maureta-
nia. Busetto et al. (2019) [1] used the PhenoRice algorithm with MODIS imagery to track
rice cultivation in the Senegal River Valley, mapping variations in cultivated areas and phe-
nological metrics. Schut et al. (2018) [134] demonstrated the use of high-resolution satellite
and UAV imagery to assess yield variability and fertilizer response. Blaes et al. (2017) [10]
evaluated RS’s ability to detect crop status in Mali’s rainfed systems, focusing on NDVI
sensitivity to fertilizer treatments on cotton, millet, sorghum, maize, and peanut. Denis
and Tychon (2015) [135] used RS to distinguish organic from non-organic cotton practices
to aid an organic cotton certification process. Zwart and Leclert (2010) [137] presented an
application based solely on high-resolution RS data to analyze strategic and diagnostic
performance indicators, offering insights for improving the overall system performance.
Tappan and McGahuey (2007) [138] monitored the impact of agricultural intensification,
LULUC trends, and soil-water conservation practices. Soti et al. (2019) [37] measured the
impact of farming practices and landscape context on the control of the millet head miner by
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natural enemies, hypothesizing that landscape diversity positively influences pest regula-
tion. Fastner et al. (2023) [139] assessed the global market effects on land use sustainability
and the magnitude of the regime shift from subsistence-oriented agro-pastoral ecosys-
tems into increasingly market-oriented ones. Sidibe et al. (2021) [38] analyzed agricultural
digitization in Mali, while Koglo et al. [140] (2019) monitored forest to agricultural and agro-
forestry transitions in Togo within the REDD+ framework. Lloyd and Dennisson (2018) [87]
mapped farms that employ water harvesting or conventional agricultural techniques in
Burkina Faso with Quickbird and WorldView imagery. Eniolorunda et al. (2017) [77] exam-
ined floodplain management in Nigeria emphasizing the role of extension workers to teach
farmers agricultural best practice. Laris et al. (2015) [141] linked declining cotton yields
in southern Mali to fertilizer misallocation, employing RS data combined with in-depth
farmer interviews. Using the ALADYN model, Grinblat et al. (2015) [142] highlighted
the unsustainability of traditional farming practices shown through periodic soil fertility
declines to levels too low to allow for cultivation.

The “Agroforestry” category can be subdivided into four areas: (i) mapping of cocoa
and oil palm; (ii) the analyses of fruit trees such as bananas, cashews, or mango; (iii) assess-
ment of the above-ground carbon storage with focus on plantations; and (iv) mapping of
semi-arid parklands with their ecological implications. Cocoa and palm oil agroforestry
systems, promoted as a strategy to mitigate deforestation, require precise delineation to
establish a robust monitoring system [79,90,145]. Additionally, parameter retrieval such as
the age of palm oil or height of the trees is crucial for sustainability assessments, carbon
mapping, yield projections, and precision agriculture [46,78,193]. However, challenges such
as the lack of high-resolution imagery, mainly due to the high cloud cover of tropical regions
and the quality of validation data persist [88,144]. Yin et al. utilized 2.4 m resolution Planet
basemaps, 0.5 m resolution aerial imagery, two newly developed deep learning algorithms,
and extensive ground truth datasets to successfully create the first national map of cashew
cultivation in Benin, characterizing its expansion between 2015 and 2021 [149]. In addition,
Alabi et al. [40] developed a banana disease classification system and Selvaraj et al. [147] fur-
ther strengthened an approach to map bananas under mixed-complex African landscapes.
Furthermore, studies by Torgbor et al. [146] and Sarron et al. [148] focused on mapping the
phenology of mango trees and assessing their yield on orchard level, respectively, contribut-
ing to a comprehensive understanding of fruit tree dynamics in the region. Agroforestry
systems present viable solutions for climate change due to the above-ground biomass (AGB)
sustained by their tree components. Accurate, spatially explicit estimations of AGB within
these systems are essential for reporting emission reduction efforts. However, several
factors, such as the spatial distribution, structural diversity, composition, and their varying
extents pose challenges to RS techniques. Five studies focus on assessing the RS potential
of spaceborne optical, SAR, and LiDAR data for AGB estimation in agroforestry systems
in West Africa [79,89,150–152]. Smallholder farming in agroforestry parklands is the pre-
dominant agricultural system in the Sudano-Sahelian zone of West Africa, serving as the
subsistence base for a large proportion of the population. These parklands are agricultural
landscapes defined by the coexistence of scattered trees within cultivated fields. Studies by
Karlson et al., Leroux et al., and Roupsard et al. [68,85,151] examine the influence of park-
land trees on crop yields at the landscape scale, considering a range of different tree cover
characteristics. Other research focuses on mapping the abundance of the multi-purpose
agroforest Faidherbia albida trees [153,155] or comparing machine learning techniques to
map different tree species within the agroforestry landscapes of West Africa [156].

A total of 18 publications fall under the category “LULUC with crop specific focus”,
showing no clear temporal pattern or trend. However, studies in this category have to go
beyond generating land use maps or tracking land use change over time. Instead, they
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emphasize specific crop areas or small-scale croplands, which offer more detailed insights.
Land use maps are crucial tools for planning, describing the geographic distribution
of land use, and supporting decision-making for multiple objectives. However, a lack
of consistent and comprehensive LULUC maps for West Africa remains [158,164,194].
Schulz et al. [158] also explore the strengths and limitations of existing LULUC products and
evaluate different classification approaches used. Cropland changes can serve as indicators
of environmental challenges such as deforestation, desertification, land degradation, and
for population growth [30]. Adhikari and De Beurs [159], for instance, compared 12 open-
source RS LULUC datasets for West Africa, finding overall low agreement between them,
with only 11% of the pixels matching across six datasets, further emphasizing the need
for improvement in data consistency and accuracy [159]. Nabil et al. (2020) [32] aimed
to identify factors causing spatial discrepancies among four RS land cover products and
assess the impact of environmental factors such as elevation dispersion, field size, land
cover richness, and frequency of cloud cover on these spatial differences. Results showed
overall accuracies below 65% with particularly large disagreements in the Sahel zone and
along the West African coast.

Duke et al. [162] developed a crop-type classification using UAV data and Sentinel-1,
demonstrating a decline in model accuracy with decreasing spatial resolution. They im-
proved results by integrating a canopy height model. Similarly, Knauer et al. [43] achieved
high classification accuracy (over 90%) for Burkina Faso, where rainfed agriculture domi-
nates, though irrigated areas and plantations have also expanded mainly due to targeted
development projects. Traore et al. [84] concentrated solely on examining the land use
changes in those irrigated areas in Burkina Faso. In Mali, Attia et al. [18] identified and pro-
cessed the most relevant parameters to site suitability for promoting small-scale irrigation.
The study presented the efficacy of the spatial modeling approach in site selection for agri-
cultural development and smallholder livelihoods and welfare [18]. A different approach
for mapping and monitoring irrigated lands was introduced by Wellens et al. [161], employ-
ing a low-cost method based on small-scale amateur aerial imaging. Their goal was to help
Burkina Faso to achieve a more equitable allocation of irrigated areas, thereby alleviating
water scarcity. The diversity of cropland systems across the West Africa continent are highly
diverse and often adapted to very specific environmental conditions. This presents chal-
lenges, particularly as the phenological signatures of the various land use types in a region
can be very similar. As a consequence, mapping croplands at a continental level requires
large and up-to-date training and validating datasets. Addressing this, Sedano et al. [160]
proposed a mapping approach for the agricultural systems of the Sudan-Sahelian region,
designed to overcome data limitations in this area. Forkuor et al. [66] compared Landsat
8 and Sentinel-2 for assessing land use in Burkina Faso, highlighting the added value of
Sentinel-2’s additional red-edge bands.

Another study by Okoro et al. [168], though focused on palm oil and cropland land
use change, was classified as “LULC with crop focus” instead of “Agroforestry” because
the methodological approach focuses on improving LULUC maps by addressing the cloud
cover issue in optical imaging based on the use of median Landsat composite images.
A approach by Saarnak et al. [166] classified land use management through the use of
high-resolution satellite images to detect burned areas, although distinguishing burns prior
to image acquisition from neighboring areas with senescent vegetation remains challenging.
Early dry season fires are often used to reduce fuel loads and maintain pastures with low
impact on woody vegetation, while late dry season fires, typically accidental, cause major
damage to vegetation and soil. Early rain season fires are employed in agriculture and
pasture management to promote new sprouting of crops or new grass in pastures [166].
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Lastly, Diuk-Wasser et al. and Dambach et al. applied their LULC mapping approach to
assess malaria risk by identifying irrigated croplands, such as rice fields [73,167].

In the “Climate Impacts“ category, three studies examine evapotranspiration monitor-
ing using a range of various spatial resolutions and approaches that integrate modeling
with satellite data fusion. Monitoring evapotranspiration is crucial for several reasons:
(i) tracking the timing, location, and volume of water released into the atmosphere through
evaporation; (ii) assessing crop performance and predicting famine by monitoring drought
impacts; (iii) evaluating the irrigation system efficiency; and (iv) improving weather fore-
casting accuracy. Challenges include the lack of high-resolution thermal satellite data
and the lack of (non-biased) validation data [23,169,170]. Five studies focused on assess-
ing drought vulnerability in the Sahel region [91,171–174]. As the three physical types
of droughts (meteorological, agricultural, and hydrological) are interconnected, a single
indicator or an index quantifying an individual type of drought may proof insufficient to
capture combined droughts and their related impacts. In contrast, the use of a composite
drought index (CDI) provides a more comprehensive assessment by integrating different
drought types [171]. The reviewed studies employ various drought indices to examine
the effects of dry spells on the groundnut basin in Senegal for instance [91]. They use
time-series analysis at lower spatial resolutions, as meteorological effects typically affect
larger scales, deeming 1 km² resolution sufficient. Further reviewed studies related to
climate explore vegetation health and greenness in relation to soil moisture and rainfall
pattern [107,177–180]. Some research emphasizes methods to retrieve parameters like soil
moisture from radar analyses [49,183]. Other studies investigated phenological parame-
ter retrieval, such as Start of Season (SOS), Length of Season (LOS), and End of Season
(EOS), and how those have evolved over time due to either climate related [180] changes
or through shifts in agroecological management [182]. For instance, Mechiche-Alami
and Abdi [35] state that the combined effect of recent changes in rainfall, land surface
temperature and solar radiation explains approximately 40% of the variation in cropland
productivity over West Africa at the 95% significance level. Other drivers are, for instance,
increased inputs (irrigation and fertilizer) or land degradation [181,182,184].

The category “Other” includes studies with objectives outside the main categories.
Renier et al. (2015) [195] focused on mapping vegetation senescence in arid areas using spec-
tral indices for near-real-time monitoring, applied in Mauritania for desert locust habitat
monitoring. Piou et al. (2013) [196] also employed vegetation indices to assess vegetation
growth post-rainfall to map locust habitats. Alvarado et al. (2023) [188] used Sentinel-2 data
for mapping non-active agricultural land in Burkina Faso, employing machine learning for
high-resolution fallow land detection. Barteit et al. (2023) [187] developed and implemented
the Change and Health Evaluation and Response System (CHEERS) as a methodological
framework for better adaptation policies in low-income regions. Thiam et al. (2021) [83]
investigated land use changes in Senegal’s Djilor district to improve land management
practices. They evaluated soil salinity as a key indicator for identifying practices that miti-
gate the adverse effects of increasing soil salinity. Sall et al. (2020) [189] analyzed hydraulic
data and satellite imagery to understand water constraints and flood-recession agriculture
in the Senegal River Valley. Thomas et al. (2020) [190] developed an open-source, scalable
method for fusion of very high-resolution imagery with multispectral SAR and thermal
data, enabling detailed mapping across large areas and multi-year analysis for small-scale
agriculture mapping. Mueller et al. (2023) [192] demonstrated the impact of climate change-
induced flooding on crop failures in Burkina Faso. Tong et al. (2017) [186] linked NDVI
trends to changes in cultivated areas in the Sahel, specifically focusing on fallow fields.
Kpienbaareh and Luginaah (2019) [191] explored the relationship between wildfires and
food security in Ghana. Diuk-Wasser et al. (2004, 2006) [73,74] used RS data in two studies
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to identify malaria vector habitats in Mali’s rice fields. Odiji et al. (2024) [76] mapped
flood impacts, such as inundation extent and frequency, employing Landsat, Sentinel-1
SAR, and Sentinel-2 in the confluence region of rivers Niger and Benue to inform flood
risk management.

4. Discussion
4.1. Comparative Analysis of Crop Importance in West African Agriculture: Limitations and
Key Findings

Section 3.6 compares the importance of different crop categories within a country’s
agricultural sector, using two key metrics: crop area proportion and economic value
contribution. However, these categorizations introduce some limitations. The data reflects
average values from 2000 to 2020, so they represent relative shares rather than absolute
values. Additionally, crop categories aligned with the FAO STAT database [57] may include
crops not specifically represented in the reviewed literature. The shares do not necessarily
sum to 100% because livestock and fallow land are not accounted for.

Remarkably, despite limited representation in the reviewed literature, vegetables play
a substantial economic role. This discrepancy could be due to the relatively small plots
occupied by cash crops like vegetables, which makes them challenging to analyze using RS
techniques. Also, the review’s focus on RS implies that non-RS studies on vegetables are
not taken into account, as RS typically favors larger spatial analysis [106,137,161]. Only in
recent years has very high-resolution RS has been widely used to analyze smaller plots,
such as those for vegetable cultivation. One of the few studies addressing vegetables,
specifically tomatoes, is Ouattara et al. [106].

In contrast, crops such as maize and sorghum are well represented in the reviewed lit-
erature and occupy a large share of the agricultural landscape in West Africa [47,61,62,107].
Similarly, cocoa und oil palm are extensively studied and economically important in coun-
tries like Ghana and Côte d’Ivoire, aligning with the real-world context described by
Abu et al. [145] and Tamga et al. [79]. Beans, on the other hand, are covered by only a few
studies, primarily focused on Burkina Faso. However, beans are also important in other
countries, such as Côte d’Ivoire and Ghana, where the cloud cover poses challenges for
RS analyses. In these regions, tree crops can be monitored with Sentinel-1 or other radar
instruments that operate effectively despite cloudiness [46,79].

4.2. The Need for Integration of New and High-Resolution RS Datasets and High Quality
Reference Data

As the analysis in Table 2 of possibilities and remaining challenges of RS on small-
scale agricultural and cropping systems in West Africa shows, there is a clear need for
(i) integrating various sensor data and existing data sources, (ii) employing very high-
resolution data, (iii) discovering new data sources, and (iv) basing the methods on high-
quality reference data [29].

i. Many studies have already employed multiple sensors in their analyses to address
issues such as sparse data coverage, cloud cover, or the need to combine UAV data
with satellite imagery [134]. This highlights the importance of integrating various
sensors and satellite data to overcome some of the limitations related to the spatial-
temporal-radiometric resolution restrictions. The topic of data fusion is extensively
discussed in the recent literature [23,190,197]. Data fusion in RS offers substantial
advantages by combining datasets of different modalities and resolutions to maximize
their utility. For example, very high-resolution imagery can be fused with lower-
resolution but more temporally frequent data, enabling precise field mapping while
capturing dynamic processes such as crop growth. Advanced methods, such as deep
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learning, further enhance these applications, making data fusion a powerful tool
for agricultural monitoring. However, challenges such as scalability for regional
studies, high computational demands, and data compatibility issues limit its broader
adoption, especially in resource-constrained regions. Despite these challenges, data
fusion remains essential for addressing the complex needs of small-scale agriculture in
West Africa [23,190,197]. In addition, several studies [67,99,106] point out that radar
data are underutilized, a finding supported by the analysis of this review, which shows
that only 8.8% of the reviewed articles employed radar data. Moreover, incorporating
textural feature data or canopy height information retrieved from RS data have shown
to enhance the results [29,78,98,193].

ii. More than 70% of the studies use spatial resolutions higher than 50 m, with over 50%
using resolutions higher than 30 m. This clearly illustrates the importance of the spatial
resolution in addressing the variety, heterogeneity, small and irregularly shaped fields,
and varied crop calendars of small-holder farming systems. The wide range of farming
practices and resource availability (e.g., fertilizer, irrigation) emphasize the need for
high temporal resolution in satellite data collection [7,110]. This is further supported
by the prevalence of time-series analyses and studies with multiple observations in
a single year, showing the importance of time resolution for retrieving information
through RS data. To effectively link household food security to satellite data, high
resolution in both time and space is crucial [7,47]. The rapid advancement of methods,
especially in artificial intelligence, combined with the increasing availability of high-
resolution spaceborne data are expected to noticeably influence the trends of future
satellite-based research. These innovations enable the extraction of more nuanced
and accurate insights from vast datasets, improving applications like crop monitoring,
land use classification, and yield prediction. As big data analyses continue to evolve,
challenges such as processing efficiency, model scalability, and the integration of
multi-model datasets may be mitigated, paving the way for more robust, scalable, and
actionable insights in satellite-based research [198]. To overcome the limitations, future
research could require smaller and more cost-effective platforms, such as CubeSats,
which function as a unified system or constellation. They provide higher spatial
resolution well below 10 m, daily revisit times, and present substantial opportunities
when paired with data fusion to assess remaining challenges [199].

iii. Forkuor et al. (2015) [64] found that overlapping crop calendars can result in similari-
ties in the spectral profiles of different crops. This can be attributed to similarities in
their growth stages and cropping schedules. Moreover, high spectral variability and
within-field heterogeneity, which may be influenced by factors such as soil fertility,
soil moisture conditions and pests or diseases, further complicate crop differentiation.
Cropland systems across West Africa are highly diverse and often adapted to very
specific environmental conditions, making it challenging to distinguish different land
use types based on their spectral phenological signatures alone. To address these
challenges, one potential solution is the use of higher radiometric resolution, as of-
fered by hyperspectral missions like EnMAP [128,200]. Integrating such data could,
for instance, enhance the effectiveness of approaches aimed at distinguishing similar
crops and land use types. Similarly, Gano et al. [120] (2021) suggest using data from
other modalities like thermal or LiDAR to improve the models in the future.
Hyperspectral, thermal, and LiDAR missions offer transformative potential for im-
proving the monitoring and management of small-scale agriculture in complex and
diverse regions such as West Africa. Hyperspectral missions excel in capturing fine
spectral details across a broad range of wavelengths, allowing for precise differen-
tiation of crop health, soil properties, and environmental variables. This capability
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supports more accurate yield forecasts, soil assessments, and early detection of crop
stress and disease, allowing for timely interventions and optimized resource use How-
ever, their application is hindered by the computational intensity of data processing,
limited spatial resolution for small-scale contexts, and relatively high cost and re-
stricted availability of hyperspectral sensors compared to multispectral systems [200].
Thermal RS complements hyperspectral data by providing critical insights into crop
and soil thermal properties, directly linked to water stress, irrigation needs, and soil
moisture content. In West Africa, where agriculture is highly dependent on seasonal
rainfall and vulnerable to drought, thermal data becomes invaluable for identifying
water-deficient zones and improving irrigation practices. When integrated with hy-
perspectral and multispectral data, thermal sensing enhances the depth and reliability
of agricultural assessments. Nevertheless, its lower spatial resolution and suscep-
tibility to atmospheric conditions, such as cloud cover, can limit its precision and
effectiveness [201]. LiDAR further enriches the potential of remote sensing by offering
three-dimensional structural information about crop canopies and terrain. These
data can improve biomass estimation and land use mapping, critical for understand-
ing the dynamics of small-scale agricultural systems. As these technologies evolve,
integrating hyperspectral, thermal, and LiDAR data, alongside advancements in com-
puting capacity, holds promise for overcoming current limitations and unlocking new
applications tailored to the challenges of small-scale farming in West Africa [46,202].

iv. As indicated in Table 2, several studies criticize the lack and quality of reference data
for small-holder farms in West Africa. High quality and abundant unbiased reference
data are crucial to improve and validate the accuracy of RS methodologies, particularly
in heterogenous landscapes [117,119,203]. Such data, used for training and validation,
are critical for enhancing results. Inadequate or insufficient data can lead to overfitting
and pose challenges in maintaining the performance of deep learning methods [50].
Several articles noted the scarcity of validation and trainings data [29,33,36,50,144,160],
underscoring the need for reliable reference datasets. Zhang et al. 2018 [36] employed
a phenology-based classification method as it has shown advantages when reference
data, here field survey data, is too scarce. While sampling plays a key role in mapping
agricultural systems, obtaining reliable data, for instance from remote areas, can be
difficult [144]. Addressing these gaps could involve sharing databases or using very
high-resolution satellite imagery as validation. Mapping croplands requires extensive
and up-to-date training and validation datasets, which is why Sedano et al. [160] for
instance, proposed a mapping approach tailored to overcome the limitations of the
agricultural systems of the Sudan-Sahel region.

4.3. Socio-Economic Barriers to Remote Sensing Adoption in West Africa

The adoption of RS technologies in West Africa faces substantial socio-economic barri-
ers, including high costs of advanced RS technology, limited technical expertise, and low
educational levels, which hinder widespread implementation. Regional research institu-
tions are further constrained by high publication fees, inadequate funding opportunities,
and limited institutional capacity to support RS-based initiatives. Restricted access to
digital datasets, inadequate or lack of capacity-building programs, and a general lack of RS
awareness among stakeholders exacerbate these challenges [13,20,204,205]. To overcome
these barriers and ensure the sustainability of measures the following elements revolve:
(a) design and adaptation, (b) user and policy orientation, (c) education and training,
(d) outreach and communication, (e) monitoring and evaluation, and (f) funding [206].
More specifically, this involves deploying low-cost sensors, promoting open datasets, and
leveraging open-source software supported by cloud computing to lower financial en-
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try barriers and enhance accessibility [204,205]. Strengthening technical, financial, and
management skills through capacity-building programs is critical for empowering rural
populations and fostering expertise. Partnerships, cooperative research projects, and mu-
tual funding opportunities can facilitate knowledge sharing and resource pooling across
institutions [21,205,206]. Connecting RS applications to climate change mitigation funds
and embedding them into frameworks such as ISFM or System of Rice Intensification
(SRI) can enhance their financial viability and effectiveness. Integrating these efforts into a
holistic strategy will improve agricultural resilience, enable access to crucial funds, and
ensure sustainable development in West Africa [20,21].

4.4. Limitations of This Review

This review centers on the three topics “Remote Sensing”, “West Africa”, and “Small-
Scale Agriculture and Cropping Systems”. A total of 163 selected articles were analyzed.
The preselection of those articles was limited by constraints in the search string and in
the Web of Science database, which is widely recognized for providing reproducible and
transparent search results. However, using a different search system may result in slightly
varying number of articles. As databases and search functionalities are regularly updated,
the performance results in this study may change over time [207]. The use of Boolean
expressions like “AND” make the searches highly sensitive, necessitating precise keyword
formulations by the authors. For instance, the keyword “field*” retrieved numerous for
this review irrelevant articles, while the relevant ones were included by adjusting other
keywords in the search string. Combining the three topics with Boolean “AND” helped to
clearly define the scope of this review.

Another limitation lies in the potential bias, as the second filter and all classifications
were performed manually, introducing some subjectivity. The boundaries between certain
categories were challenging to establish, leading to a degree of uncertainty. However, we
have defined these categories based on our best knowledge and judgment, consistently
aiming to base the processes on well-established and pre-defined criteria. Table S1 is
important for providing a comprehensive overview and for ensuring transparency.

For instance, the first author affiliation is considered, and although some studies are
authored or co-authored by (West) African researchers, they may be linked to non-African
countries or funded projects through collaboration. A specific first author example is Gerald
Forkuor, who has two publications from 2014 and 2015 affiliated with Germany [63,64]
followed by three publications affiliated with WASCAL in Burkina Faso [34,65,66]. Studies
with affiliations from West Africa account for less than 21%, a relatively low percentage.
Additional factors contributing to this underrepresentation could include high publication
fees and limited access to research funding in West Africa.

A debatable aspect of this review is the inclusion of low-resolution RS studies, such
as those utilizing MODIS or AVHRR data. While these studies are limited in their ability
to directly analyze small-scale agriculture, their inclusion was justified as they serve as
an additional data source in RS-data-scarce regions. Despite their low spatial resolution,
their high temporal resolution is particularly valuable in seasonally cloud-prone areas. This
approach aims to provide a comprehensive overview of the potential and progression of
Earth Observation in predominantly small-scale agricultural regions.

Additionally, some relevant publications may not have been included in the search
results, despite efforts to minimize this risk. While limitations in this review exist, it still
provides a thorough overview of RS on small-scale agriculture and cropping systems in
West Africa.
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4.5. Future Research Directions

Smallholders require options that offer relatively low risk while still providing short
term returns on investment. Consequently, building resilient systems is essential for both
risk management and long-term sustainability. Achieving this requires investments that
go beyond plot-level technologies, extending to policies and institutional measures that
facilitate adoption and help reduce risks for small-scale agriculture and farming systems
in all means [7,13,208]. In this context, RS can play a vital role by providing the data and
insights needed to make informed decisions at various levels, from field management
to policy-making. The reviewed literature, as displayed in Table 2, already highlights
the considerable potential of RS while also acknowledging its current limitations. As
the field continues to evolve, advancements in RS data quality, the availability of high-
quality reference datasets, and methodological approaches are anticipated. Building on
those findings, several research gaps, and opportunities for future development should
be emphasized. These areas represent important directions for advancing the field and
addressing existing limitations:

• Integrating multiple data sources from RS and non-RS origins, such as field measure-
ments and socio-economic datasets, will help to overcome the spatial, temporal, and
radiometric constraints. This integration enhances crop monitoring, yield predictions,
and contextual understanding, enabling more accurate and targeted solutions for
small-scale agriculture.

• Future research should focus on leveraging advancements in artificial intelligence
and data fusion to revolutionize satellite-based applications. By integrating diverse
datasets, including high-resolution and multi-sensor data, these methods could enable
breakthroughs in precision crop monitoring, yield prediction, and land use analysis.
Addressing challenges such as processing efficiency, model scalability, and effective
multi-source data fusion will be key to unlocking the full potential of these technologies
for more robust and actionable insights [198].

• Advancing crop monitoring and management practices through the development of new
methods for the detection of phenology and agricultural interventions, including irriga-
tion plans, number of cropping seasons, and plant residue management. This progress
will help optimize resource use and inform targeted interventions [62,100,107,108].

• An increased prominence of radar data, in particular SAR will play a crucial role in
overcoming challenges posed by cloud cover in West Africa. The anticipated launch
of Sentinel-1C in late 2024 is expected to further expand capabilities for all-weather
monitoring of agricultural areas [209].

• Advances in daily high-resolution imagery will support near real-time crop monitoring,
enabling timely decision-making for farmers and stakeholders to improve productivity
and respond effectively to environmental challenges.

• Enhanced retrieval of plant parameters, such as LAI and chlorophyll content, will pro-
vide more detailed and frequent information on crop health, growth, and conditions,
improving precision agriculture practices.

• The evolution of methods to derive field plot properties, such as soil characteristics,
landscape organization [71], and field boundaries, will provide critical data to support
smallholder farmers. This includes facilitating access to financing and insurance for
smallholder cropping systems by offering accurate and actionable insights [203,210].

• The continued refinement of hyperspectral data will enhance the detection of non-
photosynthetic vegetation (NPV), leading to better quantification f crop residues and
biochemical traits. This will contribute to a deeper understanding of soil health and
sustainable farming practices [211].
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• The development of monitoring systems for sustainable intensification practices is
set to enhance resource use efficiency, encompassing water, energy, fertilizers, and
soil. By transforming farm management into an information- and knowledge-driven
business, these systems aim to optimize agricultural productivity while minimizing
environmental impacts. “Smart Farming” leverages crop-growth models and remote
sensing data to make precise decisions on crop selection, sowing schedules, fertilizer
and pesticide applications, and harvesting times. This approach enables efficient,
location-specific management of fields, contributing to both sustainable agriculture
and food security [200].

• Embedding climate adaption considerations into the design and interpretation of RS
datasets will enhance their relevance for addressing climate resilience challenges.

• Establishing new publicly accessible reference databases, such as the World Cereal
database provided by ESA, will facilitate broader sharing of high-quality reference
data for future research and applications [212].

5. Conclusions
This review offers an analysis of the potential of RS for mapping small-scale agri-

cultural and cropping systems in West Africa. A search string comprising relevant terms
was developed through both automated and manual filtering techniques, resulting in the
identification of 163 relevant studies published between 1 January 2000, and 31 April 2024.
Data were gathered from these studies on several aspects: study locations, author and
funding origins, the sensors utilized, as well as their spatial and temporal resolution, and
the time periods examined. Furthermore, the review explored the crop types studied,
comparing their representation in the research literature to their actual importance in terms
of area coverage and economic contribution. Lastly, we examined the research objectives,
the potential of RS, and its associated challenges. Key findings are summarized as follows:

• We identified an overall increase in research activity over time on mapping small-scale
agricultural and cropping systems in West Africa, with over 53% of the reviewed
publications since 2019.

• Europe dominates both the number of first author affiliations (49.7%) and the origin
of funding (54%). The second-highest percentage of first author affiliations are from
Africa (20.9%). Additionally, the United States shows a great research interest with
25 first author affiliations and 59 studies funded. The research hotspots in West Africa
are identified as Senegal, Burkina Faso und Mali, together accounting for over 50% of
the reviewed articles.

• Multispectral optical data are employed in 88.3% of all studies. About 86.4% use
satellite data as a carrier system and over 58% of studies utilize more than one sensor
in their analyses.

• Time-series is the predominant temporal resolution (39.4% of studies), followed by
multi-temporal (multiple observations in a single year) with 31.9%, multitemporal
(single observations in multiple years) 15.6% and mono-temporal with 13.1%.

• Sensors with a spatial resolution of below 30 m dominate, making up 53.7% of all
studies. In addition, 66% of the reviewed articles focus on a study area at regional or
local scales.

• The analysis of crop categories analyzed in the reviewed studies revealed:

◦ Cereals, particularly millet, maize, and sorghum dominate the literature, with
high research attention in countries like Mali, Burkina Faso, Senegal, and
Niger, reflecting their land use and economic importance of those crops in
these regions
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◦ Groundnuts are a major focus in Senegal’s “Groundnut basin”, highlight-
ing their dual role in land area and economic output, while crops like
“Beans/Legumes”, though underrepresented in the literature, contribute
largely to food security and account for a large share of agricultural area in
countries such as Côte d’Ivoire, Ghana, Niger, and Mauretania

◦ The category “Tree”, notably cocoa and oil palm, are economically prominent
in Ghana and Côte d’Ivoire and is well-represented in the reviewed literature

◦ There is a potential research gap of RS on high economic important vegetables
in West Africa

• The analysis of possibilities and remaining challenges of RS on small-scale agricultural
and cropping systems in West Africa reveals two major findings:

◦ Major advancements in agricultural monitoring and LULUC mapping have
occurred. Key findings include enhanced crop yield estimation in heteroge-
neous landscapes, accurate agroforestry system mapping, refined assessments
of plant and field characteristics and crop management responses. Additionally,
the integration of various data sources supports decision-making on various
levels for climate change adaptation, flood risk management, and public health.

◦ Clear needs include (i) integrating various sensor data and existing data sources,
(ii) employing very high-resolution data, (iii) discovering new data sources,
and (iv) basing the methods on high-quality reference data

Therefore, RS can largely contribute to more sustainable small-holder agriculture in
West Africa by supporting practices such as sustainable intensification and integrated soil
fertility management. However, its role is embedded in an ever-changing landscape of
evolving socio-economic and climate conditions and variability in farming systems and
information asymmetries. This poses challenges and risks requiring RS as a critical compo-
nent to be used alongside other strategies for effective agricultural development [10,12,16].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land14010171/s1, Table S1: Overview of the 163 reviewed publi-
cations, including authors, title, sensor names, spatial resolution in meters, study country and crop
of interest.
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