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New methods for propeller whirl flutter prediction emerge, enabling aeroelastic engineers
to include more modeling parameters and more sophisticated methods into their analysis.
However, the sensitivity of propeller whirl flutter with respect to modeling parameters like
airfoil characteristics, blade sweep and stiffness is not clear. This makes it hard to decide, on
which blade parameters to focus when choosing a modeling tool or a validation procedure.
This paper aims to provide a comprehensive overview of the sensitivity of whirl flutter with
respect to the above-mentioned blade parameters, identifying those with the highest impact
on stability. For this purpose, the Transfer-Matrix method is used to assess the whirl flutter
stability of the simplified pylon model and a generic turboprop aircraft, using a rigid and a
flexible set of parametric propeller blades. The results show that blade sweep and an increase
in stiffness are strongly destabilizing for whirl flutter. Regarding the blade aerodynamics,
the lift characteristics (steady lift offset and lift curve slope) and their radial distribution are
the most important aerodynamic parameters, followed by drag and last the airfoil moment
characteristics.

Nomenclature

𝐶𝐷0 = Linear airfoil polar coefficient for the constant, nondimensional drag
𝐶𝐿0 = Linear airfoil polar coefficient for the constant, nondimensional lift at zero angle of attack
𝐶𝐿𝛼 = Linear airfoil polar coefficient for the nondimensional lift variation with angle of attack
𝐶𝑀𝛼 = Linear airfoil polar coefficient for the nondimensional moment variation with angle of attack
𝑑𝐶𝑋𝑋

𝑑𝑅
= Linear radial variation of the linear airfoil polar coefficient 𝐶𝑋𝑋

𝐸𝐼𝑖 𝑝 = Bending stiffness in in-plane direction
𝐸𝐼𝑜𝑜𝑝 = Bending stiffness in out-of-plane direction
𝐺𝑇𝑇 = Torsional stiffness
𝑟 = Radial coordinate
𝑅 = Propeller radius
𝑉𝐹 = Flutter speed
𝜔𝑠𝑡𝑎𝑏 = extension of the whirl flutter region in the stability map

I. Introduction

Whirl flutter is an aeroelastic instability which is important to consider during the design and certification of any
propeller-driven aircraft [1, 2]. It presents itself as an instability of the whirl modes emerging from the gyroscopic

coupling between the pitch and yaw modes of the engine in its elastic support. Aircraft designers have to consider the
aeroelastic stability of these modes alongside load bearing and vibration isolation characteristics when designing, e.g.,
the engine support system [3]. This requires an accurate flutter prediction to prevent excessive stiffening of the support
for extra conservatism. Current trends towards more flexible, high aspect ratio wings in conjunction with high-speed
propeller designs further intensify the need for an accurate whirl flutter prediction.

To meet this rising need, new methods are being developed to capture more modeling features during whirl flutter
assessment, either in the time domain [4–6] or in the frequency domain [7]. These new methods allow the user to
include more parameters into their analysis, such as blade elasticity [6, 8] or more sophisticated propeller aerodynamics
[5, 9] with the potential to include full airfoil polars, advanced (swept) blade shapes and transsonic aerodynamics. E.g.,
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they enable the use of 3D potential aerodynamics instead of classical strip-theory based approaches[9] or the inclusion
of thrust effects [9, 10]. These new modeling degrees of freedom bring new choices for the user: Some methods, for
example, are better in capturing 3D-effects such as tip loss (e.g., 3D potential theory), other better capture the drag and
airfoil moment at each section (e.g., via full nonlinear airfoil polars). Naturally, these new analysis capabilities and the
required choice of modeling lead to differences in the stability predictions being observed.

Regarding aerodynamic modeling, Gali et al. [5] compared whirl flutter stability results of the simplified pylon
system computed via an uniform inflow model with those computed with the viscous vortex particle method (VVPM).
They found differences up to 39% in the flutter speed, depending on the advance ratio, blade number and blade chord,
using their bifurcation forecasting method. Before, Gennaretti and Greco [11] also compared strip theory approaches
with 3D potential theory and found significant differences, in this case for the required suspension stiffness. Koch,
Böhnisch et al. [9] conducted a similar study, but also looked into the driving mechanisms behind the differences. The
study identifies the unsteady blade aerodynamics as well as azimuthally varying induced velocities as the main drivers
behind the alteration of the propeller transfer functions and, therefore, aeroelastic stability. The results were extended to
a full aircraft model [12] and give much clearer trends regarding aeroelastic stability, as the simplified pylon model
purely contains the propeller transfer functions both as dampening and destabilizing factors. A full aeroelastic aircraft
model contains (stabilizing) wing aerodynamics as well, reducing the sensitivity with respect to the stabilizing propeller
derivatives. Finally, Gaudemaris et al. [13] also study the effect of angle of attack on whirl flutter stability, finding a
slightly stabilizing influence at higher angles of attack due to the effect of nonlinear lift slope at higher blade angles of
attack.

Regarding blade elasticity, Hoover and Shen [6], demonstrated the stabilizing effect of blade flexibility on whirl
flutter stability. Koch and Koert [8] traced down this stabilizing effect to cyclic blade deformations due to the azimuthally
varying airload on the blades during propeller disc pitch motion. The effect is driven partially by the ratio between
rotational speed and first blade eigenfrequency and partially by the blade stiffness itself. Noël et al. [14] demonstrated
that this stabilizing effect can also be observed for full aircraft models and further studied the impact of stiffness scaling.

Although most of these studies look into the differences in propeller whirl flutter stability predictions with different
methods and modeling approaches, and also look into some modeling parameters, a common understanding of the
sensitivity of stability results with respect to individual model parameters (such as blade lift curve slope, drag and
moment coefficients or individual blade stiffnesses) is missing. Using legacy methods, Cecrdle studied the isolated
influence of the radial blade lift curve slope distribution [15] and concluded it was a relevant parameter for stability
predictions. The aim of this study is to extend these studies to a more comprehensive set of blade modeling parameters
using state of the art stability analysis methods. The methodology for this is delineated in section II, including a
description of the model used as well as the set of parameters investigated in the sensitivity study. The results including
the influence of blade parameters on individual propeller derivatives as well as the aeroelastic stability of the simplified
pylon system as well a generic full aircraft model are presented in section III, followed by a conclusion and common
discussion. The overall purpose is to shed a light on the relevance of certain modeling parameters for propeller whirl
flutter prediction, so that the user can choose methods and validation tools to focus on these sensitive parameters first.

II. Methodology
To conduct the whirl flutter analysis, the Transfer-Matrix (or TM-) method is used in this paper to represent the

aeroelastic propeller in a frequency-domain flutter analysis [7, 16]. The first subsection gives a rough outline of the
method, for more information the reader is referred to previous publications [7–9, 16]. After describing the TM-method,
the parametric propeller blade used in this study is introduced, as well as the aircraft models used for stability analysis.

A. Transfer-Matrix method
The fundamental concept of the Transfer-Matrix method is based on identifying frequency-domain transfer functions

from propeller hub displacements to propeller hub loads by perturbing a time-domain simulation model of the isolated
propeller with forced motion about its hub [7]. The resulting linear relation connects the six hub motion degrees of
freedom (DOF) Δ𝒙ℎ𝑢𝑏 with the resulting six load components 𝑭𝑝𝑟𝑜𝑝,ℎ𝑢𝑏, as shown in Eq. 1. The transfer function
𝐻 𝑝𝑟𝑜𝑝 connecting the two is a complex-valued, frequency-dependent six-by-six transfer matrix. The transfer matrices
are furthermore dependent on the propeller operating point, e.g., the airspeed 𝑉 and the shaft rotational speed Ω.

𝑭𝑝𝑟𝑜𝑝,ℎ𝑢𝑏 = 𝐻 𝑝𝑟𝑜𝑝 (𝑖𝜔,𝑉,Ω, 𝑀𝑎) Δ𝒙ℎ𝑢𝑏 (1)
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Figure 1 [16] summarizes the main steps for the TM-method. During the first step, the transfer matrices are identified
using time-simulations for pulse perturbations of the hub motion about a trimmed reference flight condition. The
identified scalar transfer functions are assembled to the transfer matrix 𝐻 𝑝𝑟𝑜𝑝 for a set of base frequencies. After some
post-processing steps [14], e.g., removing unwanted mass and gyroscopic terms from the transfer matrices, 𝐻 𝑝𝑟𝑜𝑝 (𝑖𝜔)
can be used in a frequency-domain flutter analysis.

1. Identi�cation of 
    transfer matrices

1.1 Trim to steady 
      reference �ight 
      condition

1.2 Pulse perturbation 
      of the hub motion

1.3 Evaluation of 
      individual transfer 
      functions using FFT

1.4 Simpli�cations for
      axial �ight

2. Optional post-
    processing of TM

2.1 Removal of mass, 
      inertia and gyros-
      copic components

2.2 Masking of x-DOF

2.3 Conversion of
      unit system

2.4 Alignment to air-
      frame coordinate 
      system

2.5 Reversal of 
      rotational axis

3. Flu�er solution

3.1 Interpolation to
      di�erent operating 
      points

3.2 Modal 
      transformation

3.3 Insertion in �u�er
      equation

3.4 Flu�er solution in
      the frequency 
      domain

Fig. 1 Workflow for the Transfer-Matrix method, reproduced from [16]

Equation 2 shows the frequency-domain flutter equation for an aeroelastic aircraft, with the structural stiffness,
damping and mass terms in generalized coordinates on the left-hand side, unsteady aerodynamics from lifting surfaces
on the right side represented as frequency-dependent 𝑄

𝑔𝑒𝑛
(𝑖𝑘, 𝑀𝑎), and the generalized transfer matrices 𝐻𝑔𝑒𝑛,𝑝𝑟𝑜𝑝 .

The latter are obtained from the identified transfer matrices by pre- and post-multiplication of the modal matrix [7].[
𝑠2𝑀𝑔𝑒𝑛 + 𝑠𝐷𝑔𝑒𝑛 + 𝐾𝑔𝑒𝑛

]
𝒒 =

𝜌

2
𝑉2𝑄

𝑔𝑒𝑛
(𝑖𝑘, 𝑀𝑎)𝒒 + 𝐻𝑔𝑒𝑛,𝑝𝑟𝑜𝑝 (𝑖𝜔,𝑉,Ω, 𝑀𝑎)𝒒 (2)

Solving Eq. 2 for its eigenvalues, e.g. using classical flutter solution techniques [7], gives the frequency and damping
of the aeroelastic system eigenmodes and allows a stability assessment.

To assess the impact of parameter changes on the transfer matrices and therefore on stability, it can be useful to
linearize the frequency-dependent 𝐻𝑔𝑒𝑛,𝑝𝑟𝑜𝑝 with respect to frequency and obtain stiffness and damping derivatives
similar to those used in legacy methods [9]. This approach is used in this paper purely for visualization purposes of the
transfer matrices, as using the derivatives also in the flutter analysis does not yield exact results [12].

B. Blade modeling
The propeller model used in this study to identify the transfer matrices was built and used already in previous

publications by the author [8]. It is a multi-body simulation (MBS) model for the commercial MBS Simpack [17] and
represents a five-bladed, wooden turboprop propeller. The MBS model uses beam elements for the elastic blade model
(which can be set to rigid for a rigid-blade analysis) and uses unsteady strip theory without inflow modeling for the
aerodynamics [18]. Unsteady strip theory overestimates the unsteady propeller loads compared to more sophisticated
models [9], but still retains the main effects and is chosen for the study due to its computational speed and availability
in Simpack. The nominal modeling parameters (airfoil polars, stiffness distribution) are taken from Koch and Koert
[8] and are listed in Tab. 1. The nominal stiffness values for bending and torsion (last three rows) are multiplied by a
factor of four compared to the previous study to obtain an unstable system even with elastic blade formulation. The
eigenfrequency of the first non-rotating eigenmode (first out-of-plane (oop) bending) is 62 Hz.

The aerodynamic parameters consist of the classical parameters for a linear airfoil polar. Their radial distribution is
varied both constantly and linearly with the radius (compare column two in Tab. 1). Most parameters are varied in both
positive and negative direction, although only the positive change is shown in the results later, the negative variation
was used for cross-checking purposes only. In addition to the airfoil polar parameters, a simplified model for sweep in
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Table 1 Parameters for the sensitivity study.

Parameter Distribution Min. value Nominal Max. value
𝐶𝐿𝛼 (𝑟) 𝐶𝐿𝛼 + 2( 𝑟

𝑅
− 0.5) 𝑑𝐶𝐿𝛼

𝑑𝑟
5.9305 6.5894 7.2483

𝐶𝐿0 (𝑟) 𝐶𝐿0 + 2( 𝑟
𝑅
− 0.5) 𝑑𝐶𝐿0

𝑑𝑟
-0.5 0.0 0.5

𝐶𝑀𝛼 (𝑟) 𝐶𝑀𝛼 + 2( 𝑟
𝑅
− 0.5) 𝑑𝐶𝑀𝛼

𝑑𝑟
-0.2 0.0 0.2

𝐶𝐷0 (𝑟) 𝐶𝐷0 + 2( 𝑟
𝑅
− 0.5) 𝑑𝐶𝐷0

𝑑𝑟
0.0 0.0 0.015

Sweep Sweep · 𝑟2

𝑅2 0.0 0.0 0.1
𝐸𝐼𝑜𝑜𝑝 (𝑟) 𝐸𝐼𝑜𝑜𝑝,𝑟𝑒 𝑓 (𝑟) 𝑘𝑠𝑐𝑎𝑙𝑒 0.9 1.0 1.1
𝐸𝐼𝑖 𝑝 (𝑟) 𝐸𝐼𝑖 𝑝,𝑟𝑒 𝑓 (𝑟) 𝑘𝑠𝑐𝑎𝑙𝑒 0.9 1.0 1.1
𝐺𝑇𝑇 (𝑟) 𝐺𝑇𝑇,𝑟𝑒 𝑓 (𝑟) 𝑘𝑠𝑐𝑎𝑙𝑒 0.9 1.0 1.1

chord-wise direction is introduced by simply offsetting the airfoil sections in the direction of the chord. No aerodynamic
corrections for sweep but a shift in the collocation points for lift and downwash are taken into account. The stiffness
distribution is varied in out-of-plane (oop) and in-plane (ip) direction as well as for torsion by applying a constant
scaling factor (see Tab. 1). Out-of-plane and in-plane are defined with respect to the twisted, but unpitched propeller
blade (twist distribution is given in [8]), not with respect to the local chord. Cross-coupling terms in the stiffness matrix
are not scaled.

Each parameter is changed individually in this sensitivity study. For the aerodynamic parameters, the constant and
linear variation is also applied separately. Two sets of transfer matrices are obtained, one for a rigid set of blades, varying
only the aerodynamic parameters (those above the mid-line in Tab. 1), and one for the elastic reference blades, including
all parameters in the study. For each parameter variation, the model is trimmed for a reference operating point (sea-level
conditions, 142 m/s airspeed and 1600 rpm shaft speed) to windmilling conditions (zero power/torque) by adjusting the
blade pitch setting. Therefore the trim point can be different, especially when considering a lift offset 𝐶𝐿0 or drag 𝐶𝐷0.

C. Stability analysis models
The identified transfer matrices for each parameter variation are used in this paper for the whirl flutter stability

assessment of two aeroelastic aircraft models. The first is the simplified pylon model with two DOF widely used in the
literature to study basic whirl flutter effects [16]. The second represents a full, free-flying propeller aircraft and also
includes unsteady aircraft aerodynamics [14]. The models and the connected analysis details for this study are briefly
introduced in the following subsections.

1. Simplified pylon model
The simplified pylon model represents the most basic model to predict whirl flutter and is widely used due to its

simplicity. It features a rigid engine model supported by two springs allowing a pitch and yaw motion about a pivot
point with distance 𝑎 behind the propeller plane (compare Fig. 2). The model data used here for the pitch, yaw and polar
inertia are given in [16]. The model is assessed for its whirl flutter stability with a fixed operating point and varying
pivot stiffness combinations, resulting in a stability map for the engine support stiffness (given in uncoupled frequencies
𝜔𝑝𝑖𝑡𝑐ℎ =

√︁
𝐾𝑝𝑖𝑡𝑐ℎ/𝐼𝑝𝑖𝑡𝑐ℎ) as depicted in Fig. 3. The extent of the unstable area under the bell curve on the bottom left

is used as a measure for whirl flutter stability. A larger extent, represented by the vertex of the bell-curve on the line of
equal pitch and yaw stiffness, means a more unstable aeroelastic system.

Δ𝜔𝑠𝑡𝑎𝑏,𝑖 =
𝜔𝑠𝑡𝑎𝑏,𝑖 − 𝜔𝑠𝑡𝑎𝑏,𝑟𝑒 𝑓

𝜔𝑠𝑡𝑎𝑏,𝑟𝑒 𝑓

(3)

Δ𝜔𝑠𝑡𝑎𝑏 as defined in Eq. 3 is used as a non-dimensional measure of the shift of the vertex due to a parameter
variation compared to the nominal system. A positive Δ𝜔𝑠𝑡𝑎𝑏 represents a more unstable system.
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Fig. 2 Simplified pylon system for whirl flutter
analysis [16]
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Fig. 3 Example of a whirl flutter stability map.

2. Generic turboprop aircraft model
As a more realistic example, a full, free-flying aircraft model of a generic, twin-engine turboprop aircraft is used [14].

The structural model comprises a full-aircraft finite element model, which is represented by the first 50 eigenmodes,
including six rigid-body modes. The unsteady aerodynamics of the lifting surfaces is included into the flutter analysis
using 𝑄

𝑔𝑒𝑛
(𝑖𝑘, 𝑀𝑎), computed using the doublet-lattice method (DLM) in ZAERO [19]. The ZAERO model is shown

in Fig. 4. Infinite-plate splines are used to spline the aerodynamic to the structural model.

Fig. 4 Aircraft geometry represented by the aerodynamic mesh of the ZAERO model, reproduced from [14].

For each parameter combination, a flutter analysis is conducted between 0 and 170 m/s true airspeed. Therefore,
several sets of transfer matrices at different operating points (0.25, 0.5, 0.75, 1.0 and 1.2 times the nominal airspeed) are
identified to conduct the flutter analysis for each blade parameter set. From the identified matrices, all intermediate
operating points are obtained by cubic interpolation. The flutter speed of the first unstable elastic mode is used as a
measure of instability. Its variation Δ𝑉𝐹 with a change in blade parameters represents the sensitivity of the whirl flutter
stability with respect to that parameter.

5



III. Results
This section presents the result of the simulation study conducted to uncover the sensitivities of whirl flutter with

respect to blade parameters. First, the sensitivities of the identified transfer functions are presented, together with
their nominal values for rigid and elastic blades. The second subsection presents whirl flutter stability results for the
simplified pylon system, comparing the change in required suspension stiffness and the influence of parameter variations.
The last subsection finally deals with the sensitivity of the whirl flutter speed of the generic turboprop aircraft with
respect to the blade parameters.

A. Sensitivity of transfer functions
Before perturbing each individual system to derive the transfer matrices, each propeller model is trimmed to

windmilling conditions at zero torque. Due to the absence of drag in the nominal parameter set, strip theory also
delivers zero thrust for most of these trim points, only for those with altered drag coefficient a negative thrust coefficient
is required to reach windmilling conditions (𝐶𝑇 = −0.173 for rigid blades and a constant increase in 𝐶𝐷0 along the
radius). Most trims give an almost identical blade pitch setting of additional 30deg compared to the unpitched blade.
Only altering the constant lift offset on the blade has a major impact on the pitch setting (max. +4.35deg deviation for
rigid blades and a decrease of 𝐶𝐿0 to -0.5).

For each individual parameter from Tab. 1 and both for rigid and elastic blades, a set of frequency-dependent
transfer matrices is identified. The transfer matrices are linearized with respect to frequency to compare them more
easily [9]. Tab. 5 shows the eight unique derivatives with respect to pitch motion (the derivatives for yaw motion derive
from symmetry [20]). The second column gives the numerical values for rigid propeller blades, while the third gives the
derivatives for flexible blades. When comparing signs of the derivatives, mind the rotational direction of the propeller,
which is clock-wise looking from the front. [9, Fig. 2] provides the sensitivity of the simplified pylon system with
respect to the individual derivatives, identifying 𝐶𝑛𝜃 (and 𝐶𝑧𝑞) as the main destabilizing and 𝐶𝑦𝜃 , 𝐶𝑧𝜃 and 𝐶𝑚𝑞 as
the main stabilizing derivatives. As expected, blade flexibility alters all these transfer functions [8]. The influence is
stabilizing, as Fig. 6 demonstrates with a comparison of the rigid and flexible stability map for the simplified pylon
system. The reason is found especially in a decrease in the destabilizing coupling moment derivative 𝐶𝑛𝜃 as well as an
increase in the stabilizing derivatives 𝐶𝑦𝜃 and 𝐶𝑚𝑞 .

Fig. 5 Propeller derivatives for the nominal blade
sets.

Derivative Rigid Flex
𝐶𝑦𝜃 -0.0625 -0.0812
𝐶𝑧𝜃 -0.3598 -0.3529
𝐶𝑚𝜃 0.0189 0.0275
𝐶𝑛𝜃 0.0875 0.0842
𝐶𝑦𝑞 0.2048 0.2403
𝐶𝑧𝑞 -0.0261 -0.0371
𝐶𝑚𝑞 -0.0754 -0.0800
𝐶𝑛𝑞 0.0118 0.0137
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Fig. 6 Nominal whirl flutter stability maps for
rigid and elastic blades.

Figure 7 shows the variation of the individual derivatives due to a change in the respective blade parameter in terms
of percentage of the nominal value. The amplitude of the change in parameter is given in Tab. 1. Blue bars indicate
the variation for rigid blades, orange bars the variation for flexible blades. The top four plots show the stabilizing
derivatives, an increase in magnitude increases stability. The bottom two plots list the two destabilizing components,
where an increase in magnitude decreases stability. 𝐶𝑦𝑞 and 𝐶𝑛𝑞 are omitted due to their negligible influence on whirl
flutter. The six plots are sorted according to importance, e.g. 𝐶𝑚𝑞 is the main stabilizing derivative and 𝐶𝑛𝜃 main
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destabilizing component. Care must be taken when interpreting changes in individual derivatives, as force and moment
derivatives are weighted by the mode shape of the whirl mode (translation vs. rotation of hub node) and stabilizing and
destabilizing components can cancel each other (compare [9] for a more in-depth discussion).
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Fig. 7 Sensitivity of the individual propeller derivatives with respect to blade modeling parameters.
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The two driving parameters for the derivatives are the lift curve slope 𝐶𝐿𝛼 and blade sweep. A ten percent increase
in 𝐶𝐿𝛼 increases the rigid blade derivatives equally by ten percent (in their analytical derivation, they linearly depend
on 𝐶𝑙𝛼 [20]). Blade sweep decreases 𝐶𝑚𝜃 and significantly increases the damping force in vertical direction, 𝐶𝑧𝑞 , by
almost fifty percent. The steady lift distribution along the blade, mainly influenced by altering 𝐶𝐿0 and 𝑑𝐶𝐿0

𝑑𝑅
, also

influences almost all derivatives, in general increasing the stabilizing and descreasing the destabilizing ones. Drag
decreases 𝐶𝑧𝜃 due to the negative static thrust in this trim point, while it also decreases 𝐶𝑛𝜃 and increases pitch damping
𝐶𝑚𝑞 . Airfoil moment coefficients only impact the pitch moment due to steady pitch angle 𝐶𝑚𝜃 . In general, the linear
variation of the airfoil parameters 𝑑𝐶𝑋𝑌

𝑑𝑅
has a smaller influence on the derivatives and therefore on the transfer matrices

than the constant offset.
The sensitivities are very similar when comparing between rigid and elastic blades, although in some cases the

magnitude differ more significantly or show opposite trends (e.g., change in 𝐶𝑚𝑞 due to blade sweep). For the three
parameters only covered for elastic blades, an increase in blade bending stiffness clearly decreases the stabilizing
derivatives and increases 𝐶𝑛𝜃, hinting at a destabilizing influence. Torsional stiffness does not impact any derivative
significantly.

B. Sensitivity for simplified pylon system
While looking into the transfer matrices and the propeller derivatives gives an insight into the effect of the blade

parameters on the unsteady propeller aerodynamics, it can be misleading in terms of effect on the aeroelastic stability
[9]. Fig. 8 shows the sensitivity of the whirl flutter stability of the simplified pylon system due to changes in the blade
parameters, given in terms of a relative shift of the whirl flutter stability boundary (see Eq. 3 and Fig. 6 for the nominal
boundaries). A negative Δ𝜔𝑠𝑡𝑎𝑏 signals a more stable system, a positive value a destabilizing influence of parameter X.
For example, an increase of 𝐶𝐿0 to 0.5 (according to Tab. 1) has a stabilizing influence in the whirl flutter stability of
the simplified pylon system by decreasing the extend of the whirl flutter area by about four percent for rigid blades.

The main stabilizing parameters are the steady lift distribution 𝐶𝐿0 and airfoil drag 𝐶𝐷0, both for rigid and elastic
blades. Sweep is the main destabilizing parameter for rigid blades, as is an outboard shift in radial lift curve slope
𝑑𝐶𝐿𝛼

𝑑𝑅
. For elastic blades, sweep and an increase in in- and out-of-plane bending stiffness are the driving destabilizing

parameters, shifting the flutter point in terms of engine support frequency by almost eight percent for a backward-swept
blade. While a constant increase in 𝐶𝐿0 is strongly stabilizing, an outboard shift in the steady lift 𝑑𝐶𝐿0

𝑑𝑅
has a small

destabilizing influence on the rigid blade analysis, but still stabilizes the flexible blade analysis. This contradicting effect
can be explained by the steady blade deformations cause by the radial shift of the lift towards the more flexible propeller
blade tip [8]. Most other parameters though show a similar trend between rigid and elastic blades.

An interesting effect can be observed for an increase in 𝐶𝐿𝛼. Although this heavily affects the propeller derivatives
(see Fig. 7), the effect on aeroelastic stability on the simplified pylon system is small. This is due to a cancellation
effect. The aeroelastic stability of the simplified pylon system is defined by an equilibrium between stabilizing and
destabilizing terms in the equations of motion, which in this case are purely the propeller derivatives due to the lack of
structural damping and wing aerodynamics. Scaling both sides of this balance has a canceling effect, so the stability
remains almost constant. For 𝐶𝐿0, where the magnitude of changes in the derivatives is much smaller compared to 𝐶𝐿𝛼

(see Fig. 7), but uneven across the derivatives, the resulting effect on stability is much stronger. These cancellation
effects are an artifact of the simplified aeroelastic system represented by the 2-DOF pylon system.

C. Sensitivity for generic turboprop aircraft
To overcome these disadvantages, a flutter analysis study is conducted on a more complex aeroelastic system, the

generic turboprop aircraft shown in Fig. 4. Before the effect of the parameters on the flutter stability of this configuration
is presented, Fig. 9 and Fig. 10 show the nominal flutter results for rigid and elastic blades respectively. More details
about the nominal flutter cases can be found in Noël et al. [14]. The critical whirl flutter mode with the lowest flutter
speed is marked with solid black line in the respective frequency and damping plots. The flutter points (airspeed at
which the damping crosses the axis of zero damping) are at 135 m/s for rigid blades and at 152 m/s for the elastic blade
case (remember the stiffness-factor of four compared to the nominal elastic blades in [14]). Both instabilities represent a
backward whirl flutter of both engines, with an in-phase whirl-motion counterclockwise looking from the front.
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Fig. 8 Sensitivity of the whirl flutters stability of the simplified pylon system, given in terms of a relative shift in
the stability map (compare Eq. 3).
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Fig. 9 Frequency and damping trends for the generic turboprop aircraft using the nominal rigid blade set.
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Fig. 10 Frequency and damping trends for the generic turboprop aircraft using the nominal flexible blade set.
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Figure 11 finally shows the absolute shift in flutter speed relative to the nominal configuration for a positive change
in the parameters defined in Tab. 1. Here, opposed to Fig. 8, a negative value represents a more unstable system, as this
indicates a flutter point at a lower airspeed.
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Fig. 11 Sensitivity of the flutter speed of the generic turboprop aircraft with respect to blade parameters.

Comparing the trends between Fig. 11 and Fig. 8, most parameter sensitivities stay similar. A constant airfoil
lift offset 𝐶𝐿0 and airfoil drag 𝐶𝐷0 are still the main stabilizing parameters, while sweep and blade bending stiffness
are still the main destabilizing parameters. Only for the effect of the lift curve slope 𝐶𝐿𝛼 and its radial distribution,
the results for the full aircraft model are very different to those of the simplified pylon system. While for the latter,
cancellation effects result in an unclear picture regarding whirl flutter stability, both parameters have a clear destabilizing
effect on the generic turboprop model. For this configuration, in the flutter point the destabilizing pitch-yaw coupling
moment 𝐶𝑛𝜃 is counterbalanced also by wing aerodynamic damping, reducing the overall sensitivity with respect to
the stabilizing propeller derivatives [12]. 𝐶𝑛𝜃 increases in amplitude due to an increase in 𝐶𝐿𝛼, therefore the system
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becomes unstable at a lower airspeed. Airfoil moment characteristics as well as torsional stiffness do not show any
major impact on flutter stability, both for the simplified pylon system as well as the generic turboprop model. For most
parameters, elastic blades increase the sensitivity of the flutter speed with respect to the blade parameters compared to
rigid blade. This can especially be observed for 𝐶𝐿0 and blade sweep.

IV. Conclusion and Discussion
This study uncovered the sensitivity of propeller whirl flutter with respect to blade parameters such as airfoil

coefficients, blade sweep and blade stiffness. The Transfer-Matrix method was used to derive frequency-domain transfer
functions from a set of parametric, time-domain propeller models in the MBS software Simpack. Starting from a rigid
and an elastic nominal blade, one blade parameter at a time was varied and the resulting transfer matrices used to study
the whirl flutter stability of the simplified pylon model and a generic turboprop aircraft.

The results showed that for the aerodynamic parameters, the lift characteristics (steady lift 𝐶𝐿0 as well as lift curve
slope 𝐶𝐿𝛼) and their radial distributions are important parameters for stability. Drag has a stabilizing influence (smaller
than that of steady lift) and airfoil moments are almost negligible. Blade backward sweep has a strong destabilizing
influence. Sweep was not accounted for in legacy methods but is a very important design characteristic especially for
propeller blades designed for high-speed conditions. Elastic blade modeling increases the destabilizing effect of sweep
even further. As expected, increasing blade bending stiffness destabilized the backward whirl flutter mode, reducing
the overall stabilization of blade flexibility itself. No large difference between the effect of in-plane and out-of-plane
bending stiffness was found, which can partly be attributed to the global definition of in- and out-of-plane directions.

From these findings, some conclusions regarding the choice of methods for aeroelastic modeling of propeller can
be drawn. As the lift characteristics along the blade are of primary interest, care should be taken to properly include
tip-loss and hub effects to achieve a realistic steady and unsteady lift distribution. Due to the stabilizing influence of
drag and the small influence of the airfoil moment, these remain of smaller importance. The effect of sweep should
be studied more in detail, with aerodynamic methods that capture more relevant effects on the aerodynamics than the
simple strip-theory used in this study. Earlier findings on the importance of blade elastic modeling are also confirmed in
this study, as blade bending stiffness shows the largest overall sensitivity values with regards to the flutter speed of the
generic turboprop aircraft. While this study only analyses linear sensitivity with varying one parameter only, potential
cross-sensitivities and the effect of nonlinearities could be addressed using uncertainty quantification methods.

The results of this study should help aeroelastic engineers concerned about propeller whirl flutter stability to choose
their modeling tools and methods and set the right focus when beginning to validate their models. Validating the
structural model of the blades using structural dynamic testing for stiffness and eigenfrequencies can increase the
confidence in the elastic model and reduce sensitivity towards modeling errors there. With regards to aerodynamic
data, using mid- or high-fidelity tools to achieve a realistic unsteady blade lift distributions is advisable. Detailed
characteristics like drag and airfoil moment, which require expensive computational methods such as unsteady CFD, are
of minor relevance.
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