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A B S T R A C T

Global climate change, biodiversity decline, and increasing disturbances are challenging the health and
resilience of forests. In this regard, forest managers have sought to promote enhanced structural complexity
(ESC) which utilizes the positive correlation between structural complexity and biodiversity or resilience to
inform management practices. In light of these concerns, we integrated remote sensing data from multiple
platforms and sensors to test the potential for quantifying different levels of structural complexity in
temperate forests. This analysis was conducted in the context of the BETA-FOR project, where silvicultural
manipulations of forest structure replicate silvicultural or natural disturbances. BETA-FOR includes a wide-
range of standardized treatments across representative Central European broad-leaved forests, which are
sub-divided into aggregated (gap felling) and distributed treatments (selective thinning) in combination with
varying deadwood structures. This study provides a novel analysis of ESC from complementary remote sensing
perspectives in order to bridge scales among structural complexity indicators. Remotely sensed observations
comprise in-situ measurements (mobile and terrestrial laser scanning), as well as spaceborne observations from
various sensors (including Sentinel-1 radar, Sentinel-2 multispectral, and GEDI lidar). We found moderate
to strong inter-platform correlations among structural complexity metrics (|r| >= 0.6) between mobile laser
scanning (box dimension, canopy cover), terrestrial laser scanning (canopy openness index), Sentinel-1 (VH,
cross-polarized backscatter), Sentinel-2 (NMDI, Normalized Multi-band Drought Index), and GEDI (total canopy
cover). In addition, multivariate analyses revealed that ESC of gap aggregated treatments can be effectively
delineated from control and distributed treatments across all considered remote sensing sensors/platforms.
Therefore, the metrics from different platforms and sensors better characterize the changes in structural
complexity through aggregated compared to distributed treatments. Furthermore, we identified the sensitivity
of in-situ and spaceborne metrics towards the presence of standing deadwood structures. An unsupervised
clustering analysis highlights distinct differences in structural complexity of aggregated treatments with snags
and habitat trees compared with aggregated treatments without standing structures, as well as distributed and
control treatments. Findings demonstrate the potential of various sensors and platforms for monitoring forest
structural complexity. We recommend the spaceborne indicators Sentinel-1 VH cv, Sentinel-2 NMDI cv, and
GEDI cover cv to monitor ESC at high spatio-temporal resolution as they show highest correlations to in-situ
metrics, thus holding the potential to guide adaptive forest management.
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1. Introduction

Forest structure has been identified as an indicator of forest bio-
diversity and ecosystem functioning (Bohn and Huth, 2017; Heidrich
t al., 2020). Since in-situ measurements of biodiversity and ecosystem

functioning are challenging to assess and time-consuming to mea-
sure, an increasing number of studies have suggested measuring forest
structure as a surrogate for these latent variables (Gao et al., 2014;
Lelli et al., 2019; Storch et al., 2018). In primary forests, structural
complexity has important implications for potential functional diversity
species richness and complementary of crown architectures, Zheng

et al. (2023)), physiological tolerance (shade tolerance, Valladares and
iinemets (2008)), and maximum tree size (hydrolic limitation hypoth-

esis, Klein et al. (2015), Ryan et al. (2006)). High forest structural com-
plexity is closely linked to increased rates of biodiversity (Coverdale
nd Davies, 2023; Hakkenberg and Goetz, 2021; Heidrich et al., 2020;

Knuff et al., 2020; Ray et al., 2023), as well as improved resilience
owards climate change induced disturbances (Lecina-Diaz et al., 2024;

Ma et al., 2023; Seidel and Ammer, 2023).
Forest structure and its relationship to biodiversity has been investi-

gated in many fields of environmental research: the review of Coverdale
nd Davies (2023) found a general positive relationship of plant diver-

sity and structural complexity. The study of Gough et al. (2019) identi-
fied increased rates of net primary production in structurally complex
temperate forests in the United States across sites of the National Eco-
logical Observatory Network (NEON). Other studies clearly showed that
primary forests were more complex than managed forests, even when
management focused on structural complexity (e.g. Stiers et al. (2018)).
An explanation of the observed pattern based on principles of thermo-
dynamics was proposed to deeper investigate the relationship between
structural complexity, productivity, and adaptability of forests (Seidel
and Ammer, 2023). Furthermore, links between multi-layering of the
anopy and insect abundance were confirmed by both Knuff et al.

(2020) (mixed temperate forests in Germany) and Müller et al. (2018a)
European beech dominated forests in Germany). In addition to the

ability of structurally complex forests to host increased biodiversity,
further ecosystem properties emerge from the interaction of struc-
ure and disturbance (Hilmers et al., 2018; Mitchell et al., 2023).

For example, Gough et al. (2022) identified complex interactions be-
tween structural complexity and disturbance in temperate forests of
Michigan, United States, which stress the necessity of further studies
for a more comprehensive understanding of modified trajectories of
structural complexity through disturbance.

Human activities, such as land-use intensification, deforestation,
and urbanization have altered the natural patterns of forest struc-
ture globally towards simplified forest structural complexity (Ehbrecht
et al., 2021; Li et al., 2023; Sabatini et al., 2018). In Central Europe,
multiple consecutive drought years of previously unseen duration and
ntensity (Buras et al., 2020, 2021; Rakovec et al., 2022; Schuldt

et al., 2020) have caused excess forest mortality (Senf et al., 2020a).
Increasing tree mortality due to drought conditions has been found
not only for non-native species (e.g. secondary Norway spruce plan-
ations, Jandl et al. (2019)), but also for the naturally dominating tree
pecies European beech (Rukh et al., 2023). To sustain forest health

and to cope with climate change events in the future, enhancement of
tructural complexity (ESC) within forest patches and between forest

patches seems one promising way to encourage forest resilience beyond
reater tree species diversity (Müller et al., 2018b).

Remote sensing has been identified as a key method for continuous
monitoring of forest structure from local to global scales (Camarretta
et al., 2020; Jetz et al., 2016; Skidmore et al., 2021). The charac-
terization of local-scale forest structural complexity through in-situ

easurements focuses on the analysis of individual tree structures to
tand level (Morsdorf et al., 2018). Active sensors (e.g. mobile and
errestrial laser scanning, or MLS and TLS, respectively) enable the

calculation of dense three-dimensional point clouds to relate struc-
ural complexity to forest management, tree species diversity, and
 m

2 
microclimate (Ehbrecht et al., 2017). Besides the measurement of
stand structural complexity (Seidel, 2018), specific vertical vegetation
layers (Ehbrecht et al., 2016), and understory vegetation can be iden-
tified and characterized (Willim et al., 2019, 2020). The sub-canopy
perspective of in-situ measurements holds complementary but distinct
nformation on structural complexity compared to airborne and space-
orne sensors which cannot penetrate the canopy (e.g. optical sensors)
r assess sub-canopy structure more generally (Atkins et al., 2020).
AS (unoccupied aerial systems) and aircraft-based remote sensing

come with the benefit of analyzing larger areas with the option of
parallel multi-sensor acquisitions (Müllerová et al., 2021; Mura et al.,
2015). LaRue et al. (2020) identified strong univariate relationships
of various measurements of forest structure and structural complexity
based on TLS and airborne laser scanning (ALS). Measurements of
structural complexity from ALS data were shown to relate to forest age,
ground-based complexity measures, management intensity as well as
microclimate (Seidel et al., 2020). Further applications of ALS include
he analysis of diversity in canopy height (Senf et al., 2020b) and

characterization of old-growth structures (Martin and Valeria, 2022).
The application of spaceborne remote sensing for forest structure

analysis has mainly focused on the modeling of individual forest
structure attributes at national to continental scale (e.g. Coops et al.
(2021)), rather than investigating structural complexity through the
ombination of various structural attributes. With the availability of

novel spaceborne samples of forest structure derived from the Global
cosystem Dynamics Investigation (GEDI) sensor, wall to wall maps
f canopy height, canopy cover, and biomass have been generated
ased on machine and deep learning regression models (Kacic et al.,

2021, 2023; Lang et al., 2023; Potapov et al., 2021; Rishmawi et al.,
2022). Atkins et al. (2023b) and Hakkenberg et al. (2023) each found
scale-dependencies of lidar metrics for characterizing structural com-
lexity, concluding that the appropriate scale depends on the targeted

structural element and forest type. Further innovative applications
f spaceborne lidar include the calculation of compound indicators
ased on complementary attributes of forest structure for assessing
tructural density (Li et al., 2023), tree canopy height heterogene-

ity (Torresani et al., 2023), as well as the analysis of non-tree plant
diversity in order to investigate generalized biodiversity-structure rela-
tionships (Hakkenberg et al., 2023). In addition, Schneider et al. (2020)
demonstrated that simulated GEDI canopy height, density and layering
data has a similar potential to ALS for the prediction of functional
richness.

Previous conceptual studies on forest structural complexity have
provided different definitions of structural complexity. The pioneering
review by McElhinny et al. (2005) delineated forest and woodland
structures into structural attributes and stand structure, supporting
he use of structural complexity instead of structural diversity for the
escription of stand structure characteristics. The authors considered
tructural diversity to be a single metric not capturing the complete
iversity explaining biological diversity. In contrast, the recent study
y LaRue et al. (2023) which framed the concept on ecological findings
f three-dimensional characteristics and structural diversity, proposed
o treat structural diversity, structural heterogeneity, and structural
omplexity as synonyms. In the present study, we summarized various
orest structural attributes under the term ‘‘structural complexity’’ al-
hough the calculated metrics measure different structural attributes:
orest canopy cover, vertical heterogeneity, vertical area and density,
tructural complexity, or vertical and horizontal structural heterogene-
ty (please see categorization of structural attributes according to Atkins

et al. (2023a), Table 1). Nevertheless, we provide further details on the
different structural attributes and derived metrics in section ‘‘2. Mate-
rials and Methods’’, and consider the correlated and complementary
information from each metric when interpreting the results.

This study assesses cross-scale monitoring of in-situ and spaceborne
etrics of forest structural complexity to bridge costs and benefits
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Fig. 1. Map of the study area (a) and schematic figure of BETA-FOR treatments (b). The schematic figure (adapted from Mueller et al. (2022a)) presents different deadwood
structures (𝑥-axis) and spatial arrangements of cuttings (𝑦-axis).
among different remote sensing platforms. Furthermore, we provide
novel insights on understudied research goals through the assessment
of various indicators of structural complexity in close connection to
adaptive silvicultural management. This analysis is embedded in the
interdisciplinary research project ‘‘BETA-FOR’’ which focuses on ESC
through experimental silvicultural manipulations in German broad-
leaved forests (Mueller et al., 2022b). BETA-FOR investigates structural
complexity in a diverse network of patches comprising different light
conditions (aggregated and distributed cuttings) and deadwood man-
agement types (total deadwood removal, remaining stumps, downed
and standing deadwood, habitat trees, Mueller et al. (2022a)). The
controlled experimental design, as well as the availability of data on
structural complexity from various platforms and sensors, namely MLS,
TLS, Sentinel-1 (radar satellite), Sentinel-2 (multispectral satellite), and
GEDI (spaceborne lidar, Light detection and ranging), offer unique
opportunities to address the following research goals: (a) a cross-scale
comparison of in-situ to spaceborne observations to support the identifi-
cation of indicator suites for monitoring and scale-specific management
decision making; (b) a comparison of two popular satellite sensors
for vegetation analysis in addition to novel spaceborne lidar data to
improve our understanding of forest structural complexity measured
as surface roughness or water content (Sentinel-1), photosynthetic
activity (Sentinel-2), and three-dimensional structure (GEDI); (c) deter-
mining the ability of experimental silvicultural treatments to provide
3 
insights on forest structural complexity along a gradient of deadwood
structural complexity (from no deadwood to combined downed and
standing deadwood), and contrasting light conditions (aggregated and
distributed cuttings).

This study tests the following hypotheses: (1) There are moderate
to strong intra- (MLS | TLS | spaceborne) and inter-platform (MLS &
TLS & spaceborne) correlations between different variables of forest
structural complexity. (2) Across all platforms, remotely sensed metrics
of forest structure accurately delineate aggregated treatments (major
increase in structural complexity due to gap creation) from distributed
(selective thinning) and control treatments. (3) The difference in struc-
tural complexity of aggregated to distributed and control treatments
can be assessed through unsupervised clustering since aggregated treat-
ments are characterized as possessing the highest level of structural
complexity.

2. Materials and methods

2.1. Study area

The study area is located in Central Germany (Haßberge, north of
Steigerwald), within a forest area belonging to the Julius-Maximilians-
University of Würzburg (Fig. 1(a)). These forests are intensively man-
aged and comparatively species rich in terms of broad-leaved tree
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species, with high proportions of European Ash (Fraxinus excelsior),
European Beech (Fagus sylvatica), European Hornbeam (Carpinus betu-
lus), Maple (Acer spec.) and Oak (Quercus spec.) species (Mueller et al.,
2022b). The study area, also called ‘‘University Forest’’, serves as a focal
region of the interdisciplinary research project ‘‘BETA-FOR’’. BETA-FOR
experimental silvicultural manipulations were conducted in November
and December 2018 to study the effect of ESC on biodiversity (Mueller
et al., 2022a). For six patches (AK: n=1, DW: n=6) there was no data of
MLS and TLS due to complications during data acquisition. Therefore,
the present study focuses on 84 patches for which data from both MLS
and TLS was available, taken under leaf-on conditions in 2023. There
are three patches each for all aggregated and distributed treatments,
except for AK (n=2) and DW (n=28). In addition, there are 18 control
treatments.

The schematic figure (Fig. 1(b)) presents BETA-FOR treatments
which comprise a wide range of deadwood structures (𝑥-axis) in two
patial arrangements of cuttings (aggregated and distributed treat-
ents, 𝑦-axis). In addition, control treatments were established as
 reference for unaltered forest structure conditions. In each square
atch (50 m × 50 m), about 30 % of the patch’s tree biomass was
anipulated. Aggregated treatments are characterized by increased

tructural complexity through aggregated cuttings producing a centered
ap with a diameter of 30 m, i.e. no manipulation in the outer patch
rea. Distributed cuttings were conducted in the complete patch area of
istributed treatments. The gradient of deadwood structures from total
ree removal, stumps remaining, logs (downed deadwood), crowns,
nags (standing deadwood), logs and snags, to habitat trees (tilting of
rees, damages on bark, creating caves) mimics various silvicultural
anagement practices of complete tree removal and generation of old-

rowth structures, promoting biodiversity for different taxonomic levels
bats: Hendel et al. (2023), Kortmann et al. (2018), Rigo et al. (2024),

Singer et al. (2021), beetles: Müller et al. (2014), birds: Rigo et al.
(2024), Singer et al. (2021), epigeal arthropods: Seibold et al. (2016a),
insects: Staab et al. (2023)).

2.2. Remote sensing data

The present study analyzes forest structural complexity based on
arious remote sensing sensors and platforms, integrating several met-
ics from MLS, TLS and spaceborne remote sensing to assess different
ttributes of forest structure corresponding to Atkins et al. (2023a).

Table 1 provides an overview of MLS, TLS, Sentinel-1, Sentinel-2, and
EDI metrics.

2.2.1. Mobile laser scanning data
MLS data was measured in July 2023 (leaf-on) in 84 patches.

A ZEB Horizon hand-held mobile laser scanner (Geoslam Ltd., UK)
was carried through each stand by starting at the patch center and
walking in concentric circles of slowly increasing radius, surrounding
the center between 5 and 10 times, depending on stand density, un-
til the entire patch area was scanned. Then the device was carried
back to the center and the recording was stopped. The following
attributes of forest structure were derived at patch-level: structural
complexity (box dimension, Seidel (2018)), canopy coverage (canopy
cover, Höwler et al. (2024)), vertical heterogeneity (foliage height
diversity, according to MacArthur (1965), MacArthur and Horn (1969)
s in Seidel et al. (2016)), and vertical area and density (effective

number of layers: ENL of Hill numbers 0, 1, 2; evenness; Ehbrecht
et al. (2016)). Seidel (2018) introduced the calculation of the box
imension in the context of single tree architectural analysis. Further
tudies identified architectural characteristics of single trees that have
trong influence on structural complexity (Seidel et al., 2019b,a). Later,

the approach was extended for a stand level complexity assessment and
demonstrated sensitivity towards structure related properties such as
stand age, management intensity (Seidel et al., 2020; Camarretta et al.,
2021), forest vitality (Heidenreich and Seidel, 2022), or management
type (Neudam et al., 2022). Canopy cover was calculated by applying a
 t

4 
20 cm-voxelization to the point clouds and determining the percentage
f 20 × 20 cm ground cells covered by one or more voxels above the
ame x-y-cell (Höwler et al., 2024). Both metrics on ENL and evenness

measure the space occupied by vegetation in a stand. Ehbrecht et al.
(2016) conducted a comprehensive analysis across three well-known
research sites in Germany (Biodiversity Exploratories), and successfully
distinguished different management stands based on ENL. In addition,
correlations of ENL to basal area, quadratic mean diameter, stem
density and stand age were identified.

2.2.2. Terrestrial laser scanning data
Terrestrial laser scans were conducted in August 2023 (leaf-on)

t all BETA-FOR patches considered for analysis (84 patches). We
onducted a laser scan in single-scan mode in the center of each patch
sing a FARO M70 terrestrial laser scanning (Faro Technologies Inc.,
ake Marry, USA). Two patch-level metrics on structural complexity
stand structural complexity index, SSCI; understory complexity index,

UCI) were calculated, as well as canopy openness (canopy openness
index, COI). The SSCI quantifies structural complexity based on fractal
dimension and has been widely used in recent years (Ehbrecht et al.,
2017; Frey et al., 2019; Ehbrecht et al., 2021; Perles-Garcia et al., 2021;
Zemp et al., 2023). Willim et al. (2019) revealed that the UCI is strongly
driven by tree regeneration, while holding significant relationships to
tree basal area and canopy openness (Seidel et al., 2021). COI was
uantified to delineate open and closed canopies (Zheng et al., 2012).

2.2.3. Spaceborne remote sensing data
According to the classification of forest structural attributes by Atkins

et al. (2023a), spaceborne derived metrics to characterize structural
heterogeneity include roughness and water content (Sentinel-1, radar),
photosynthetic activity (Sentinel-2, multispectral), and vertical and
horizontal structure (GEDI, lidar). Kacic et al. (2024) analyzed Sentinel-
1 and Sentinel-2 time-series in the BETA-FOR region ‘‘University For-
est’’ based on a comprehensive catalogue of spectral indices. Specific
metrics (a combination of spectral index and spatial statistic at patch-
level) were identified by assessing the treatment implementation event
(change in forest structural complexity) through Bayesian time-series
decomposition (BEAST, Bayesian Estimator of Abrupt change, Seasonal
change, and Trend, Zhao et al. (2019)). The metrics Sentinel-1 VH cv
(coefficient of variation, [db]) and Sentinel-2 NMDI (Normalized Multi-
band Drought Index, unitless, Wang and Qu (2007)) cv were the best

etrics of each sensor assessing the treatment implementation event.
herefore, we used the patch-level time-series metrics from Sentinel-
 VH cv and Sentinel-2 NMDI cv from 2016 to 2023 in the present
tudy as complementary spaceborne proxies of structural complexity.
o assess the dynamics of forest structural complexity as a multi-annual
ime-series (2016–2023) based on Sentinel-1 and -2, we calculated
emporal aggregations (annual median per patch for the months from
uly to September) in order to represent average summer conditions.
lease note that the calculation of the cv (e.g. Abdi (2010)) for pre-

processed Sentinel-1 GRD (Ground Range Detected, unit: db) data
results in negative values since the original pixel values are typically
negative in forests. For a comparative analysis of Sentinel-1 VH cv with
other spaceborne cv measures of forest structural heterogeneity, we
calculated the cv of Sentinel-1 VH using the absolute value of the patch-
level mean. Therefore, we derive positive values for Sentinel-1 VH cv
for simplified cross-comparison with the other positive spaceborne cv
measures.

In addition, we integrated continuous forest structure information
hrough modeled GEDI samples (n=15,000 per year and forest structure

attribute) based on Sentinel-1 and Sentinel-2 spatio-temporal compos-
ites for Germany by Kacic et al. (2023). The modeling approach (ran-
dom forest regression) was also adopted for Sentinel-1 and Sentinel-2
spatio-temporal composites from 2023 in combination with GEDI sam-
ples spanning the period of June to September of 2022 (GEDI data is
nly available until March 2023, i.e. not available for summer 2023)
o model canopy height, total canopy cover, and above-ground biomass
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Table 1
Overview of remote sensing metrics on structural complexity.
Sensor,
platform, year

Metrics Metrics classification
by Atkins et al. (2023a)

Citation

MLS,
mobile laser
scanning,
handheld,
2023

box dimension,
canopy cover,
foliage height
diversity, effective
number of layers
(ENL), evenness

structural complexity
(box dimension),
cover and openness
(canopy cover),
vertical heterogeneity
(foliage height diversity),
vertical area and density
(ENL, evenness)

Seidel (2018),
Höwler et al. (2024),
Seidel et al. (2016),
Ehbrecht et al. (2016)

TLS,
terrestrial
laser-scanning,
tripod-based,
2023

stand structural
complexity index
(SSCI), understory
complexity index
(UCI), canopy
openness index (COI)

structural complexity
(SSCI, UCI), cover
and openness (COI)

Ehbrecht et al. (2017),
Willim et al. (2019),
Zheng et al. (2012)

Sentinel-1,
radar satellite,
2016–2023

VH (vertical-
horizontal
polarization)
coefficient of
variation (cv)

heterogeneity of surface
roughness and moisture

Kacic et al. (2024)

Sentinel-2,
multispectral
satellite,
2016–2023

NMDI (Normalized
Multi-band Drought
Index) cv

heterogeneity of
photosynthetic activity
with sensitivity to
drought stress

Kacic et al. (2024)

GEDI,
spaceborne
lidar;
Sentinel-1,
radar satellite;
Sentinel-2,
multispectral
satellite;
2017–2023

rh95 (canopy height)
cv (coefficient of
variation),
cover (total
canopy cover) cv,
agbd (above-ground
biomass density) cv

heterogeneity of vertical
and horizontal forest
structure (rh95, agbd);
cover and openness
(cover); modeling of
GEDI samples based
on Sentinel-1 and
Sentinel-2 composites

Kacic et al. (2023)
h

d
S
d

density for 2023. The model accuracy for 2023 was similar to previous
ears (2017 to 2022) amounting to Mean-Absolute Errors (MAE) of
.09 m (canopy height), 16.00% (total canopy cover), and 45.43 Mg/ha
above-ground biomass density). Derived metrics for different forest

structure attributes, namely canopy height (rh95, 95th percentile of
the relative height metrics, [m]), total canopy cover (cover, [%]), and
above-ground biomass density (agbd, [Mg/ha]), were aggregated for
each year (summer conditions, 2018 to 2023) as individual patch-
level metrics (cv). The derived metrics for each patch characterize the
heterogeneity of canopy height, total canopy cover, and above-ground
biomass density.

2.3. Statistical analyses

In order to assess linear statistical relationships between MLS, TLS,
nd spaceborne metrics of forest structural complexity, we carried out
orrelation analyses. Bivariate Pearson correlation coefficients (r) were
alculated among all metrics and are visualized as a heatmap and a
orrelation network to identify intra- and inter-platform relationships
hypothesis (1)).

Multivariate comparisons of cross-scale metrics of forest structural
complexity visualized as radar plots serve as dissimilarity analysis of
he BETA-FOR treatment groups: control, aggregated, and distributed.
he standardized scaling of all metrics to [0,1] – with values close to
 indicating low structural complexity and values close to 1 indicating
igh structural complexity – enables direct comparisons among differ-

ent metrics in order to identify metrics best delineating the different
treatment groups (hypothesis (2)).

We implemented an unsupervised clustering analysis (K-Means) of
arious forest structural complexity metrics to test if the BETA-FOR

patches can be assigned to the respective treatment groups (control, dis-
tributed, aggregated) when n = 3 clusters are specified (hypothesis (3)).
 N

5 
We applied an iterative randomized clustering to initialize different
centroid seeds. To assess platform-dependencies, the clustering analysis
was conducted as platform-specific (separate for each platform) and
across-platforms (pooling all metrics).

3. Results

This study aims to assess forest structural complexity from multi-
ple remote sensing platforms and sensors to understand relationships
among different metrics and to identify suitable spaceborne indicators
of ESC. We sought to characterize each platform (MLS, TLS, space-
borne) as comprehensively as possible through the inclusion of multiple
metrics of MLS (box-dimension, canopy cover, ENL, evenness, foliage
eight diversity), TLS (SSCI, UCI, COI, supplementary material B),

and spaceborne remote sensing (Sentinel-1 VH cv, Sentinel-2 NMDI
cv, GEDI rh95 cv, GEDI cover cv, GEDI agbd cv) (Table 1). Since
not all metrics delineated differences in structural complexity among
the BETA-FOR treatments (e.g. MLS-based ENL, evenness, and foliage
height diversity) those metrics are not shown in the following figures
(see supplementary material A). Nevertheless, all available metrics
were integrated in the analysis to enable a comprehensive assessment of
structural complexity in order to thoroughly assess the general potential
of each platform and sensor.

3.1. Spaceborne time-series of individual BETA-FOR treatments

Multi-annual spaceborne time-series characterize pre- and post-
isturbance forest structural complexity at the patch-level based on
entinel-1 VH cv, Sentinel-2 NMDI cv, and GEDI cover cv data. By
isturbance we refer to the ESC treatment implementation event from
ovember to December 2018.
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Fig. 2. Sentinel-1 VH coefficient of variation (cv) time-series at patch-level of individual BETA-FOR patches from 2016 to 2023. A single point represents the structural complexity
of a patch. The color-coding follows the schematic representation of BETA-FOR treatments in Fig. 1. The black contours of points for control and distributed treatments indicates
the difference in structural complexity to aggregated treatments (no contours). The horizontal gray line in each plot shows the respective mean of control treatments (CC). The
dashed vertical line represents the treatment implementation event in November to December 2018.
Fig. 3. Sentinel-2 NMDI coefficient of variation (cv) time-series at the patch-level of individual BETA-FOR patches from 2016 to 2023. A single point represents the structural
complexity of a patch. The color-coding follows the schematic representation of BETA-FOR treatments in Fig. 1. The black contours of points for control and distributed treatments
indicates the difference in structural complexity to aggregated treatments (no contours). The horizontal gray line in each plot shows the respective mean of control treatments
(CC). The dashed vertical line represents the treatment implementation event in November to December 2018.
3.1.1. Sentinel-1
The Sentinel-1 VH cv time-series from 2016 to 2023 character-

izes the pre- (2016 to 2018) and post-disturbance (2019 to 2023)
forest structural complexity. The pre-disturbance conditions indicate
similar structural complexity among all BETA-FOR patches (Fig. 2).
After the treatment implementations in November and December 2018,
post-disturbance conditions show increased structural complexity for
aggregated treatments. Except for the aggregated habitat trees treat-
ment (AH), increased structural complexity can be characterized by
Sentinel-1 VH cv values close to 0.1. In addition, the variance per
aggregated treatment type, i.e. among individual patches of the same
treatment, increases over time. Control and distributed treatments are
characterized by constant conditions from 2016 to 2023 and lower
variance among treatments and within patches of identical treatment
type.

3.1.2. Sentinel-2
The Sentinel-2 NMDI cv time-series for each BETA-FOR patch was

temporally aggregated in the same way as Sentinel-1 data (see Sec-
tion 2.2.3). Similarly, the post-disturbance conditions for aggregated
treatments show increased structural complexity compared to previous
years, as well as control and distributed treatments (Fig. 3). The AH
treatment represents an exception to the general pattern observed,
possessing lower structural complexity in comparison to the other
aggregated treatments, i.e. more similarity in structural complexity to
control and distributed treatments.

3.1.3. GEDI
Fig. 4 presents the annual data on GEDI-derived cover cv from

2018 to 2023. The pre-disturbance conditions in 2018 do not show
differences among the BETA-FOR patches (all values lower than 0.15).
In 2019, different levels of forest structural complexity among the treat-
ment groups are apparent, with most aggregated treatments possessing
increased structural complexity (values greater than 0.2). Similar to the
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findings based on Sentinel-1 and Sentinel-2, the AH treatment patches
are characterized by lower structural complexity compared to the other
aggregated treatments. From 2020 to 2023, a decline in structural
complexity for aggregated treatments (except AH) can be observed. See
supplementary material C for the time-series for GEDI agbd cv, and
GEDI rh95 cv.

3.2. Correlation analysis

The analysis of bivariate correlations among cross-scale metrics
of forest structural complexity for the year 2023 shows moderate
to strong correlations across metrics of the same and different plat-
forms (Fig. 5(a)). Relationships among MLS-derived metrics are highly
correlated (box dimension, canopy cover, r = 0.9). The TLS metrics
(COI, SSCI, UCI) indicate, on the one hand, weak positive correlations
(COI and SSCI to UCI, r <= 0.3), and on the other hand, moder-
ate negative correlations (COI and SSCI, r = −0.6). The spaceborne
metrics hold moderate to strong positive correlations (Sentinel-1 VH
cv, Sentinel-2 NMDI cv, GEDI agbd cv, GEDI cover cv, GEDI rh95
cv, r >= 0.5). There are moderate to strong positive and negative
correlations (|r| >= 0.6) among the following metrics across-platforms:
MLS (box dimension, canopy cover), TLS (COI), spaceborne metrics
(Sentinel-1 VH cv, Sentinel-2 NMDI cv, GEDI cover cv). Moderate pos-
itive and negative correlations cross-scales (|r| >=0.4 and |r| <= 0.6)
were found for MLS (box dimension, canopy cover), TLS (SSCI, UCI),
and spaceborne metrics (Sentinel-1 VH cv, Sentinel-2 NMDI cv, GEDI
agbd cv, GEDI rh95 cv). The negative correlations of MLS metrics and
spaceborne metrics result from the fact that MLS metrics are inverse to
spaceborne metrics, with the first quantifying complexity and the latter
addressing heterogeneity.

The correlation network (Fig. 5(b)), filtered to |r| > 0.5, highlights
the moderate to strong correlations found across-platforms. The close
proximity of metrics indicates a high number of strong correlations.
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Fig. 4. GEDI total canopy cover coefficient of variation (cv) time-series at the patch-level from 2018 to 2023. A single point represents the structural complexity of a patch. The
color-coding follows the schematic representation of BETA-FOR treatments in Fig. 1. The black contours of points for control and distributed treatments indicates the difference
in structural complexity to aggregated treatments (no contours). The horizontal gray line in each plot shows the respective mean of control treatments (CC). The dashed vertical
line represents the treatment implementation event in November to December 2018. Time-series of GEDI canopy height (rh95) and above-ground biomass density (agbd) can be
found in the supplementary material C.
Fig. 5. Correlation matrix (a) and correlation network (b) indicating the relationships among cross-scale metrics of forest structural complexity. For the correlation network, only
metrics with an absolute correlation coefficient greater than 0.5 are considered.
Most strong correlations exist among the following metrics (core net-
work group): MLS (box dimension, canopy cover), TLS (COI), Sentinel-1
VH cv, Sentinel-2 NMDI cv, GEDI cover. TLS SSCI, and UCI, as well
as GEDI agbd cv, and rh95 cv, possess few correlations to the core
network group, and no moderate to strong correlations among each
other (except for GEDI agbd cv and GEDI rh95 cv).

3.3. Multivariate comparison of BETA-FOR treatment groups

In contrast to previous analyses for individual BETA-FOR patches
(‘‘3.1. Spaceborne Time-Series’’, ‘‘3.2. Correlation Analysis’’), a mul-
tivariate comparison of forest structural complexity metrics was con-
ducted at the BETA-FOR treatment group-level (control, distributed,
aggregated treatments) in order to assess the potential of various met-
rics to delineate different treatment groups. The bi-annual comparison
(2019, i.e. first summer after treatment implementation, compared
to 2023) of spaceborne-based metrics of forest structural complex-
ity reveals varying patterns of structural complexity across treatment
groups. In 2019, all metrics indicate increased structural complexity
for aggregated treatments (mean values of 0.4 to 0.5 for all metrics)
with no overlap (mean or standard deviation) to control and distributed
treatments (Fig. 6(a)). Both control and distributed treatments indicate
low structural complexity (mean values lower equal than 0.1 for all
metrics) with nearly identical mean and standard deviation values.
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The analysis for 2023 shows reduced structural complexity for aggre-
gated treatments compared to 2019, indicated by overlapping standard
deviation ranges (Fig. 6(b)). According to mean values of structural
complexity, aggregated treatments still possess increased structural
complexity compared to control and distributed treatments. Further-
more, the different spaceborne metrics delineate aggregated treatments
less distinctly: Sentinel-1 VH cv, Sentinel-2 NMDI cv, and GEDI cover
cv demonstrate larger mean differences of aggregated to control and
distributed treatments, in contrast to GEDI agbd cv, and GEDI rh95 cv.

Fig. 7 depicts a multivariate comparison of treatment groups with
the integration of all metrics for 2023. All metrics from different
remote sensing platforms and sensors delineate aggregated treatments
from control and distributed treatments according to mean values.
Nevertheless, MLS box dimension and canopy cover, Sentinel-2 NMDI
cv, and GEDI cover cv do not possess any overlap (standard deviation)
between aggregated treatments and the other two treatment groups,
thus indicating a clear separation of aggregated treatments.

3.4. Unsupervised clustering analysis

Unsupervised K-Means clustering analysis was employed to assess
the clustering of MLS, TLS, and spaceborne metrics at the patch-
level. We tested the degree to which structural complexity metrics
can delineate individual patches clustered according to their treatment
groups (control, distributed, aggregated treatments). Clustering was
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Fig. 6. Spaceborne metrics of structural complexity for 2019 (a) and 2023 (b) as multivariate comparison to assess differences in structural complexity among treatment groups.
For consistent comparison across metrics, we applied a standardized scaling of all metrics to [0,1] — with values close to 0 indicating low structural complexity and values close
to 1 indicating high structural complexity.
Fig. 7. All metrics of structural complexity (2023) as multivariate comparison to assess differences in structural complexity among treatment groups. For consistent comparison
across metrics, we applied a standardized scaling of all metrics to [0,1] — with values close to 0 indicating low structural complexity and values close to 1 indicating high
structural complexity.
conducted per platform (‘‘3.4.1. Spaceborne Indicators’’, supplementary
material E), and across platforms (‘‘3.4.2. All Indicators’’). The clus-
tering output is visualized as stacked bar charts (frequency of clusters
per treatment group) and scatter plots (selection of two metrics for
visualization) color-coded by clusters and marker-coded by BETA-FOR
treatment groups.

3.4.1. Spaceborne indicators
Clustering input data includes all spaceborne metrics (Table 1).

Since the spaceborne data is available for multiple years, the clustering
analysis was first conducted based on 2019 data to assess structural
complexity immediately following treatment implementation. Fig. 8(a)
demonstrates the frequency of clusters among BETA-FOR treatment
groups: most aggregated treatments (85 %) are classified correctly in a
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single cluster (cluster 2). Only the aggregated treatments with habitat
trees (AH) are incorrectly assigned as cluster 0 (Fig. 8(b)). Control
and distributed treatments present confused cluster assignments, i.e. no
accurate delineation of the two treatment groups. In comparison, the
clustering analysis based on 2023 data shows a decline in the fre-
quency of correct cluster assignments for aggregated treatments (60 %,
Fig. 8(c)). False cluster assignments of aggregated treatments only
occur for aggregated treatments with standing deadwood structures
(aggregated snags, AS; aggregated downed deadwood and snags, AB;
AH; Fig. 8(d)). Control and distributed treatments for 2023 data also
exhibit confused cluster assignments.

3.4.2. All indicators (across-platforms)
The clustering analysis across-platforms integrates all calculated

metrics of structural complexity based on MLS, TLS, and spaceborne
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Fig. 8. Clustering results based on all spaceborne metrics for 2019 (a, b) and 2023 (c, d). The scattering follows the same pattern when other metrics are selected. The colors
for individual clusters in the stacked bar charts are identical to the colors of clusters used in the scatter plot. C = control, D = distributed, and A = aggregated treatments. For
the aggregated treatments with standing deadwood structures (AS, AB, AH, please see Fig. 1 for abbreviations), the treatment labels are shown since those treatments are not
necessarily assigned to the cluster of aggregated treatments (cluster 2).
remote sensing data for 2023. The clustering results regarding the
frequency of clusters per individual treatment group indicates a slight
increase of correctly assigned aggregated treatments to a single clus-
ter (65 %, Fig. 9(a)), compared to the clustering analysis for 2023
solely considering spaceborne metrics (Fig. 8(c)). Similar to the 2023
clustering analysis, solely based on spaceborne data, false cluster as-
signments of aggregated treatments only occur for treatments with
standing deadwood structures (AS, AB, AH) when integrating across-
platform metrics of structural complexity (Fig. 9(b)). Again, control
and distributed treatments are classified to similar proportions of clus-
ter 0 and 1, i.e. there is no clear delineation of the two treatment
groups.
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4. Discussion

4.1. Assessment of intra- and inter-platform correlations between MLS, TLS,
and spaceborne metrics

The BETA-FOR patch network of experimental silvicultural treat-
ments offers great potential for an assessment of forest enhanced struc-
tural complexity (ESC) under controlled conditions of standardized
deadwood structures and light conditions (Mueller et al., 2022a,b).
The combination of observations from sub-canopy (MLS, TLS) and
above-canopy (Sentinel-1, Sentinel-2, GEDI) remote sensing enables the
cross-validation of relationships from different platforms and among a
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Fig. 9. Clustering results based on all calculated metrics of structural complexity for 2023. The scattering follows the same pattern when other metrics are selected. The colors
for individual clusters of the stacked bar charts are identical to the colors of clusters used in the scatter plot. C = control, D = distributed, and A = aggregated treatments. For
the aggregated treatments with standing deadwood structures (AS, AB, AH, please see Fig. 1 for abbreviations), the treatment labels are shown since those treatments are not
necessarily assigned to the cluster of aggregated treatments (cluster 2). Since cluster 0 and 1 hold similar shares of control and distributed treatments, they cannot be clearly
assigned to either control or distributed treatments.
range of metrics characterizing different structural attributes (Table 1,
‘‘Metrics classification’’). In addition, the integration of complementary
measurements of structural complexity based on radar (Sentinel-1),
multispectral (Sentinel-2), and lidar (GEDI) supports cross-sensor com-
parisons (Atkins et al., 2023a,b; LaRue et al., 2020). From spaceborne
time-series, similar forest structural complexity profiles in control,
distributed, and aggregated patches before treatment implementation
events confirm the agreement of different remote sensing sensors for
forest structural complexity analyses (Figs. 2, 3, 4).

The identification of moderate to strong inter-platform correlations
(r >= 0.6) among Sentinel-1 VH cv, Sentinel-2 NMDI cv, and GEDI
cover cv is in agreement with our research hypothesis (1). Therefore,
specific metrics of Sentinel-1, Sentinel-2, and GEDI have the potential
to bridge scales of in-situ measures of structural complexity (MLS box
dimension, MLS canopy cover, TLS COI). It is important to note that
the spaceborne metrics assess structural heterogeneity and can serve
as proxies for in-situ metrics on structural complexity (e.g. MLS box
dimension) and canopy cover or the inverse metric of canopy openness
(e.g. MLS canopy cover, TLS COI). Therefore, across-platform relation-
ships of the aforementioned metrics support our research hypothesis
(1) that relationships among complementary attributes of structural
complexity (e.g. canopy cover, structural heterogeneity, structural com-
plexity) are present at both intra- (e.g. MLS box dimension, MLS
canopy cover, r = 0.9), and inter-platform perspectives (e.g. MLS box
dimension, GEDI cover cv, r = −0.7). In addition, we found strong
correlations (|r| >= 0.7) among across-platform metrics of canopy cover
(MLS canopy cover, TLS COI, GEDI cover cv). In our analyses, canopy
cover reaches its natural limit of 100 % in several of our observations,
while other metrics can still assume a broader range of values in
forests with 100 % canopy cover (please see Supplementary Material
A, Fig. 2). Therefore, the correlations found between canopy cover
(e.g. MLS canopy cover) and other metrics of structural complexity are
not transferable to sets of forest stands that all hold (nearly or exactly)
canopy cover values of 100 % – the correlations might only hold if
a broader range of canopy cover is included. Negative correlations
between MLS metrics (box dimension, canopy cover) and spaceborne
metrics (GEDI agbd cv, GEDI total canopy cover cv, GEDI canopy height
cv, Sentinel-2 NMDI cv) were found because the two MLS metrics are
inverse to the aforementioned spaceborne metrics, i.e. the lower MLS
10 
box dimension and canopy cover, the higher the structural complexity
(e.g. aggregated treatments, supplementary material A: Figure 1 and 2).
GEDI agbd cv, GEDI total canopy cover cv, GEDI canopy height cv, and
Sentinel-2 NMDI cv express increased structural complexity as higher
values (please see Fig. 2, Fig. 3, supplementary material C: Figure 1
and 2).

Our research hypothesis (2) was confirmed, since metrics of struc-
tural complexity based on MLS, TLS, and spaceborne remote sensing
identified major increases in structural complexity following treat-
ment (aggregated treatments, Fig. 7). ESC in distributed treatments
through deadwood manipulation and selective logging could neither be
identified by close-range (MLS, TLS), nor spaceborne remote sensing
(Sentinel-1, Sentinel-2, GEDI). This finding is supported by a recent
study from Kacic et al. (2024) testing the identification of treatment
implementations through 84 Sentinel-1 metrics and 903 Sentinel-2 met-
rics based on a comprehensive catalogue of spectral indices (Montero
et al., 2023). More precisely, both Sentinel-1 and Sentinel-2 have the
potential to accurately detect various aggregated treatment implemen-
tations when specific spectral indices and spatial statistics are selected
(e.g. Sentinel-1 VH cv, Sentinel-2 NMDI cv). Structural manipulation
in distributed treatments, primarily via selective thinning, were not
detected based on Sentinel-1 and Sentinel-2 data (at 10 m spatial reso-
lution). The change in canopy cover is likely to be measured as mixed
pixel signal resulting from overlapping tree crowns and pixels not
being aligned with the selectively removed trees (Kacic et al., 2024).
Presumably, the dynamic responses of understorey vegetation and the
crowns of the remaining trees are the reason for the lack of significant
pre- and post-intervention differences in distributed treatments based
on close-range and spaceborne remote sensing.

4.2. Sensitivity of MLS, TLS, and spaceborne metrics towards standing
deadwood structures in aggregated treatments

Based on unsupervised clustering, metrics from different platforms
and sensors of structural complexity are sensitive to the structural
characteristics of standing deadwood (Figs. 8, 9). Aggregated treat-
ments with standing deadwood structures are more likely not to be
assigned to the cluster of aggregated treatments. This finding suggests
that there is a difference in the structural signal measured in aggregated
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treatments without standing deadwood structures (AR, AW, AL), and
aggregated treatments with snags, and habitat trees (AS, AB, AH).
Therefore, the Sentinel-1 and -2 metrics identifying the treatment im-
lementation event in aggregated treatments (Kacic et al., 2024) might
e sensitive to the change in canopy cover, as well as the presence

of standing deadwood. In addition, we found a sensitivity to the time
interval of the disturbance event, due to the fact that in the clustering
analysis for 2019, 85 % of aggregated treatments were assigned to
a single cluster (only aggregated treatments with habitat trees were
incorrectly assigned). In 2023, the frequency of aggregated treatments
being assigned to a single cluster amounts to 60 %, i.e. 40 % of false
cluster assignments of aggregated treatments with standing deadwood.
Therefore, the clustering of aggregated treatments depends on the time
interval of the treatment event, as well as the presence of standing
deadwood structures (incomplete confirmation of hypothesis (3)).

4.3. Understanding the physical mechanisms of remotely sensed forest struc-
ural complexity assessment

Our findings suggest that LiDAR measurements from sub-canopy
nd top-of-canopy are sensitive to similar structural characteristics
e.g. leaf area, branch and stem volume): Optical active spaceborne
iDAR (GEDI) coverage estimates are highly correlated to MLS canopy
over and TLS Canopy Openness Index. In a previous study, both
entinel-1 (cross-polarized radar scattering) and Sentinel-2 (spectral
eflectance information with a sensitivity to drought conditions) char-

acterize the structural changes from closed canopies to open canopies
with various deadwood structures (no deadwood present, standing
deadwood, habitat trees) (Kacic et al., 2024). Sentinel-2 NMDI cv is
highly correlated with metrics related to canopy surface structure (MLS
canopy cover, TLS Canopy Openness Index), thus suggesting the appli-
cations of Sentinel-2 (optical passive sensor) for surface measurements.
Sentinel-1 (active radar) penetrates the forest canopy to some extent,
since high correlations are not only found for MLS canopy cover and
TLS Canopy Openness Index, but also for MLS box dimension which
holds information on 3D structure. The correlation network (Fig. 5b)
highlights that there are unique TLS metrics in terms of that they
are uncorrelated with other metrics (UCI and SSCI) which means that
these below-canopy features cannot be properly estimated from space
(e.g. through GEDI measurements of canopy height, total canopy cover,
above-ground biomass density). Another study integrated Sentinel-1
and Sentinel-2 time-series composites to model GEDI-derived forest
structural attributes (e.g. canopy height) based on relationships of
radar and multispectral to LiDAR measurements (Kacic et al., 2023).
The canopy height accuracy of machine learning models amounts to

ean Absolute Errors (MAE) of 4.4 m, thus confirming the general
otential of sensor fusion for forest structure modeling. Future re-
earch applications integrating remote sensing data in order to assess

forest conditions should consider different platforms and sensors to
strengthen the understanding of close-range to spaceborne sensing.
The agreement among different metrics for being sensitive to specific
structural conditions could provide the basis for a catalogue of remotely
sensed metrics with good alignment for the derivation of forest struc-
tural conditions from both in-situ and spaceborne perspectives. For
multi-annual time-series analyses and large-scale studies, the integra-
tion of spaceborne radar is of high relevance due to its insensitivity
towards atmospheric conditions compared to optical sensors. Therefore,
the combined analysis of e.g. Sentinel-1 and Sentinel-2 should be best
practice in spaceborne forest research for cross-validation of temporal
and spectral characteristics.

4.4. Standing deadwood and its relationship to biodiversity

Further research is needed in the context of delineating stand-
ing deadwood structures based on remote sensing across forest types
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and over time, since standing deadwood strongly promotes multi-
functionality (van Der Plas et al., 2016), biodiversity (Hendel et al.,
2023; Kortmann et al., 2018; Seibold et al., 2016a,b, 2019), and
resilience (Ma et al., 2023; Staab et al., 2023; Thorn et al., 2018).

urrent remote sensing research on standing deadwood in Central Eu-
ropean forests identified the general potential of Sentinel-2 for the early
detection of bark beetle infestation (Abdullah et al., 2019; Bárta et al.,
2021; Jamali et al., 2023; König et al., 2023), which is often followed
by canopy cover loss (Thonfeld et al., 2022). In addition, potential
standing deadwood areas in the German Harz forest could be detected
based on annual mapping of forest structure for Germany. Composite
stacks (Red-Green-Blue images) of modeled GEDI-derived attributes of
forest structure (canopy height, total canopy cover, and above-ground
biomass density) based on spatio-temporal composites of Sentinel-1
and Sentinel-2 data characterize potential standing deadwood areas as
relatively large canopy height and low total canopy cover (Kacic et al.,
2023).

Cross-scale metrics on forest structural complexity are valuable
indicators for forest management in the context of biodiversity as-
sessment (Heidrich et al., 2020, 2023; Skidmore et al., 2021). Recent
studies on Central European forests report declining insect abundance
and biomass (Seibold et al., 2019; Staab et al., 2023). The effect of
forest management on biodiversity has been identified as important
factor (Chaudhary et al., 2016; Paillet et al., 2010; Zeller et al., 2021,
2023), since management promoting late successional forest structures
(e.g. retention forestry, continuous cover forestry, natural regenera-
tion) positively influences insect habitats (Staab et al., 2023). Previous
tudies on habitat structure characterization of multi-taxa have demon-
trated the potential of ALS and Sentinel-1 metrics (Bae et al., 2019;

Heidrich et al., 2020, 2023). The present study considers various met-
rics across different platforms and sensors to estimate complementary
ttributes of forest structure that have proven their sensitivity to canopy
nd deadwood structures, i.e. the two major structural gradients among
ETA-FOR patches, thus being valuable indicators of management for
tructural complexity (Messier et al., 2021; Müller et al., 2018b).

4.5. Outlook on interdisciplinary research in the context of enhanced struc-
tural complexity in forests

The need for in-depth integration of remote sensing in ecolog-
ical research was recently emphasized by Burrascano et al. (2023)
and Cavender-Bares et al. (2022), in order to meet global biodiversity
goals (Díaz et al., 2020; Nabuurs et al., 2022). Since the present study
identified various intra- and inter-scale relationships of forest structural
omplexity indicators, further joint research of ecologists, biologists,
nd remote sensing scientists is essential to holistically link forest
tructure, ecosystem functioning, and biodiversity from local to global
evels (Jetz et al., 2016). Guiding forest management based on inter-

disciplinary research on ESC (comprising 𝛼-, 𝛽-, and 𝛾-diversity) is the
primary goal of the BETA-FOR project (Mueller et al., 2022a). A wide
range of standardized measurements have been conducted: assessing
orest structure through in-situ and spaceborne observations, measur-
ng volatilomes, surveying microbial diversity in soils and various
eadwood structures, quantifying decomposition rates, capturing plant-
nimal interactions (pollination, parasitism, seed dispersal), identifying
nderstory plant assemblages, and the analysis of multifunctionality
nd higher trophic level diversity (Mueller et al., 2022b). Therefore,

various research gaps are actively being addressed, such as ESC through
experimental silvicultural manipulations (Messier et al., 2021), corre-
lation of in-situ to spaceborne observations (Burrascano et al., 2023;
Cavender-Bares et al., 2022), the relationship of forest structure and mi-
croclimate (Großmann et al., 2023; Zellweger et al., 2019, 2020), vary-
ing deadwood amount, type, and structures (Sandström et al., 2019),
ltered plant species richness due to different light regimes (Dormann

et al., 2020), and the response of multi-trophic groups to structural
complexity (Penone et al., 2018).
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The BETA-FOR treatments aim to mimic old-growth structures (or
o accelerate their development) through experimental silvicultural
anipulation, i.e. increased structural complexity through diverse light

onditions and varying amount, and type of deadwood. In this con-
ext, research on the agreement of structures, as well as ecosystem
unctioning, and biodiversity of BETA-FOR patches, and natural old-
rowth forests could further validate the experimental treatment de-
ign (Franklin and Van Pelt, 2004; Martin and Valeria, 2022). Further-

more, changes in beta-diversity among BETA-FOR patches are valuable
references for the comparative analysis to natural disturbances and
their impact on turnover in structures, taxa, and functioning (Hilmers
t al., 2018; Myers et al., 2015). Since the BETA-FOR patch network
s limited to German broad-leaved forests, assessing the influence of
xperimental silvicultural treatments in broad-leaved forests of other

countries and continents would be a valuable step to further transfer
the findings from national to continental, and global levels.

5. Conclusion

Diverse deadwood structures (no deadwood present, stumps re-
maining, downed deadwood, standing deadwood, habitat trees) and
varying light conditions (distributed and aggregated cuttings) have
been implemented in an intensively managed German broad-leaved
forest as part of the BETA-FOR program. This study analyzes enhanced
forest structural complexity through experimental silvicultural treat-
ments based on various remotely sensed data (mobile and terrestrial
laser scanning, satellite radar, satellite multispectral, spaceborne lidar).
In the following we present three major conclusions that we draw from
our analyses:

(1) We identified strong intra- and inter-platform relationships
among metrics of forest structural complexity. The comparative anal-
ses of mobile laser scanning, terrestrial laser scanning, Sentinel-1,
entinel-2, and GEDI data demonstrates the potential of spaceborne
etrics to upscale in-situ measurements of structural complexity.

(2) In-situ and spaceborne metrics of forest structural complexity
delineated major increases in structural complexity through aggregated
treatments (gap felling). No difference in structural complexity between
control and distributed treatments was observed from either in-situ or
spaceborne metrics.

(3) Metrics of forest structural complexity from different platforms
and sensors were sensitive to the structural characteristics of stand-
ing deadwood in gaps (aggregated treatments). Further research is
needed to assess the sensitivity of spaceborne metrics to standing
deadwood over time and across forest types in order to improve the
characterization of post-disturbance habitat structures.

In conclusion, in-situ and spaceborne indicators of structural com-
lexity sufficiently demonstrated their potential for monitoring adap-
ive silvicultural management due to their sensitivity to enhanced
tructural complexity. Based on our findings, we suggest a deeper
ntegration of spaceborne remote sensing into operational forest struc-
ure monitoring, e.g. to extrapolate in-situ measurements (close-range
emote sensing estimates and biodiversity sampling) over space and
ime for continuous coverage, to assess potential resilience of forests
ased on structural properties, and to monitor management efforts
argeting enhanced structural complexity.
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