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Introduction:
While legged robots offer advantages in dynamic capabilities and mobility over wheeled
counterparts, they often face challenges in energy efficiency and reliability due to using mul-
tiple actuators. Traditional quadruped designs with 12 actuated degrees of freedom permit
free foot placement relative to the body. Additionally, the body can reach many different
positions and rotations inside its body workspace without moving the feet. This project ex-
plores a design with only six actuated degrees of freedom, aimed at combining and reducing
functions while maintaining effective locomotion. This means the robot can still freely place
its feet independently of each other within the respective workspace. To achieve this, each
motor must be connected to multiple legs. Due to the coupled actuation, the reachable space
of the feet is restricted compared to a version with 12 actuated degrees of freedom. Also,
the body workspace is reduced to a single point. To allow the robot to later move freely in
various terrains an optimization of the foot workspace is necessary. A sufficient parameter
space must be defined, which is indifferent to the total size of the robot and includes some
relation to the motor force necessary. Also, singularities must be avoided in the optimized
geometry. Without sufficient movement of the feet and with singularities in the workspace,
the crawler is not able to navigate stairs, slopes, and similar uneven terrain. A workspace
analysis is, therefore, a vital step in designing a highly coupled quadruped robot.

Objective and Expected Outcome:
The project aims to analyze and optimize the workspace of a quadruped robot geometry with
six actuated degrees of freedom. The successful completion of this project is expected to con-
tribute to the field of robotics by demonstrating how quadrupeds with reduced actuator count
can have a sufficient workspace to navigate uneven terrain. The findings will be applicable
in designing more efficient and cost-effective robotic solutions for various applications.



iv

Task:

• Comparison of Quadrupeds: Investigate the previous and current quadruped

• Kinematic Analysis: Analyze the kinematics of the quadruped, understanding its move-
ment patterns and limitations.

• Workspace Optimization: Optimize the workspace of the end effectors in relation to the
motor force and crawler size.

• Optionally Update Prototype: If the time allows, modify the existing prototype to reflect
a symmetrical and optimized geometry.

Garching, July 19, 2024

Prof. Dr.-Ing Dr.-Ing. (B.Sc.)
Alin Albu-Schäffer Florian C. Loeffl Pirmin Gaißer



Abstract

This thesis presents an optimization strategy for the parallel geometry of a coupled quadruped
robot. The primary objective is to enhance the reachable workspace of the robot’s feet by re-
fining its characteristic lengths. The study introduces an innovative approach to defining
and calculating the workspace of coupled quadrupeds efficiently. An analytic solution to the
forward kinematics is developed to expedite the calculation process. The workspace eval-
uation ensures the optimized workspace is not only increased in volume but also possesses
functional attributes suitable for a walking device. A genetic algorithm is employed for the
optimization, balancing robustness and computational efficiency. The results demonstrate
significant improvements in the workspace parameters, underscoring the effectiveness of the
proposed methods.

Zusammenfassung

Diese Arbeit stellt eine Optimierungsstrategie für die parallele Geometrie eines gekoppelten
vierbeinigen Roboters vor. Das Hauptziel ist es, den erreichbaren Arbeitsraum der Roboter-
füße durch Verbesserung der charakteristischen Längen zu erweitern. Die Arbeit führt einen
innovativen Ansatz zur Definition und effizienten Berechnung des Arbeitsraums von gekop-
pelten Vierbeinern ein. Eine analytische Lösung für die Vorwärtskinematik wurde entwickelt,
um den Berechnungsprozess zu beschleunigen. Die Bewertung des Arbeitsraums stellt sicher,
dass der optimierte Arbeitsraum nicht nur an Volumen gewinnt, sondern auch funktionale Ei-
genschaften besitzt, die für ein Laufroboter geeignet sind. Ein genetischer Algorithmus wird
für die Optimierung eingesetzt, um Robustheit und Recheneffizienz zu vereinen. Die Ergeb-
nisse zeigen signifikante Verbesserungen der Arbeitsraumparameter und unterstreichen die
Wirksamkeit der vorgeschlagenen Methoden.
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Chapter 1

Introduction

Quadruped robots have emerged as a versatile solution for navigating complex terrains and
uneven surfaces, making them ideal for applications ranging from search and rescue opera-
tions to planetary exploration. Compared to alternatives like wheeled robots, the applicability
is still small though. This stems from the fact that conventional quadrupeds, like Bert with
eight Degree of Freedom (DoF)(SEIDEL et al. 2020) or Mini Cheetah with twelve DoF (BEN-
JAMIN KATZ et al. 2019), have many redundancies in their design. Especially the high motor
count leads to high costs and inefficiencies, which prevent widespread use. The presented
concept of a quadruped robot reduces the number of motors to six. Despite its reduction in
motor count, the robot can control the motion of all four feet in all three directions. Six DoF
is the minimum possible number to achieve this, as explained in section 1.2. The robot has
the potential to acquire versatile gaits while reducing redundancies and costs to an optimum.
Its main drawbacks are the necessary leg coupling and the compromised workspace of each
leg due to the parallel nature of the leg design. Moving one motor does affect the motion of
multiple legs. A small leg reach hinders the robot from traversing uneven terrain and leads
to slow and jittery gaits. This motivates increasing the useful workspace of the robot’s legs
while considering their dependencies, which will be addressed in this work.

First, a short overview of the goals and boundaries, the design of the robot, and the cur-
rent state of workspace optimizations are given before explaining the selection of methods
(chapter 1, chapter 2). Afterwards, the chosen methods are applied to the optimizations of
the proposed robot in chapter 3. The results are presented and discussed in chapter 4. In
the end, the findings are summarized, and directions for future improvements are proposed
(chapter 5).

1.1 Goals and Boundaries

This work addresses the problem of optimizing the characteristic lengths of the quadruped
design (Figure 1.1), conceived by Florian Loeffl, to improve the reachable workspace of the
feet under certain conditions. This includes the goal of finding an appropriate definition of
a workspace for coupled quadrupeds, finding a way to calculate this workspace in a reason-
able amount of time, and evaluating this workspace so a notion of optimality makes sense.
Calculating the workspace efficiently includes the sub-goal of finding an analytic solution to
the Kinematics. The workspace evaluation ensures the workspace is not only improved in
volume but also has useful properties for a walking device. Beyond the scope of this work is
finding stable walking patterns, which will not be considered for the optimization. Finally,
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the problem of finding a viable optimization strategy and how to implement it in software is
addressed.

This research utilizes the Matlab (MATHWORKS 2022b) optimization toolbox, which offers
numerous tools for optimization tasks. Nonetheless, there remains a lack of tailored optimiza-
tion software for general multi-body systems, necessitating the development of an analytic
kinematic solution to manage the optimization’s complexity. This study introduces a novel
perspective involving coupled spatial four-bar linkages to describe the proposed kinematic
design.

Figure 1.1: The unoptimized prototype in top view (left) and isometric view (right). The geometry is not optimized,
and the upper motors do not retain rotational symmetry.

1.2 Design of the Robot

The quadruped is constructed so that each motor influences the motion of two distinct legs.
The binomial coefficient

�4
2

�

= 6 shows that with six actuated DoF, all possible combinations
are addressed. A geometric counterpart is the tetrahedron, which has four corners and six
edges connecting two corners each. By defining the lengths of all six edges, the corners’
relative positions can be restricted to a single configuration and its chiral reflection. A design
is proposed that can control the four foot points in a similar way while maintaining the shape
of a quadruped.

The type synthesis of the kinematic structure is mostly given. It aspires to have four-way
rotational symmetry around the vertical center line, allowing several simplifications. The
previous prototype (Figure 1.1) violates the symmetry by placing two of the actuated joints in
the same horizontal plane next to each other. To retain symmetry, in the improved geometry
both actuated joints lie on the symmetry axis. The other four motors are placed symmetrically
between two adjacent feet.

The proposed quadruped has a parallel tree structure consisting of 31 bodies connected by
six revolute (1 DoF), 24 universal (2 DoF), and 16 ball joints (3 DoF). Applying Grübler’s
formula results in 6(31−1−46)+(6∗1+24∗2+16∗3) = 6 DoF, which are constrained by six
motors actuating the six revolute joints. The body, where the revolute joints are attached, is
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considered the floating base of the robot. Its origin is placed so that the x-axis points toward
active joint 1, the y-axis towards active joint 2, and the z-axis towards active joints 5 and 6.
The robot has four-way rotational symmetry along the z-axis. A "leg assembly" is the sub-
assembly depicted in blue in Figure 1.2 (left). The six bodies that are directly attached to the
base via the active joints are called "motor links". Each motor link is part of two distinct leg
assemblies. The four bodies of the robot touching the ground are called "legs", with the "feet"
being the end effector points touching the floor. Five "passive links" connect each leg with
three of the motor links, representing the remaining 20 bodies of the robot. The links are
differentiated into four "top links" and 16 "leg links", as shown in Figure 1.2 (right). While
the leg links connect the leg with a universal joint and the motor links with a spherical joint,
the top links use universal joints for both ends. The design parameters for the optimization
include the body’s dimensions, the legs’ lengths, and the lengths of the connecting links, as
derived in section 3.4.1.

Figure 1.2: The structure of the robot (left). One of the four leg assemblies is marked in blue. The structure of a
leg assembly (right). The joints are drawn as circles, crosses, and squares, and the links as lines. The scale is
non-dimensionalized and shows the relative proportions.

1.3 State of the Art

Design optimization is crucial in enhancing the overall walking capabilities of quadruped
robots. Genetic Algorithms (GAs) and performance indices are commonly used for this pur-
pose. Gülhan and Erbatur (GÜLHAN and ERBATUR 2018) employed a GA to improve the
stability, straightness, and speed of trotting in a twelve DoF robot. Fedorov and Birglen (FE-
DOROV and BIRGLEN 2016) utilized GA to optimize the design of a pantograph leg with two
DoF, while Birglen and Ruella (BIRGLEN and RUELLA 2014) optimized the design of a one
DoF leg for efficiency and robustness.
While the proposed quadruped uses similar approaches, namely GA and performance indices,
and is also concerned with reduced DoF, the focus will be improving the robot’s workspace.

Concerning the optimization of leg workspace for quadrupeds with uncoupled legs, Hao et al.
(HAO et al. 2020) found that the reach of each foot is primarily restricted by joint angle limits.
Ren et al. (REN et al. 2018) proposed a quadruped leg with an elastic linkage, necessitating
design optimization to improve the workspace and reduce tracking errors, and Ratolikar et
al. (RATOLIKAR and R 2020) optimized a five-bar linkage used as a quadruped leg using a
GA.
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The optimization of uncoupled quadruped legs has similarities to that of coupled ones. Still,
this work requires additional concepts to address the coupling.

King’s (KING 2022) work on a coupled six DoF robot preceded this work. It employed panto-
graph legs coupled with linear actuators to achieve motion in all three directions for each leg.
The primary limitations on the workspace were due to actuator limits and the pantograph leg
design. The proposed design (Figure 1.1) replaces the linear actuators with rotating motors
and introduces a physical body to house the motors and battery. This redesign led to a par-
allel manipulator structure as described in section 1.2. An earlier quadruped design with six
DoF was proposed by Kaneko et al. (KANEKO et al. 1986). It featured uncoupled legs with
one DoF each and a rotating mass to position the center of mass.
Two concepts with six DoF were proposed before this work. They did not optimize the
workspace, though, and used a different structure.

While workspace optimization for coupled quadrupeds with reduced DoF has not been ex-
tensively explored, similar methodologies have been applied to Parallel Manipulators (PMs).
Various studies have optimized the workspace of planar and spatial manipulators. Some ex-
amples include the work of Badescu (BADESCU et al. 2002), who optimized a stack of 3-UPS
platforms, Deng et al. (DENG et al. 2021), who optimized a Steward-Gough platform and
Silva et al. (SILVA et al. 2014a), who optimized a Delta robot. All of them optimized for a
large dexterous workspace, using the Global Conditioning Index (GCI) introduced by Gosling
and Angeles (GOSSELIN and ANGELES 1990) and used a GA.
PMs have a single end effector. Since the quadruped has four, its structure is coined a "parallel
tree structure" in this work and, therefore, requires additional methods, which are specified
among others in the next chapter.



Chapter 2

Method Selection

The goal of this work is to improve the robot’s workspace. This requires an optimization.
Design parameters, boundary conditions, and a solver need to be chosen accordingly. Ad-
ditionally, the objective function must be defined. It should evaluate the workspace’s size
and quality for the respective design parameters. Defining, calculating, and evaluating the
workspace requires additional methods. Finally, the optimization requires calculating the
kinematics and Jacobian matrices for different configurations, to obtain the workspace. A
method using spatial four-bar linkages was found for that.

Figure 2.1: The four main parts of the work, where the spatial four-bar linkage is part of the kinematics, which are
a sub-function of the workspace calculation - a sub-function of the optimization algorithm.

The core forms theory on spatial four-bar linkages, which are used to calculate the kinematics,
required for determining the workspace. Increasing the workspace is the objective of the
optimization. Figure 2.1 shows this structure. Different methods are presented and the
chosen methods are highlighted in grey in the tables below. The reasoning behind choosing
one over its alternatives is depicted in this chapter. Methods are ordered from the bottom up,
starting with the spatial four-bar linkage and ending with the optimization (Figure 2.1).

2.1 Spatial four-bar linkage

The forward kinematics used in the optimization can be calculated using spatial four-bar
linkages (section 3.2).

Chyi (DAVID PERNG CHYI 1969) found an analytic solution to the mechanism, shown in
Figure 2.2. It consists of four links, one of which is the base. Two levers are connected to
the base via revolute joints and the coupler connects the levers with two spherical joints.
The rotation axes of the revolute joints, in general, are not parallel. It has one DoF and two
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Figure 2.2: The spatial four-bar linkage as defined by Chyi (DAVID PERNG CHYI 1969), with the unknown angle θ
at the origin O. The angle δ is given.

assembly modes. The equation 2.1 calculates the two possible locations of spherical joint R
when given point Q. The points are defined in a reference frame O whose origin lies on the
base point of the unknown lever OR. The z-axis coincides with the rotation axis of the revolut
joint O, and the angle θ is defined relative to the x-axis, whose orientation can be defined
arbitrarily. The position of Q is a function of the known angle δ.

OR=





cos(θ )OR
sin(θ )OR

0



 (2.1)

where

sin(θ ) = −OQ(2)K ∓ OQ(1) ∗
p

OQ(1)2 + OQ(2)2 − K2

OQ(1)2 + OQ(2)2
(2.2)

cos(θ ) = −OQ(1)K ± OQ(2) ∗
p

OQ(1)2 + OQ(2)2 − K2

OQ(1)2 + OQ(2)2
(2.3)

with the auxiliary variable

K =
1

2OR
(l2

1 −OR
2
− OQ(1)2 − OQ(2)2 − OQ(3)2) (2.4)

2.2 Calculating the Kinematics

The kinematics are used to calculate leg configurations to evaluate the workspace (Section
1.1). Two ways of viewing the robot are discussed. Either fixing the base and looking at how
the floor has to be oriented for a given set of joint angles or fixing the floor and calculating
the orientation of the floating base when standing on the floor. The first is related to Forward
Kinemtics (FK) while the latter requires Inverse Kinematics (IK) to derive the joint angles
from the given foot positions.
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Method Advantage Disadvantage

IK Numerical
More efficient for

workspace discretization

Slow calculation time
Whole robot must be considered
Solution depends on initial guess

FK

Numerical
Faster calculation time

compared to IK

Requires sampling
for workspace estimation

Solution depends on initial guess

Analytical
Fastest calculation time
No initial guess needed

Reduced design parameters

Needs further assumptions
Hard to build

Requires sampling
for workspace estimation

Table 2.1: Advantages and disadvantages of the IK and FK using analytical and numerical calculation methods.

Although the IK is more efficient for the workspace discretization, as explained by Porges
(PORGES 2013), the long calculation time and the dependency on the initial guess do not
lead to a faster workspace calculation compared to the FK. The mean calculation time using
the robotics toolbox from Matlab (MATHWORKS 2022a) is significantly longer than the FK
because the whole robot must be considered, leading to a more complex problem to solve.
The FK can be split into four sub-assemblies, reducing the complexity and speeding up the
mean calculation time. This can be achieved numerically using dual quaternions as proposed
by Zsombor-Murray and Gfrerrer (ZSOMBOR-MURRAY and GFRERRER 2010). An analytic
solution is found to further improve the calculation time and be independent of an initial
guess. It assumes that the five passive links meet at two distinct positions on the leg. This
allows a representation of the leg assembly as two connected spatial four-bar linkages, which
is discussed in more detail in section 3.2. Building a physical robot with two or more spatial
joints in the same spot is not trivial (HAMLIN and SANDERSON 1994, NASA 2022). Deviating
from these assumptions reduces the accuracy of the model. Nevertheless, the simplified
geometry reduces the number of required design parameters, which is beneficial, as discussed
in section 2.8. The calculation time of around 5ms and the independence on an initial guess
led to the choice of the analytical FK.

2.3 Calculating the Jacobian

Calculating the kinematic Jacobian g Jk,i for each leg i in the ground-related frame g, defined
in section 2.4, is required for calculating the performance index pRO, described in section 2.6.

Method Advantage Disadvantage

Analytical Jacobian Exact solution
Large expression which cannot

be handled by MATLAB
Numerical Jacobian Fast numeric solution Requires multiple coordinate transformations

Table 2.2: Advantages and disadvantages of the analytical and numerical calculation methods for the kinematic
Jacobian.

Since an analytic solution to the FK exists (Appendix A), the kinematic Jacobian can be calcu-
lated by differentiating the symbolic expression by the active joint angle vector. It results in a
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large analytical expression, which MATLAB (MATHWORKS 2022a) cannot handle and would
demand alternative software. Instead, it was opted for numerically integrating the kinematic
Jacobian by Newton’s forward differentiation. It requires calculating one additional evalua-
tion of the FK for each DoF and transformations to the ground-related frame, but it is still a
fast and accurate calculation method.

2.4 Defining the Workspace

As introduced in the section 1.1, the goal is to find a workspace definition that allows optimiz-
ing the robot so it achieves the greatest variety of walking motions under certain constraints.
Considering the position of the center of mass and, therefore, the position and orientation of
the floating base, is beyond the scope of this work. The workspace only considers the position
of the feet relative to each other. This reduced the dimensions of the workspace from twelve
to six, effectively neglecting the rigid body motion of the robot. As will be shown in section
3.3, a further reduction to a 3D space is beneficial for meeting the memory limitations posed
by the discretization method. Due to the symmetry of the robot as well as the constraints,
all four feet will have the same workspace volume, so optimizing the relative position of one
of the legs will be sufficient, which makes this further reduction possible. Three different
workspaces are discussed.

Method Advantages Disadvantages

Wc Useful workspace for path planning Depends on configuration of stance feet
Wg Intuitive workspace representation Geometry leads to tall and thin workspace

Wd
Retains information from 6D space

Improved shape
Non-Euclidian space

Table 2.3: Advantages and disadvantages of the constrained foot workspace Wc , the ground-related workspace
Wg , and the distance workspace Wd .

Figure 2.3: Visualization of the constrained foot workspace. The coordinate system is defined by the three feet
on the ground, relative to which the position of the fourth foot is examined. The stance feet are at a fixed location
relative to the ground.

The constrained foot workspace Wc, as shown in Figure 2.3, describes the possible positions
of one foot while the others remain on a fixed point on the ground. It is a useful representa-
tion of the workspace for path planning of step trajectories, but due to the leg coupling, the
workspace depends on the positions of the stance feet, which vary during crawling. There-
fore, it is not used for the optimization.
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Figure 2.4: Visualization of the ground-related workspace. The coordinate system is defined by the three feet on
the ground, relative to which the position of the fourth foot is examined. The stance feet are not fixed but can slide
freely along the ground.

Many variations of the stance feet are included in the ground-related workspace Wg . Three
feet define a ground plane relative to which the reachable positions of the fourth foot are ex-
amined, as shown in Figure 2.4. The stance legs are not constrained. The 3D Cartesian system
gives an intuitive representation of the workspace. The robot’s geometry favors tall and thin
workspaces, an undesired shape for walking. For the optimization, the non-Euclidean space
defined below is used to mitigate this tendency. Still, the ground-related workspace is suit-
able for visualizing the results in section 4 and calculating the kinematic Jacobian (Section
3.2.2).

Figure 2.5: Visualization of the distance workspace. The three distances marked in blue make up the three-
dimensional workspace used for the optimization.

Figure 2.6: Visualization of the height bias. The distance space (dotted lines) does not reach a new length state
when moved in the z-direction, while the Euclidean space does.

The relative position of the feet can be described by the six distances between the four feet
(Figure 2.5). All reachable distances compose the 6D distance workspace Wd . As described
in section 1.2), two different possibilities exist for defining four points by six lengths, so addi-
tional information on the configuration is needed for a unique representation. This makes the
space non-Euclidean and hinders the visualization and definition of a physical vector norm
required to evaluate the distance from singularities (Section 3.3). It still can be described as
a manifold with boundaries as defined by Tu (TU 2011 §22). These boundaries stem from
the constraints imposed by the coupled kinematics of the robot. Due to symmetry, each leg
has the same workspace influenced by parameters in the same way, so the six dimensions
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can be further reduced to three focusing on the three distances from one leg to the others.
They are marked in blue in Figure 2.5. The space prefers distance changes in the ground
plane, as shown in Figure 2.6, resulting in a more useful workspace shape which is why it
is used in the optimization. The optimized workspace using the ground-related and distance
space are compared in Figure 2.7. They are both visualized as reached voxels looking from
the origin of the ground-related frame. The distance space is converted to the ground-related
frame for comparison. The workspace in the right image, created using the distance space
optimization, shows a wider projection than the ground-related optimization (left).

Figure 2.7: Visualization of an optimized workspace using the ground-related frame (left) and distance space
(right). They are both shown looking from the origin of the ground-related frame, to see the difference in width.

2.5 Calculating the Workspace

The optimization of the quadruped design regarding the workspace requires calculating it
in each iteration of the optimization, as shown in Figure 3.8. Three methods are commonly
used (MERLET 2006).

Method Advantages Disadvantages

Analytic Exact solution
Solution only for simple geometries
Not all constraint can be included

Numerical Potentially more efficient
Complex implementation

Inclusion of constraints often not trivial

Discretization
All constraints can be included

Easy implementation
Widespread adoption

Computationally demanding

Table 2.4: Advantages and disadvantages of the analytic, numerical, and discretization method.

The most intuitive approach is integrating the FK with respect to the active joint angles.
Gallant and Boudreau (BOUDREAU and GALLANT 2002) used the method for a planar PM and
Aboulissane et al. (ABOULISSANE et al. 2019) for the Delta robot. For the proposed design
this method was unfeasible considering the lengthy analytical solution of the FK, shown in
Appendix A.

The alternative is to approximate the analytic solution. The two main approaches are sep-
arated into discretization methods and numerical methods (MERLET 2006). Latter includes
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inferring volumetric properties of the workspace by approximating its boundary BOHIGAS et
al. 2012, using interval analysis to iteratively reduce the size of a bounding box encompassing
the workspace volume (MERLET 2006), and using the fact that the outward facing velocity
vector normal to the surface of the workspace has to be zero (AGRAWAL 1991). Recent at-
tempts also try to estimate the workspace using a neuronal network (BOANTA and BRIS, AN

2022).

The discretization method divides space into discrete voxels and determines which lie inside
the robot’s workspace. This can be done knowing either the FK or IK. When using the IK, one
point of each voxel is tested to see whether it belongs to the workspace (MERLET 2006). Since
the IK is much slower to calculate than the FK, as pointed out in section 2.2, the workspace is
approximated by sampling in the joint space. Usually, in each sample, a random configuration
of joint positions is generated and used to calculate the position and orientation of the end
effector. The corresponding voxel is marked, and after Ns samples, all marked voxels together
approximate the reachable workspace (PORGES 2013).

The analytic solution would require large simplifications of the model, which cannot capture
the intricacies of the leg design. More sophisticated numerical methods may improve conver-
gence speed but were not considered in this work. Despite its computational demands, the
widespread adoption of the discretization method (MERLET 2006), the possibility of includ-
ing arbitrary constraints, and the straightforward implementation led to the implementation
of the discretization method for the workspace approximation. Since the FK is much faster
than the IK, the sampling method described by Porges (PORGES 2013) is used.

2.6 Evaluating the Workspace

Performance indices are a way to evaluate the manipulator’s capability and are widely used
for performance analysis and optimal design (ROSYID et al. 2017). Many different indices
exist, which are summarised by Li et al.(LI et al. 2023).

Since this work focuses on maximizing the workspace’s volume, the volume index pV I is the
main performance index used. It tracks the geometrically reachable points. Additionally, the
two metrics are introduced, which punish undesirable workspace configurations. They are
chosen to fit into the performance index framework and evaluate if a foot position is not use-
ful for walking (pF ) and if the force amplification from the feet to the active joints is above
a certain threshold (pRO). This indicates a closeness to a Redundant Output (RO) singular-
ity, defined by Müller and Zlatanov (MÜLLER and ZLATANOV 2019), and prevents overloaded
motors and control issues. Other singularities are not addressed for the performance. The
Redundant Input (RI) singularity often lies on the border of the workspace because the veloc-
ity component normal to the surface has to be zero and the robot has a good accuracy close
to it. Redundant Passive Motion (RPM) would occur when motion is possible even though
both input and output are fixed. This should be avoided, but similar to RI it does not affect
the reachable workspace (MÜLLER and ZLATANOV 2019).

The approximation of the Workspace Volume Index (WVI), defined in section 3.3.1, is used
to evaluate the workspace’s relative size compared to the robot’s size while including the
limitations of the robot. It considers the local performance indices pV I , pF , and pRO. The
conditioning index pLC I , which is used in many PM optimizations as hinted at in section 1.3,
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is not considered for the optimization. The incentive to stay away from parallel singularities
is captured by pRO, so the index pLC I is not necessary as a performance index.

2.7 Choosing Discretization Parameters

The use of the discretization method by Porges (PORGES 2013) requires choosing the voxel
size and a break criterion to stop the sampling process.
The method for choosing the parameters revolves around estimating the calculation time for
a workspace calculation. Samples outside the workspace require less calculation time, as they
can leave the loop earlier, as shown in the section 3.4. Because the calculation time increases
almost linearly with the number of samples, the calculation time depends on the size of the
workspace. The parameters are selected with respect to the properties close to the optimal
solution since the demand for accuracy and calculation speed increases for increasing abso-
lute values of the WVI and decreasing improvements from one generation to the next.
These considerations make the choice of discretization parameters an iterative process, as the
right choices depend on the solution of the optimization, in particular the WVI of the solution.

2.8 Reducing Design Parameters

The geometry of the robot is varied to find the best possible workspace. In general, the ge-
ometry of each body can be arbitrarily complex, resulting in many design parameters to be
optimized. This reduces the convergence speed of the GA as stated in (LI et al. 2023), so
a reduction of parameters is aimed for, which still captures the main geometrical properties
of the system. This is done by exploiting the four-way rotational symmetry of the robot and
using simple geometric shapes, which is explained in the section 3.4.1.

2.9 Choosing a Solver

The workspace optimization needs a solver that can deal with constrained problems with
discrete nonlinear noisy objective functions. The FK introduces non-linearities and the dis-
cretization method introduces noise. This restricts the considered solver categories to the
following selection (Table 2.5). Excluded are 2nd-order solvers, which are not suitable for
discrete problems. For 1-st order solvers, a representative algorithm is selected for each.
Many additional variants exist. They require finite difference methods due to the discrete
objective fuction to estimate the derivatives.

Purely sampling-based approaches disregard all information from past samples which makes
it quite inefficient for workspace optimization. Since no information is drawn from the pre-
vious samples in the discretization method a sampling-based approach is used for calculating
the workspace. It uses the MC approach, to have improved high-dimensional coverage com-
pared to GS. Sampling plans can be used in conjunction with surrogate models when the
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Method Deterministic Stochastic

Sampling-based Grid Search (GS) Monte Carlo Approach (MC)

0-th order Patternsearch
General Algorithm (GA)

Particle Swarm Optimization (PSO)
Simulated Annealing (SA)

1-st order Gradient Descent (GD) Stochastic Gradient Descent (SGD)

Table 2.5: Different solver categories that can handle constrained problems with discrete nonlinear noisy objective
functions, including deterministic and stochastic as well as sampling-base, 0-th, and 1-st order solvers.

objective function takes a long time to calculate. This path was not chosen, as the calculat-
ing time was manageable without, though it might be a direction for future improvements
(KOCHENDERFER and WHEELER 2018).

In practice, it was found that the large search space led to a slow convergence speed of de-
terministic solvers like the Matlab implemented Patternsearch solver compared to stochastic
meta-heuristic solvers. These do not mathematically guarantee convergence to a global op-
timum, but they often find them faster. They use a non-greedy approach meaning they do
not locally make the best choice, which allows for exploration and good global optimization
capabilities, which concludes the choice of stochastic solvers in the optimization.

Both GD and SGD lack the ability to explore the optimization landscape to reach a global
optimum and struggle with noisy objective functions, but they can still be useful as a hybrid
approach. Combining the GA with SGD might be a way to mitigate the slow convergence at
a later stage. Due to the additional complexity of the approach, this path was not chosen for
the optimization.

The advantages and disadvantages of three different meta-heuristic algorithms are discussed
in Table 2.6.

Method Advantage Disadvantage

PSO
Easy implementation

Fast convergence at early stage

Low convergence speed at later stage
Prone to premature convergence

poor performance for discrete optimization

SA
Global convergence

with slow cooling schedule Slow convergence

GA
Distributed calculations

Robustness
Wide-spread adoption

Poor local search ability
Prone to premature convergence

Many hyper-parameters

Table 2.6: Advantages and disadvantages of the PSO, SA, and GA.

The PSO is easy to implement and has a fast convergence in the early stage, but is not very ef-
ficient for discrete problems as stated by LI et al. 2023. SA is used by ABOULISSANE et al. 2019
to optimize the workspace of a Delta robot. It can guarantee global convergence, but only
with a logarithmic cooling schedule, making convergence very time-consuming (KOCHEN-
DERFER and WHEELER 2018). GA is inefficient for local search, is not guaranteed to converge
globally, and has many tunable parameters. Still, it is used extensively for geometric design
optimizations, as shown in the section 1.3. It offers robustness to noise, can be run in par-
allel, and is non-greedy. Additionally, it explores the design space efficiently and finds good
solutions comparatively fast, which is why it is used in this work. Some tuning was done
to find good parameters as explained in section 2.10, but the default setting of the Matlab
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solver already gave a good starting point.

2.10 Genetic Algorithm

The GA is an optimization technique inspired by the process of natural selection. It was first
applied to optimization problems by De Jong (JONG 1975) and belongs to the larger class of
evolutionary algorithms, which generate solutions to optimization problems using techniques
inspired by natural evolution, such as inheritance, mutation, selection, and crossover (EIBEN

and SMITH 2015).

Figure 2.8: The general structure of the GA. After creating an initial population it is ranked and split into elite,
crossover and mutation children, which make up the next generation (MATHWORKS 2022b).

A genetic algorithm mimics the process of natural evolution, a concept based on the Dar-
winian principle of reproduction and survival of the fittest. Matlab offers an implementation
in their Global Optimization Toolbox (MATHWORKS 2022b), which is used for this problem.
The default values of the Matlab solver were mostly kept as they produced good results. Its
main steps are shown in Figure 2.8.

Parameters Values Matlab Function
Number of individuals 100 gacreationuniform

Percentage selected for reproduction 20% selectionstochunif
Number of elites 2

Crossover fraction 0.8 crossoverscattered
Mutation rate 0.1 mutationgaussian

Fitness function tolerance 10−6

Maximum stall generations 50

Table 2.7: The values and function names of the GA concerning the initialization, reproduction, and break condi-
tion

First, 100 individuals are initialized from a random uniform distribution. The default value of
50 is increased here to be able to better explore the search space. After scoring and scaling the
population, 20% are selected for reproduction. The stochastic uniform selection allows for
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multiple selections of the same individual. The two lowest-scoring individuals, the "elites",
are fed back without changing their vector representation. 80% of the new population is
created using crossover, combining the vector representations of two parents, and the rest is
created by adding a Gaussian distributed random value to each component of a single parent.
The mutation rate is inversely proportional to the number of design parameters. The three
groups of children make up the next generation (Figure 2.9). The GA is terminated when the
fitness improves less than the default value of 10−6 for 50 successive generations. The used
parameters and functions are summarized in Table 2.7.

Figure 2.9: The three groups of children - elite, crossover and mutation - and their basic concept, as implemented
in Matlab (MATHWORKS 2022b).





Chapter 3

Implementation

This chapter explains how the selected methods from the chapter 2 are implemented into
the algorithm. The implementation is split up into four parts. The goals ,depicted in section
3.1; The kinematics, including the FK and the calculation of the kinematic Jacobian (section
3.2); the workspace, including its evaluation and discretization methods (section 3.3); and
the optimization, where the design parameters are selected, the solver is described and the
approach is summarized (section 3.4).

3.1 Goals

Primary goals Secondary goals Disregarded goals

Increased workspace volume Optimized workspace shape Walking patterns
Retained rotational symmetry Avoidance of self-collisions Stability
Distance to parallel

singularities
Compliance with joint force
limits of passive joints

Compliance with joint angle
limits of active joints

Compliance with joint angle
limits of passive joints

Table 3.1: Primary, secondary, and disregarded goals of this work.

The goal of this work is to optimize the characteristic lengths of the robot to maximize the
workspace volume under certain conditions. The rotational symmetry should be retained,
which influences the choice of the design parameters (Section 3.4.1). Furthermore, the dis-
tance from singularities (Section 3.3.1) and the compliance with joint angle limits of the
active joints are integrated (Section 3.4.2). A useful shape of the workspace and avoid-
ing self-collisions of the robot influence some decisions but are not explicitly addressed in
this work. Additional requirements regarding stability when walking or crawling are not in-
cluded in the optimization as they exceed the scope of this work. This specifically excludes
the consideration of walking patterns or properties of the center of mass for the cost function.
Especially since the robot has no additional DoF to control the center of mass, disregarding it
might significantly reduce the usable workspace of the optimized robot due to it tipping over
while stepping. Therefore, future work might be necessary to address this problem. Also, the
joint force and joint angle limits of the passive joints are disregarded, since the properties of
the physical joints are unknown.
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3.2 Kinematics

The chapter includes the analysis of the analytic FK (section 3.2.1) and the kinematic Jaco-
bian (section 3.2.2), which are necessary for evaluating points in the workspace. Methodes
2.1, 2.2, and 2.3 are used for implementing the kinematics.

3.2.1 Analytic Forward Kinematic

The robot has a four-way rotational symmetry, and the legs are only coupled at the active
joints, so studying one leg assembly allows for a description of the full FK. Under the as-
sumption that the passive links join to the leg at exactly 2 points and all joints are ideal, it
allows for a novel analytic description of the kinematics. The leg assembly is depicted in
Figure 3.1

Figure 3.1: Visualization of a leg assembly. The base frame is depicted in orange, the leg assembly in black,
besides the active links being blue. Two additional frames are introduced in light blue, used to describe the motion
of two four-bar linkages.

Each leg assembly reminds of a push rod suspension in cars. Each of the six passive links
connects the fixed and the moving frame so that the connection point on the moving frame
moves on a sphere, with the center of rotation being the universal joint at the fixed frame.
The movement is thereby restricted to the motion on a sphere, restricting one DoF in the
radial direction. Four links are positioned similarly to the leg links of the proposed robot,
while the fifth link, the steering rod, restricts the wheel’s steering angle. The remaining DoF
is mostly along the vertical axis and constrained by the suspension system. In the quadruped
leg, the vertical motion is restricted by the top link, similar to a push rod suspension, and
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the rotation is mitigated by choosing two U-Joints instead of ball joints for the top link, ef-
fectively transferring the rotational moment from the upper links to the feet. This makes
the steering rod obsolete. The selection of the top link for constraining the rotational DoF
is arbitrary since the foot is modeled as a point, and only the translations of the foot are of
interest. Unlike the suspension system, the leg link’s attachment points can move, making for
a more complex motion range.

Figure 3.2: Push-Rod system (left) and Pull-Rod system (middle) in the side view of a Formula 1 car. On the right
is the isometric view of the Push-Rod system, showing the six links that constrain the motion of the wheel. 1-4
correspond to the leg links, 5 is the steering rod, not present in the robot, and 6 is the push-rod, equivalent to the
top link of each leg assembly (TRZESNIOWSKI 2019).

The upper and lower leg links are each modeled as connecting to the leg at the same point.
This requires points B1 and B2 to lie on the circular intersection of the two spheres defined
by the passive links, as shown in Figure 3.3. The top link can be connected to B1 or B2
to solve the FK analytically. Unlike the push rod system in cars, the top link should not be
connected to the leg close to point B2, because of potential intersections with the leg links. B1
was chosen as the connection point to avoid self-intersections and ensure ground clearance.

Figure 3.3: A point restricted to two spheres has to move along the circular intersection.
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The angles φt , φl , and φr of the three active joints affecting the leg assembly are known.
This defines the position of the five centers of the spheres through trigonometric relations
relative to the base frame:

A1 =





q1 cos
�

φt +
3π
4

�

q1 sin
�

φt +
3π
4

�

k1
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 (3.3)

B1 and B2 are defined on a circle as long the spheres intersect and are not identical. The
center of the upper circle with radius r1 lies on the midpoint M1 of the line A21A31. This line
also coincides with the rotation axis of B1. The sphere’s radius is the height of a triangle and
a function of A21, A31, and the length l2 (Figure 3.3). The same is true for the lower circle,
which is defined by A22, A32, and the length l3. The leg section B1B2 acts as the coupler of a
spatial four-bar linkage. Note that the active joint angles φl and φr only affect the position of
the points Ai j and, therefore, the geometry of the spatial four-bar linkage. They influence the
skew angle of axes A21A31 and A22A32, the position of M1 and M2, and the lengths M1B1 and
M2B2. Only the length B1B2 = b1 remains constant. The actual DoF of the spatial four-bar
linkage is actuated by the angle φt . It influences the motion of the spatial four-bar linkage via
the top link, which acts as a coupler to a second spatial four-bar linkage with points A1 and
B1, moving on a circular trajectory. Since an analytic solution exists for the spatial four-bar
linkage, the forward kinematic is solvable analytically.
The four possible solutions of the leg configuration for a given set of active joint angles are
shown in Figure3.4. In this case, all angles are set to 0. Each analytic solution corresponds
to one aspect of the workspace. The robot should not be able to reach another aspect as it
would either have to pass an RO singularity configuration or the geometry does not allow the
transition between aspects (MERLET 2006). The solution corresponding to the blue configu-
ration is the one used for this robot because the leg points in the right direction for walking.
This constrains the solution space to the right aspect. The upper spatial four-bar linkage uses
the first solution of equation 2.2 and 2.3 (section 2.1), while the lower uses the second.

O1
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(a) (b)

(c) (d)

Figure 3.4: The four different assembly modes of a leg assembly, where (a) is the used configuration.
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The length of the virtual lever M1B1 of the spatial four-bar linkage can be calculated from the
distance of points A21 and A31 (equation 3.2) and length l2:

M1B1 =
q

l2
2 − ||(A21 − A31)||2 = r1 (3.8)

With equation 3.4 point O1
B1 can be calculated, knowing O1

A1. The points are defined in the
coordinate frame O1, so bA1, defined in equation 3.1, has to be transformed to the coordinate
frame of the first spatial four-bar linkage. Â1 is the homogeneous representation of A1.

O1
Â1 = O1

Tb bÂ1 ∈ R1×4 (3.9)

The origin of O1 lies at M1. The z-axis points towards A31 and the x-axis is defined as
ex ,O1

= ez,O1
× ez,b. The orientation of the x-axis was chosen so it avoids possible configu-

rations where r1 and ex ,O1
are parallel. To form a right-handed coordinate system, the unit

y-axis is defined as ey,O1
= ez,O1

× ex ,O1
. Equation 3.10 shows how the transformation matrix

bTO1
is constructed. Its inverse O1

Tb is defined in equation 3.13 . The rotation matrix bRO1
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represented in the body frame is defined by the unit vectors of O1. The translation vector to
the origin of O1 is bM1.

bTO1
=

�

bRO1 bM1
0 1

�

∈ R4×4 (3.10)

with

bM1 =
A21 + A31

2
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Next, O1
B1 is converted to the frame of the second spatial four-bar linkage using two trans-

formations:

O2
B̂1 = O2

Tb bTO1 O1
B̂1 (3.14)

The origin of base O2 is located at M2, and the coordinate system is again oriented relative
to the rotation axis and the z-axis of the base as shown in Figure 3.1. Similar to equations
3.10 and 3.13 the transformation matrices bTO2

and O2
Tb can be constructed. O2

B2 can be
calculated using equation 3.15 now using the second solution of the spatial four-bar linkage
equation (Equation 2.1).
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and
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q

l2
3 − ||(A22 − A32)||2 = r2 (3.19)
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Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 βz

X1 φl φr φt 0
X2 φl φr φt π/2
X3 φl φr φt π

X4 φr φl φt 3π/2

Table 3.2: Table showing which motor angles are used for which leg assembly.

With equation 3.20 O2
X is calculated, which then needs to be transformed back to the base

frame by applying bTO2
to its homogeneous representation.

O2
X = B1 +

b1 + b2

b1
(O2

B2 − O2
B1) (3.20)

Lastly, the calculation must be performed once for each leg, using the corresponding active
joint angles and then rotated by βz along the z-axis of the base frame to find all four foot
positions. Table 3.2 summarizes, which active joint angles need to be used to calculate each
end effector’s position and by which βz the solution needs to be rotated.

The analytic solution of X1 corresponding to the right aspect was determined with the sym-
bolic toolbox in Matlab and can be found in the Appendix A. It describes the body-related
forward kinematics of a single leg.

3.2.2 Kinematic Jacobian

The ground-related kinematic Jacobian is required to calculate the distance from the RO
singularity with the local performance index pRO. It is calculated by defining the forward
kinematics with respect to the ground and using the numeric forward differentiation.

The ground-related forward kinematics of foot X1 can be found by transforming the solution
to the ground frame. The ground frame is defined as described in the section 2.4. The unit z-
vector ez,g is calculated by the cross product of the unit vector û34 and û32, shown in equation
3.21 so that it is perpendicular to the ground and points away from it. the unit x-vector ex ,g
is defined as the unit angular bisector of û34 and û32 as shown in equation 3.22. To form a
right-handed coordinate system, the unit y-axis is defined as ey,g = ez,g × ex ,g .

ez,g = û34 × û32 (3.21)

ex ,g =
û34 + û32

||û34 + û32||
(3.22)

A transformation matrix g Tb is defined similarly to equation 3.13 to transform end effector
X1 to the ground frame. The translation vector is bX3, as the origin lies in the opposing foot.

g Tb = bT−1
g =

�

bRT
g −bRT

g bX3

0 1

�

∈ R4×4 (3.23)
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To approximate the kinematic Jacobian of X1, the same steps of calculating the FK of all four
feet are done six times. In each iteration, one of the active joint angles is increased by a small
delta of 10−6 to calculate the finite differences with the Forward Euler scheme. For all joint
deviation, the transformation to the corresponding ground frame is performed. The matrix
Jk,X1
∈ R3×6 relates all six angular velocities of the joints to the three velocities of the end

effector X1.

The performance index pRO requires the kinematic Jacobian of all four legs. The deviated
FK needs to be performed a total of six times, once for each active joint angle. For each
leg and each joint deviation, the ground must be defined accordingly, requiring a total of 28
transformations - four to transform the end effector position of each leg without deviation
and 24 for the deviated configurations.

3.3 Workspace

The workspace is calculated for every member of the population by random sampling in the
active joint space. Each sample is evaluated (section 3.3.1) to determine whether it belongs
to the workspace. If it does, the sample is allocated to a three-dimensional voxel. This voxel
is then marked as inside the workspace. The sum of all marked voxels defines the workspace
(section 3.3.2).

3.3.1 Evaluation

As introduced in section 2.6 the workspace is evaluated by three local performance indices
p j. They are multiplied to determine the local performance Pi, corresponding to a specific
configuration i. Summed over all configurations inside the volume V, which should include
all potentially reachable end effector points, and normalized by the volume itself, they form
the WVI. The integral can be approximated using the discretization method by evaluating P
on N voxels inside the discretized space. The negation is introduced to use it as the objective
function to a minimization problem in section 3.4.

W V I = −

∫

V PdV
∫

W dV
≈ −

1
N

N
∑

i=1

Pi , where Pi =
3
∏

j=1

p j (3.24)

To guarantee that the whole reachable workspace lies inside V , a common approach is to use
the sum of all link lengths as the radius Rnorm of a sphere with the center defined relative to
the base. This has also been done, for example, by Silva et al. (SILVA et al. 2014b) for the
Delta PM. For parallel tree structures, each end effector has its own normalization volume,
and the radius should be the sum of one of the chains connecting the respective end effector
to the base. To simplify the calculations, the normalization sphere is defined identically for
all end effectors. Its center is located at the origin of the base frame. Each end effector can be
reached through five different paths, three of which have unique length compositions. From
looking at Figure 3.5, paths 1 and 2 are longer than path 3 in most designs. To minimize
the size of V , path 3 was selected to determine the radius. A smaller volume leads to smaller
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(a) (b)

(c) (d)

Figure 3.5: The three possible paths from the base’s origin to the end effector, where path 3 (c) is used for
determining the maximum reach. It is used to calculate Rnorm, shown in (d).

memory requirements as shown in section 3.3.2. A slight improvement to the path length can
be done by noting that each leg has a second instance of path 3, on which k2 is perpendicular
to the first. Considering the largest possible distance of B2 from the base yields a lower bound
of the maximum reach as shown in Figure 3.5 (d).

Rnorm =
1
p

2
k2 +

√

√

(q2 + l3)2 −
1
2

k2
2 + b2 := 1 (3.25)

Since the WVI is independent of scale, the scale can be defined by non-dimensionalizing all
lengths by the radius Rnorm (Equation 3.25). Volume V , therefore, has the size 4π/3.

The performance index pV I is defined as 1 if the point lies inside the reachable workspace
and 0 if the point lies outside. A point is reachable if the solution of the analytic FK is real
and finite.

pV I =

�

1, X (Φ) ∈ R
0, X (Φ) ̸∈ R (3.26)

Performance index pF penalizes undesired positions of an end effector. These might be areas
where the robot intersects itself or does not provide a useful task space for the considered
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end effector. If areas in the normalization volume should be avoided, they can be included
as follows:

pF =

�

1, X (Φ) ∈Wd
0, X (Φ) ̸∈Wd

(3.27)

where Wd are the desired areas of the workspace.
When the feet reach a configuration where the ground intersects with the robot, the solution
should be excluded from the useful workspace. Also, only points should be counted for the
workspace, which can be reached without the robot intersecting itself. Checking for inter-
sections requires analyzing multiple bodies for every sample. The shape of the ground is
unknown, and the decision if there exists a path that does not include intersections requires
information on past and future samples. These unknowns led to the choice of labeling areas
as "undesired" where intersections are likely to occur. Defining the areas with upper bounds
that guarantee no ground or self-intersection restricts the optimization unjustly while setting
the bounds too generously includes many unreachable points in the workspace. The balance
was found through trial and error. A simple bound to reduce ground intersection is the xy-
plane of the body. If any foot is above that plane, the configuration is penalized by pF .
Self-intersection was found to primarily occur at the legs and the leg links. The latter is
addressed in section 3.4.2. For the foot X1, the plane which fulfills x = −y was chosen as a
boundary. The other feet have symmetric restrictions to avoid intersections with the opposing
leg but allow adjacent legs to reach the same space. Walking patterns might benefit from feet
reaching the same space, so a compromise must be found to avoid restricting the workspace
too much. The geometry of the adjacent legs prevents large relative motion, which makes
self-intersections in these areas unlikely. The leg intersection of opposing legs had to be ac-
counted for, as without, the algorithm found the configuration shown in Figure 3.6 (left) to
be optimal, which clearly includes self-intersections.

Each foot has a quarter of the volume V as a useful workspace to prevent intersection with
itself and the ground, which is visualized in Figure 3.6 (right). The simple shape makes it
easy to define boundaries for the discretized voxel space described below.

Figure 3.6: Shown is the volume Wd , restricted only by the xy-plane (left), leading to an undesired solution with
crossed legs and the restriction to a quarter of the sphere, which is used in the optimization (right).

The performance index pRO is introduced to address the distance from the RO singularity. It
is set to one if the largest singular value of the kinematic Jacobian is larger than the largest
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allowed amplification factor Wmax and zero otherwise (Equation 3.28). σmax describes the
largest error amplifications from the input to the output and the largest wrench amplification
from the output to the input. A value close to infinity indicates a singularity. The approach,
described by Li and Ye (LI and YE 2003) as absolute error sensitivity, is simple compared
to alternatives like screw theory (YUAN et al. 2023), which is the reason for using it in this
work. The main drawback of the approach is the dimensional inconsistency of a general
Jacobi matrix, as mixing rotation and translation does not allow for finding a physically
sensible distance from the RO singularity. By studying only the translational velocities via the
kinematic Jacobian, rotational singularities can not be detected, but they can be neglected,
assuming that no large moments act on the feet. Additionally, gaining a rotational DoF at
one of the end effector points does not matter for the workspace size nor the controllability,
so studying the kinematic Jacobian is sufficient for detecting singularities. This reduced set
of singularities is called parallel singularities by Gosseling (GOSSELIN and ANGELES 1990).

pRO =

�

1, σmax <Wmax
0, σmax ≥Wmax

(3.28)

where σmax = ||Jk|| and Wmax is the largest allowed amplification factor, which is determined
by approximating the torque to weight ratio of the servo motors. This allows to give a broad
estimation of the force acting on the feet due to the weight of the motors and, from that,
the maximally allowed force to torque amplification from the feet to the motors. The output
forces and the input torque are related by equation 3.29.

τ= Jk
T F (3.29)

Assume the size of the output force vector is bounded to one via the 2-norm: ||F̂ ||< 1
Further assume that ||J T

k ||= ||Jk||<Wmax . It follows that the 2-norm of the torque is bounded
as well. A higher value of σmax therefore implies a larger maximum torque-to-force ratio in
the studied configuration. In any direction, a unitary force is amplified by at most Wmax in
the torque space.

||τ||
||F ||

= ||Jk||<Wmax =
||τmax ||
||F̂ ||

(3.30)

The order of magnitude for the torque-to-force ratio Wmax is estimated with an exemplary
servo motor. The servo BLS-H50B from BlueBird (LIN 1978) is currently used for the pro-
totype, shown in Figure 1.1. At 7.4V, it produces a torque of 4.91 Nm and a speed of 9.52
rad/s, while weighing 83g. This amounts to a power-to-weight ratio of 563,53 W/kg, which
is a sensible value for a mid-range servo motor used for robotics applications. It is assumed
that a force equal to the gravitational force generated by all six motors acts on one of the
feet while the others remain on the ground. The weight of the rest of the components is
neglected. All six motors should be able to generate the resulting torques at the active joints
for the robot to be in a useful configuration independent on which leg the force acts on. In
a gravity field of 9.81 N/kg, and with ||Jk|| ≤ 1 at most 4.89 Nm is generated in the joint
space, which can be handled by a single motor (4.89 Nm<4.91 Nm). The norm of the kine-
matic Jacobian should, therefore, not exceed 1 for any leg. The distance workspace is not
Euclidian, so the 2-norm has less physical meaning in this space. Therefore, the FK for each
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leg defined in the corresponding ground-related Cartesian frame is differentiated to form the
kinematic Jacobian, as explained in the section 3.2. Ratolikar et al. (RATOLIKAR and R 2020)
used a similar approach for deriving torque requirements, but had more knowledge on the
load cases during walking.

3.3.2 Discretization

As the discretization method is chosen in section 2.5 to calculate the workspace, several dis-
cretization parameters must be defined through an iterative process. This includes the size
of the discretized space, the voxel size, and the break criterion for exiting the sampling loop.

The optimization is limited by computation time and available memory. The following hard-
ware specifications are used for the optimization:

Property Specification
Processor Intel Core i7-1165G7

Processor Speed 2.8 GHz
Number of parallel workers 4

RAM 16 GB
Matlab version 2022b

Table 3.3: Hardware specifications including the processor, its speed, the number of parallel workers, the memory,
and the used version of Matlab.

The size of the distance workspace is constructed from information on the maximum reach.
As the feet must lie inside the non-dimensionalized volume V , the largest possible distance
between two feet is 2R = 2. The smallest distance is zero. Therefore, the range DL of the
space is two in all three dimensions: DL ∈ [0,2]

The voxel size vs of 0.05 with the upper bound of Nsamples set to 105 was found to give
good results. An early break of the sampling loop is possible if none of the last 100 samples
that have fallen inside the workspace have visited new samples. This was done to speed up
calculation in the late stage, where samples take longer to calculate on average due to the
increased WVI. The optimized geometry takes, on average, 30,795 samples before exiting. A
lower bound on the percentage of new samples found in a sliding window larger than 100
as a breaking criterion was not implemented (PORGES 2013). Besides the window size, it
introduces the break percentage as another hyper-parameter to be tuned.

The range DL in each direction is divided by the voxel size vs and rounded up to the nearest
integer. The product of all three dimensions reveals the number of voxels N in the workspace,
shown in equation 3.31. As the foot points can be in two configurations for a set of distances,
as shown in Figure 3.7, the number of voxels is doubled to address both. The discretized
space, therefore, includes 128.000 Voxels

N =
¡

DL

vs

¤3

∗ 2= d3
L ∗ 2= 128.000 (3.31)

The position in the continuous distance space is represented by L ∈ R1×3. With equation 3.32
the location of L is mapped to the smallest valued corner Lgrid of the corresponding voxel in
a three-dimensional Euclidean grid space.
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Lgrid =
�

L
vs

�

=





Lgrid,1
Lgrid,2
Lgrid,3



 , where Lgrid,i ∈ {0,1, 2, . . . , dL} for i = 1,2, 3. (3.32)

Since Lgrid is a positive zero-based subset of Z, equation 3.33 can be used to uniquely map
the location in the grid space to an index i of a vector, which stores the information, whether
a voxel is reached or not. A value of one is added to conform with Matlab’s vector notation.

i = (Lgrid,1 + Lgrid,2 ∗ dL + Lgrid,3 ∗ d2
L) ∗ C + 1 ∈ {1, 2,3, . . . , N + 1} (3.33)

with

C =

�

1, X1X2 · (X1X3 × X2X4)< 0
2, X1X2 · (X1X3 × X2X4)≥ 0

(3.34)

The cross product between the two lengths L5 and L6 points in the direction of the distance
vector between them. The sign of the dot product between the L1 and the distance vector
defines the assembly mode of the tetrahedron, as shown in Figure 3.7. This holds as long
as the shortest distance between L5 and L6 is in between the foot points X i and is used to
determine the value of C (Equation 3.34).

Figure 3.7: The two possible assembly modes of the distance space, which can be differentiated by the sign of
angle ξ.

The optimal solution requires around 25s to calculate all 30,795 samples for the workspace
estimation. The GA calculated 96 generations with 100 individuals using 4 cores, which
would take 16.6h if only the optimal solution is repeatedly calculated. Smaller workspaces
in the early optimization stage take less time, as explained in section 2.7, so it represents an
upper bound for the calculation time used for the iterative process.

The ideal voxel size is influenced by the size of the distance workspace, as a larger space
increases memory demands. Storing all 403 ∗ 2 = 128,000 voxels requires 16 kB of mem-
ory, which is significantly lower than the available RAM per worker (table 3.3). With a 6D
workspace representation, around 1.02 GB would be required, which cannot be handled effi-
ciently by the hardware and led to reducing the dimensions of the workspace to three (section
2.4). While a smaller voxel size can approximate the shape and size of the workspace more
accurately, at some point, the limited number of samples is unlikely to find all voxels inside
the workspace, which creates holes and fuzzy boundaries and significantly underestimates
the volume. The probability of covering all states with 100,000 uniformly distributed sam-
ples is more than 95% if less than 33,389 states exist, resembling the coupon collector’s
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problem (ERDÖS and RENYI 1961). Due to the non-uniformity of the sampling distribution,
even fewer states can be covered by the sampling. Although the optimization cares about
the relative change in workspace size, at some point, a saturation effect occurs when almost
all samples reach new voxels. The voxel size of 0.05 is chosen to ensure that the workspace
is approximated well by the smallest possible voxel size, which allows for proper sampling
coverage.

3.4 Optimization

The optimization is initialized by selecting a set of design parameters. It then picks a ran-
dom joint angle and calculates the end effector points through the FKs, which are evaluated
regarding the performance criteria, and the corresponding voxel is marked accordingly. This
is repeated until the sampling loop terminates. The design parameters are varied, and the
workspace calculation is repeated until the GA is terminated.

Figure 3.8: The general structure of the optimization algorithm. The workspace calculation is done by sampling in
the joint space. After the sampling is terminated, the design parameters are varied, and the workspace calculation
is repeated until the GA terminates.

The chapter first set the goals for the optimization. It then discusses the selection of design
parameters. Thereafter, the main properties and parameters of the used genetic algorithm
are explained. Finally, the optimization approach is outlined, and the boundary conditions
are defined.

3.4.1 Design Parameters

As pointed out in the section 2, the optimization benefits from a reduction in design param-
eters. The symmetry and the simple geometric shapes of the robot allow for applying the
design space reduction.

The 31 bodies of the robot include the passive links, the legs, the base, and the motor links.
The 20 passive links are represented as one-dimensional beams whose lengths are parame-
terized. Retaining rotational symmetry, these 20 parameters can be reduced to five. Further,
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each leg should be in the middle when the active joint angles are zero, reducing the parame-
ters to three, which is assumed to lead to a more symmetric workspace.
Each leg is identical and modeled as a straight beam with two parameters. Using the ana-
lytical method, as described in section 2, the passive links connect to two points on the leg.
A third point is considered the end effector of the leg assembly touching the ground. The
distance between these three points is defined by two parameters: b1 and b2.
The base can be described with two parameters k1 and k2 due to symmetry, as shown in
Figure 3.9 (right).

Figure 3.9: The parameters of the leg assembly (left) and the base (right) showing how the geometry can be
reduced to ten parameters.

When viewed from the base frame, the yaw and roll angle of the joint axis is set so the leg
assemblies remain symmetric to the leg plane. The pitch of the joint axis is defined by pa-
rameter α.
The four lower motor links and the two upper motor links are each identical and modeled
as a straight beam with three connection points. The four passive links connect to the two
endpoints of each motor link, and the base is connected to the middle of the link, requiring
one parameter that defines the distance from the middle to each endpoint. This is done to
reduce the number of design parameters and equally distribute the forces to the upper and
lower links. Two motor parameters q1 and q2 are required, one each for the upper and lower
motor links.

In summary, a reduction of the design space to 10 parameters is proposed. Two lengths and
one angle define the body, two length the motor links, three the passive links and two the
geometry of the legs. These are represented by the vector k = [k1, k2,α, q1, q2, l1, l2, l3, b1, b2].
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3.4.2 Approach

The Optimization can be formulated as follows:

min
k

W V I = − 1
N

∑N
n=1 Pn(k,Φ)

s.t. ki ≤ kmax ,i
ki ≥ kmin,i i = 1,2, . . . , 10
Φ j ≤

π
4

Φ j ≥ −
π
4 j = 1,2, . . . , 6

(3.35)

It uses the WVI as the objective function to maximize the workspace by varying the geometri-
cal design parameters of the robot. The WVI evaluates the size of the useful workspace com-
pared to the size of the robot while respecting the constraints depicted in equation (3.35).
A genetic algorithm, implemented in MATLAB, is used to minimize the objective function.
Reducing the objective function leads to an increased workspace.

Both the active joint angles Φ j and the design parameters ki are restricted to sensible sizes. As
the joint angles Φ5 and Φ6 share the same rotation axis, the two motor joints can only swipe
half of the rotation plane to avoid intersections. The angle is defined to be zero centered,
which results in a lower bound of −π/4 and an upper bound of π/4. The other four motors
would allow for a larger range. Still, the same bounds were set. The reasoning follows the
cost reduction aspect of reducing the DoF of the quadruped. Besides reducing the number
of motors, all motors have similar requirements, which makes them easier to produce and
install.

Parameters Boundaries
k1 [0,1]
k2 [0,1]
α [−π/2,π/2]
q1 [0,1]
q2 [0,1]
l1 [0,1]
l2 [0,1]
l3 [0,1]
b1 [0,1]
b2 [0,1]

Φ j [−π/4,π/4]

Table 3.4: The boundaries of the design parameters and the active joint angle limits used in the optimization.

All non-dimensionalized design parameters are bounded between zero and one. Negative
values are not useful in this context, as they relate to negative lengths. Values larger than
one cannot be reached by k2, q2, l3, and b2 as they are summed up in Rnorm. The values k1,
q1, l1, l2, and b1 are also not allowed to exceed the maximum range of the robot. This is
a reasonable boundary, which is supported by the fact the optimal solution, depicted in the
section 4, does stay away from the upper bound. Angle α is not divided by Rnorm, since it
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is not a length. It is defined between −π/2 and π/2. At an angle of zero, the motor link is
perpendicular to k2 while with α = ±π/2, the motor link rotates inside the XY-plane of the
base. Large absolute values of α may result in links l2 and l3 crossing over each other. As for
the index pF , self-intersection is a secondary goal (Table 3.1) and is only addressed implicitly
through sensible boundaries. The sensibility is discussed in section 4.

Algorithm 1 Objective Function

Require: Φ ∈ {−π/2,π/2}
Normalize k
for samples = 1, . . . , 105 do

Generate random Φ
pV I = isConditions1Met(Φ, k)
pF = isConditions2Met(Φ, k)
if pV I and pF then

L = calculateDistances(Φ, k)
i = determineVoxelIndex(L)
if Bin(i) is unvisited then

pRO = isCondition3Met(Φ, k)
if pRO then

mark Bin(i) as visited
else

Increment BinRevisi ted
if BinRevisi ted > 100 then

Break Loop
W V I = calculateWVI(Bin, N)
return W V I

Algorithm 1 shows the pseudo-code for the objective function. It includes the calculation of
the performance indices and the sampling iteration. Several methods to improve calculation
speed were implemented. The FK and Jacobi matrix calculations are converted to MEX files,
the performance index pRO, which takes the most time, is only calculated once for each voxel
inside the workspace, and an early break condition is implemented.





Chapter 4

Results

The implementation, including the analytical solution detailed in Appendix A, along with the
workspace and optimization, successfully achieved the objectives outlined in Chapter 3.1.
The main goal of increasing the workspace volume was achieved with the parameter set
depicted in Table 4.1. They are listed both non-dimensionalized and rescaled to the size of
the unoptimized prototype. Rescaling was done using the prototype’s characteristic length,
which is 27.8 cm. Also, the unoptimized parameter values are presented.

Parameters
Non-dimensionalized

optimized values
Rescaled

optimized values (cm)
Values of unoptimized

prototype (cm)
k1 0.1532 5.78 5
k2 0.1229 4.63 9
α - 1.5608 π/6
q1 0.0465 1.75 2
q2 0.0361 1.36 2
l1 0.5140 19.38 12
l2 0.3943 14.87 10
l3 0.5031 18.97 11
b0 0 0 2
b1 0.2913 10.98 8
b2 0.3810 14.36 20

Workspace Wg 1.34 51,288 cm3 6,361 cm3

Table 4.1: The values of the optimized parameters, both non-dimensionalized and rescaled and the prototype’s
parameters values as well as the corresponding sizes of the ground-related workspace.

In the ground-related frame, a eight-fold volume increase relative to the robot’s size was
attained (Figure 4.1). It was estimated by sampling with 106 points and using a hull surface
as the boundary. The workspace is both wider and closer to the center. The two-dimensional
projections of the upper and lower assembly mode of the 3D distance manifold are visualized
in Appendix B. The optimal workspace volume index (WVI) turned out to be 0.02426 in the
discretized lengths space. In the ground-related and re-scaled frame, a workspace volume of
57, 342cm3 is reachable and complies with the constraints.
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Figure 4.1: The rescaled workspaces of all four feet in ground frame for the optimized robot (left) and unoptimized
robot (right) using hull surface around points.

4.1 Interpretation

The found parameters seem reasonable, with long legs and passive links, and short motor
links to be able to reach a large workspace with small force amplifications (Figure 1.2).
Compared to the prototype (Figure 1.1), the passive links were extended further to improve
the reach. In the initial guess, the variable α was set so that the motor link and the leg are
parallel when all active joint angles are set to zero. This design choice was rejected, as the
optimization found a value of 1.5608, which lets the motor link almost move inside the xy-
plane of the base, as shown in Figure 4.2. One reason might be that it attempts to increase
the distance of the instantaneous center of rotation of the lower spatial four-bar linkage to
the upper motor link. This might improve the force propagation because the lever arm is
larger in some configurations compared to a geometry with a lower value of α. If the lever
arm is zero, a RO singularity occurs, which the algorithm avoids. Variable b0 represents the
length between the upper leg links and the top link. Due to the assumptions of the kinematic
model (section 3.2.1), it is set to zero in the optimized geometry. Increasing this length might
also improve the force propagation through the top link (Figure 4.2). Concerning the shape

Figure 4.2: Visualization of the lever arm of the top link with respect to the instantaneous center of rotation
represented in the base’s coordinate frame
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of the workspace, the robot mostly gains mobility toward the center and in the y-direction of
the ground-related frame. The z-direction is not improved by much. This results in a more
uniform shape compared to the tall and slim workspace of the prototype, which should be
beneficial for achieving a variety of walking patterns.

Figure 4.3: Visualization of 1000 sampling points in the ground-related workspace, color-coded by the distance
from singularity (left) and whether a sample is unreachable due to self-intersection (right).

When looking beyond the boundary of one for the maximum singular value of the kinematic
Jacobian (Figure 4.3), the sampling finds many configurations with singular values in the
range of 1-3 inside the workspace and even some above three, as shown in Table 4.2. This
is possible since the ground-related workspace does not fix the stance feet. Multiple con-
figurations can correspond to the same voxel. Some of these will exceed the bound. The
knowledge, which corresponds to the singular values compliant with the constraints, is lost
by the reduction from six to three-dimensional space. For each voxel inside the ground-
related workspace, the definition only guarantees that any configuration exists that fulfills
the constraints. Nevertheless, as the upper bound of the singular values was only a rough es-
timation, many other configurations will still be useful, as the motors will likely have enough
force to maneuver the robot. Also, the vertical bound set to avoid self-intersections of the
legs (pF ) can be violated for specific active joint angle sets. These are not included in the
workspace volume estimation and potentially further increase the reachable volume. All sets
of active joint angles are valid by metric pV I and around 2% of the samples cannot be reached
due to self-intersection of the leg links.

Percentage of Samples
Compliant with all constraints 54%

Violating pV I 0%
Violating pF 1.6%
Violating pRO 45%

Violating pRO by more than a Factor of 3 0.7%
Unreachable due to self-intersection 2%

Table 4.2: The percentages of samples, which fulfill and violate certain constraints.

In conclusion, the volume and shape of the optimized robot’s workspace are significantly
improved compared to the initial guess. The algorithm has found a good optimum. Although
further improvements cannot be disproved, it is assumed to be the global optimum. The robot
can reach additional configurations that do not fulfill the constraints, which likely allows for
an ever larger motion range.
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4.2 Discussion

The optimization found a sensible solution after converging at generation 96. It achieved the
set goals, as shown in section 4. Still, the accuracy and parameter sensitivity need to be dis-
cussed to evaluate the optimality of the result. Further improvements regarding the accuracy
and other aspects of the implementation will be proposed in this section. As only 2.4% of

RSD = 3.37 %

-0.024

-0.023

-0.022

-0.021

-0.02

-0.019

W
V

I

Noise of Optimial Fitness

Figure 4.4: The best and average value of the GA for each generation with 100 individuals each (left) and the
noise of the optimal solution regarding variations of the WVI (right).

the discretized space was reached, a smaller volume could have been chosen. The spherical
boundaries defined by the maximum reach were still a valid assumption and guaranteed that
none of the explored solutions reached a bound. Since the memory requirement is not a
limiting factor, this boundary definition should not have hurt the performance. The small
fluctuation in the best fitness (Figure 4.4) likely stems from the noise due to the sampling.
This makes a slightly increased fitness value possible in later generations despite retrain-
ing the elite. The Relative Standard Deviation (RSD) of the optimal parameter set due to
sampling and discretization errors is shown in Figure 4.4 (right). It was evaluated by recal-
culating the best solution, shown in table 4.1 30 times, and shows the variability in the WVI.
The median workspace, displayed as a red line in the box plot, is around -0.0223.

Despite the small diversity of 0.0614, there are still some outliers in the last generation,
suggesting that the design space is sensitive in some dimensions. A sensitivity analysis was
performed to study the effects of a deviation from the optimal values. It is derived using
the following equation, were Is is the sensitivity index, W V Ip,i the workspace index when
perturbating the i-th parameter, p the perturbation factor, and k∗i the optimal parameter
value:

Is,i =
W V I∗ −W V Ip,i

p ∗ k∗i
(4.1)

The sensitivity index in Figure 4.5 (a) shows how much the volume increases relative to a
perturbation towards high values. Figure 4.5 (b) shows the effect when perturbating towards
low values. The mean of the absolute values of both are shown in (c). An index of 0.5 indi-
cates that a perturbation of 1% leads to an increase in workspace volume of 0.5%, assuming a
linear relation for small perturbations. Since the WVI is optimized, it is expected that all sen-
sitivity indices are positive, indicating that changing the parameter decreases the workspace
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volume. The fact that this is not the case for all parameters is likely a consequence of the
noise, which might have led to a slightly suboptimal solution or influenced the sensitivity
analysis. The latter is addressed by averaging over five samples and using a perturbation
factor of 3%. The analysis reveals that the mean absolute sensitivity of q1 and q2, as well as
l1 and l2 are comparatively sensitive to variations, while α, l3, b1 and b2 are not. The outliers
present in the last generation likely have small variations in some of the sensitive dimensions
of the design space, which results in the RSD of 29% in the last generation despite the small
diversity of 6% in the parameter space. When building the robot, the lengths of the sensitive
parameters must be adjusted precisely. If necessary in construction, small deviations should
only be applied to the less sensitive parameters.
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Figure 4.5: Sensitivity analysis showing the effects on the WVI when perturbing parameters towards smaller
values (a), larger values (b) ,and the average effect (c).

Due to the chosen methods, the noise, and the sensitivity of optimization, the result can not
guarantee a global optimum, but it nevertheless greatly improves the usable workspace of
the robot’s legs. Due to self-intersections, a slightly suboptimal kinematic might be necessary
for the physical robot. Additionally, the workspace is not the only metric to rely on when
trying to assess the walking capabilities of the robot. Further studies must be performed to
ensure the robot is stable while walking. These considerations might require reviewing the
geometry to specifically enhance the feasible walking patterns by considering the center of
mass in the objective function. Still, the improved robot design can be utilized to further
explore the coupled geometry and its implications for walking.
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Conclusion and Outlook

The goal of this work was to analyze and optimize the geometry of a highly coupled quadruped
robot with six actuated DoF. Several steps were performed to achieve the optimal kinematic.
First, an analytic solution to the forward kinematics had to be found, which relied on the
concept of virtual four-bar linkages, expanding on a concept used in multi-link suspension
systems in cars. All positions that can be reached while fulfilling several constraints sum up
the workspace, which is improved by varying ten geometrical parameters of the robot. These
constraints include the avoidance of self-intersection and the distance from singularities. A
special workspace definition had to be considered to ensure the coupled nature of the robot
is grasped by the optimization. It is inspired by the tetrahedron. Its six side lengths can
characterize the position of the four corners. These coincide with the position of the robot’s
feet. The novel workspace definition through distances between the feet allows for capturing
their dependencies.

The deployed methods have proven effective in significantly improving the robot’s move-
ment capabilities. However, several areas for future research and potential enhancements
have been identified. The non-Euclidian foot distance manifold heuristically offered a better-
shaped workspace compared to the ground-related method. The exact effects of the inherent
lengths bias have not been studied sufficiently yet. Also, the shape could be influenced more
precisely by defining a desired shape and position, which the optimization tries to match as
done by Boudreau and Gallant (BOUDREAU and GALLANT 2002).
Also, exact calculations of the boundaries posed by self-intersections might allow for a larger
usable workspace. Bonev and Gosselin provided an approach using branch set theory (BONEV

and GOSSELIN 2002).
The index pRO evaluating the distance from the parallel singularities could benefit from a
better understanding of the load cases (RATOLIKAR and R 2020). Additionally, other per-
formance indices addressing stiffness, dexterity, or joint forces could be included for further
insights.
The noise from the discretization method may be reduced by increasing the window size,
as done by Porges (PORGES 2013). To further reduce the noise and potentially improve the
efficiency of the workspace calculation a numerical method like the boundary search method
could be utilized, instead of the discretization approach (MERLET 2006).
Concerning the solver, the use of surrogate models or hybrid approaches might allow for im-
proved performance.
More capable hardware, like GPU clusters, could improve the accuracy of the results. Also,
more tailored optimization and symbolic software like Maple (MAPLE 2024) may improve
the results.
The next steps involve building the physical robot. Here, the motor placements and non-zero
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thickness of the links might cause additional collisions, which need to be considered.
Finally, the findings indicate that a small footprint benefits the workspace size. Stable walk-
ing might require a wider stance, though. Conditions for a desired height-to-width ratio of
the robot might be a way to address the stability concerns. Additionally, since the position of
the center of mass is coupled with the leg positions, due to the reduced DoF, conditions on
the location of the center of mass in the x- and y-directions might be necessary for statically
stable walking. Assessing feasible gait dynamics will require knowledge of the center of mass
and may demand reiterating the design if no stable patterns exist.

With the found results, this research sets a foundation for further advancements in the design
and optimization of quadruped robots, paving the way for more efficient and capable robotic
systems.
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Appendix B

Foot Distance Manifold

Figure B.1: The projection of coordinate charts of the distance space, showing the relation of lengths L1 ad L5
for the upper (left) and lower (right) assembly mode.

Figure B.2: A projection of coordinate charts of the distance space, showing the relation of lengths L2 ad L5 for
the upper (left) and lower (right) assembly mode.
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Figure B.3: A projection of coordinate charts of the distance space, showing the relation of lengths L1 ad L2 for
the upper (left) and lower (right) assembly mode.
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