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Abstract—The growing number of satellites in low Earth orbit
(LEO) has increased concerns about the risk of satellite collisions,
which can ultimately result in the irretrievable loss of satellites
and a growing amount of space debris. To mitigate this risk,
accurate collision risk analysis is essential. However, this requires
access to sensitive orbital data, which satellite operators are often
unwilling to share due to privacy concerns. This contribution
proposes a solution based on fully homomorphic encryption
(FHE) and thus enables secure and private collision risk analysis.
In contrast to existing methods, this approach ensures that
collision risk analysis can be performed on sensitive orbital data
without revealing it to other parties. To display the challenges
and opportunities of FHE in this context, an implementation of
the CKKS scheme is adapted and analyzed for its capacity to
satisfy the theoretical requirements of precision and run time.

I. INTRODUCTION

Large-scale satellite projects like the Starlink network,
which has launched over 6,000 low Earth orbit (LEO)
satellites within the past six years [1], have significant
implications for the space environment and highly increase
the probability of satellite collisions. For the increasingly
critical analysis of collision risk, access to precise orbital
data is essential to obtain robust predictions. However, due
to privacy concerns, operators are often reluctant to share
detailed data, which necessitates the use of less accurate
observational data instead. To address this issue, we explore
the usage of fully homomorphic encryption (FHE) for
precise satellite collision prediction. FHE is an advanced
cryptographic technique that enables the computation on
encrypted data without the need for decryption and re-
encryption and thus provides continuous privacy for the
underlying information. More precisely, a computation on
FHE-encrypted ciphertexts yields a result, whose decryption
equals the result of the same computation on the respective
plaintexts. In our proposed scenario, operators share their
encrypted orbital data, allowing for the collision calculation
to be performed without disclosing sensitive information to
any other party. Consequently, operators can benefit from
more accurate collision predictions while preserving the
confidentiality of their data.

We first provide a comprehensive overview of the
mathematical foundations underlying collision risk analysis,
examining the existing process and its attendant requirements.

In order to develop a satellite collision risk model based on
FHE, we present an introduction to FHE in the single-party
scenario, highlighting the pivotal role of the bootstrapping
procedure. This procedure, while enabling homomorphic
schemes for the first time, also constitutes a significant
limiting factor with respect to computational complexity.

We then introduce the two basic concepts to expand a fully
homomorphic scheme to the multi-party case, namely we study
multi-key and threshold FHE. Although threshold FHE is more
prevalent, both approaches possess diverse advantages in the
context of our specific application. Furthermore, we provide a
concrete exemplar of the challenges and opportunities inherent
in our approach in Section VI utilizing the CKKS scheme
[2]. Despite being associated with several hurdles, the analysis
underscores the potential of an FHE approach in the context
of satellite collision risk calculation, thereby emphasizing the
necessity of continued advancements in this research domain.

II. BACKGROUND ON COLLISION RISK ASSESSMENT

This section introduces the principles of collision proba-
bility calculation based on [3], [4] and [5]. Consider two
satellites, denoted by s1 and s2. Each satellite is modeled
as a three-dimensional spherical object, with radii r1 and
r2 for s1 and s2, respectively. The two satellites collide
whenever the two spheres overlap. For a fixed time t > 0, let
µ1, µ2 ∈ R3 denote the estimated position of the satellites s1
and s2 respectively in the Cartesian coordinate system. Due to
external forces such as atmospheric influence, even the satellite
operators can only estimate the position at a given time t in the
future with with a certain error. Since the exact structure of
the error is unknown, we model the distribution of the real
physical location of each satellite by a normal distribution
pi ∼ N(µi, Ci) for a given covariance matrix Ci ∈ R3×3

such that the probability density function is given by

gµi,Ci
(x) = 1√

(2π)3 det(Ci)
· exp

(
− 1

2 (x− µi)
TC−1

i (x− µi)
)

for x ∈ R3 and i ∈ {1, 2}. To simplify the calculation, it
is common to attribute all mass towards one of the objects,
whereas the second object is considered a point particle with
combined positional uncertainty. Although both space objects
are interchangeable, we go along with the usual convention



and consider satellite s1 as an object with radius r = r1 + r2,
but no positional uncertainty. Consequently, satellite s2,
which we place in the origin, is considered as a point particle
and its position is distributed as p̃2 ∼ N(0, C1 + C2). Note
that for simplicity, we assume that the positional errors are
uncorrelated. However, we acknowledge that certain factors,
such as drags, indeed induce correlations between positional
errors but as discussed in [6, Section 2.6], these have a
negligible impact on the overall analysis.

As the first object is moving through the combined co-
variance ellipsoid, a collision occurs at time t with a certain
probability calculated by

Pcol(t) =

∫
Sr

g0,C1+C2(x) dx, (1)

where Sr is the sphere of radius r spanned by the satellite s1
around its relative position at time t. Note that not only Sr

but also C1 + C2 depend on t but we omit this dependency
for readability. The probability that the two satellites collide
within a given time period [t1, t2] is finally given by∫ t2

t1

Pcol(t) dt. (2)

Solving this integral using Monte-Carlo simulations requires
a large number of samples, resulting in a computationally
expensive process (compare [7] or [8]). Although there
exist other analytical and numerical approaches to deal
with the integral (2) (see [9] for an overview), none of
these simultaneously meet the requirements of precision and
computational speed in a broad range of scenarios.

Hence, in recent research, collision risk analysts often
differentiate between two types of scenarios: the short-term
encounter scenario, which refers to a situation where the two
objects have a high relative velocity and a brief approach
(often lasting only a few seconds), and the long-encounter
scenario, in which the relative velocity is lower and the
encounter duration exceeds a few seconds. Both scenarios
exhibit noticeable differences in their behavior [6] and are
thus the focus of separate research efforts. Owing to the
particularly increasing number of orbital objects in the LEO,
our attention is focused on the short-term encounter scenario.
In this particular scenario, the encounter time is small such
that, within this period, the normally curved motion of the
objects can be approximated with a linear motion with a
relatively small error margin. Furthermore, we can assume
that the collision probability Pcol is constant over the short
encounter period which simplifies (2) to the three-dimensional
case in (1). To preclude underestimation of the collision
probability, the parameters are fixed at the time of closest
approach (TCA).

To further simplify the calculation, we define a coordinate
system with respect to the encounter plane. Therefore, let the
y′-axis be along the relative velocity vector v = v1 − v2
and choose the (x′, z′)-plane – the so-called encounter plane

s1

Covariance ellipsoid of s2

Relative velocity

x′

z′

Encounter plane

Fig. 1. Representation of satellite s1 as sphere with combined radius r =
r1 + r2 and satellite s2 as point particle with combined covariance matrix.
Additionally, the encounter plane normal to the relative velocity as well as
the projection of s1 and s2 onto the plane are displayed. Inspired by [5].

– normal to v. By doing so, the distance between the two
satellites is purely based on their distance in the (x′, z′)-plane
such that the collision probability can be described via the
projections of the objects onto the encounter plane (compare
Figure 1). As a result,

Pcol =

∫
Br

1

2πσx′σz′
e
− 1

2

[(
x′
σ
x′

)2
+
(

z′
σ
z′

)2
]
dx′ dz′,

where for simplicity we assume that the x′- and z′-axes
are chosen such that the covariance matrix is diagonal with
elements σ2

x′ and σ2
z′ and Br denotes the cross section of the

two-dimensional projection in the encounter plane.

In 1992, Foster and Estes [10] assumed a circular cross-
section, allowing them to express the integral in polar coordi-
nates as

Pcol =
1

2πσx′σz′

∫ r

0

∫ 2π

0

ye
− 1

2y
2

(
cos(ϕ)2

σ2
x′

+
sin(ϕ)2

σ2
z′

)
dϕ dy

=:

∫ r

0

∫ 2π

0

p(y, ϕ) dϕ dy, (3)

where for simplicity we assume that Br is centered at the
origin. Since this model is still in use by the NASA [11]
as well as by the German Aerospace Center [4], our model
will be primarily based on this calculation although other
approximations exist and may stimulate further research. In
certain scenarios, it may be advantageous to assume a constant
probability function p within the region of integration, thereby
simplifying the integral (3) to a straightforward evaluation of
p without the necessity of numerical integration. However,
as Aida et al. [4] noted, this approximation introduces a
non-negligible error when r is large and the combined
covariance is small.

It is well-known that no closed-form expression exists for
the solution of the integral (3), necessitating its numerical



solution. We approximate both integrals with a numerical
integration rule using a fixed stepsize hr in the radius and
a fixed stepsize hϕ in the angle. The sampling points are
given by (yi, ϕj) where yi = i · hr and ϕj = j · hϕ for
i = 1, . . . , N = ⌊ r

hr
⌋ and j = 1, . . . ,M = ⌊ 2π

hϕ
⌋. Although

algorithms with adaptive stepsizes are generally more efficient
and reduce computational cost, their use is limited in this
particular context due to the encryption of the data. Therefore,
a fixed stepsize is employed for the numerical integration.
We test different approaches for the numerical integration:

Trapezoidal rule: The Trapezoidal rule employs a
linear interpolation between two evaluation points, thereby
generating a trapezoidal approximation, as illustrated in
Figure 2. By selecting the interval bounds as the evaluation
points, this rule minimizes the number of function evaluations
required, rendering it a computationally efficient approach.
However, this advantage comes at the expense of accuracy, as
the resulting approximation is generally less precise compared
to other numerical integration methods.

Trapezoidal and Simpson rule: In [12], the authors
suggested a hybrid approach to approximate he double
integral, wherein the outer integral is approximated using the
Trapezoidal rule, while the inner integral is approximated
via Simpson’s rule. In contrast to the Trapezoidal rule,
Simpson’s rule enables a more accurate approximation by
utilizing a quadratic polynomial to interpolate between two
sampling points, as illustrated in Figure 2. The quadratic fit is
computed using the boundary points of the interval, as well
as an additional evaluation point situated at the midpoint of
the interval, thereby providing a more nuanced representation
of the underlying function.

Gaussian quadrature rule: In contrast to the previous
methods, the Gaussian quadrature of order n entails the
selection of n evaluation points situated within the interval
boundaries. The integral is approximated by a weighted sum
of the function values at these points. The determination
of the evaluation points and their corresponding weights is
facilitated through the utilization of Legendre polynomials,
which ensures that the quadrature rule integrates polynomials
of order 2n− 1 or lower exactly.

III. CURRENT STATUS AND CHALLENGES

The collision risk analysis relies on accurate knowledge
of the satellites’ movement, necessitating the forecast of
parameters µi, Ci, and ri for i ∈ {1, 2} across the time
period of interest. While the satellite radius is typically not
a sensitive parameter, due to privacy concerns – especially
in the military setting – operators often hesitate to share
precise trajectory data. In practice, orbit prediction is based on
tracking data provided by organizations such as the 19th Space
Defense Squadron (19th SDS), operated by the United States
Space Force. The SDS collects tracking data for over 40,000
objects with a radius exceeding 10 cm and conducts an initial
collision analysis [13]. Operators receive automatic collision

warnings three times per day. However, as operators possess
additional information about their satellites’ orbit and planned
maneuvers, they reperform the analysis with more precise
data for their satellites. Note that in practice, the approach
outlined in Section II is not employed in isolation; rather,
multiple methodologies are applied concurrently to provide a
more comprehensive understanding of the data (compare [14]).

Calculating the trajectory of the second object depends on
observational data, which is an ongoing challenge. Various
approaches have been developed based on different underlying
assumptions (e.g., [15] and [16]). Despite progress in this
research area, prediction accuracy is compromised by approx-
imation errors and, most significantly, the lack of maneuver
knowledge. Access to operator-provided data for predicting
satellite movement would eliminate this error source, enhanc-
ing the accuracy of collision risk analysis.

IV. BACKGROUND ON FULLY HOMOMORPHIC
ENCRYPTION

The core contribution of this work is the introduction
of a novel model for collision risk analysis, leveraging the
principles of FHE. In the classical paradigm, FHE is a single-
user model that enables computations to be performed directly
on encrypted data without the need for decryption, thereby
preserving the confidentiality of the underlying information.
The encryption process, denoted as Enc, is performed in a
structure-preserving manner, such that for any function f ap-
plied to the encrypted data, the result is equal to the encryption
of the evaluation of f on the plaintext data. As a prominent
example, note that if f is the addition or multiplication of two
arguments, an FHE scheme fulfills

Enc(x) + Enc(y) = Enc(x+ y)

Enc(x) · Enc(y) = Enc(x · y).

Note that it is sufficient to ask for the ability to
homomorphically perform an arbitrary number of additions
and multiplications, since more complex functions can be
expressed through these two basic operations.

The possibility to calculate on encrypted data enables
the transfer of computationally intensive calculations to a
non-trusted server without compromising the confidentiality
of the data or the result of the calculation: The user hands
over the encrypted data and the function to be performed
on the data. The server carries out the computation on
the encrypted data and returns the result to the user in an
encrypted form. Holding the secret key, the user is the only
one able to access the results of the computation through
decryption.

The concept of FHE was first proposed by Rivest, Adleman,
and Dertouzos in 1978 [17], based on their observation that
for the RSA cryptosystem [18], it holds that

Enc(x) · Enc(y) = Enc(x · y).
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Fig. 2. Illustration of the Trapezoidal rule, the Simpson’s rule and the Gaussian quadrature of order 3 (red) for the function y 7→ f(y) = ye−
1
2
y2

(blue).
The marked points are used to calculate the approximation.

While often not explicitly designed with this capability, several
encryption schemes naturally support either homomorphic
multiplication or addition, such as the ElGamal [19] or
the Paillier scheme [20]. However, no encryption system
supporting an unlimited number of both operations was found
until the groundbreaking work of Gentry in 2009 [21]. Gentry
started from a so-called somewhat homomorphic scheme that
supports a limited number of additions and multiplications.
Such schemes typically encrypt a message by encoding it in
an appropriate manner, such as representing it as a point on a
lattice, and then adding a noise or error term. Consequently,
the addition of ciphertexts involves summing the noise terms,
while the multiplication of ciphertexts results in an even more
exacerbated noise. Repeating this process multiple times
yields a scenario where the receiver is unable to decrypt the
message due to the high noise, thus constraining the number
of permissible additions and multiplications. It is important
to note that while symmetric variants of these schemes do
exist, the majority of the current somewhat homomorphic
schemes are public-key based. This means that the user
generates a key pair comprising a public key pk and a secret
key sk. While anyone can employ the public key to encrypt
a message, only the user, with the secret knowledge of sk,
can decrypt messages. On that basis, Gentry introduced a
novel technique, known as bootstrapping, to mitigate the
issue of growing noise in somewhat homomorphic schemes.
Upon detecting that a predefined noise threshold has been
reached, a bootstrapping step is executed, which starts with
the generation of a new key pair (pk′, sk′). The server utilizes
the newly generated public key pk′ to encrypt the current
ciphertext, thereby resulting in the ciphertext being doubly
encrypted. Subsequently, the user provides the encryption of
the original secret key sk under pk′. This action allows the
server to remove the underlying encryption layer, leaving
only the encryption with the new public key pk′ intact.
This method ensures the preservation of the privacy of both
the secret key and the data, while effectively reducing the
noise associated with the system. A visual description of the
process is depicted in Figure 3.

That way, a somewhat homomorphic scheme can be
extended to a fully homomorphic scheme. However, a crucial

m1 m2 m1m2

c1 c2 c1c2· =

· =Operation 1

m1m2 m1m2Bootstrapping

m1m2 m3 m1m2+m3

c1c2 c3 c1c2 + c3

+ =

+ =

Operation 2

Fig. 3. Visualization of addition and mulitplication in somewhat homomophic
schemes as well as the bootstrapping technique for noise reduction.

prerequisite is that the underlying somewhat homomorphic
scheme supports more additions and multiplications than
are required by the decryption operations. Otherwise, the
bootstrapping step becomes unattainable.

Every bootstrapping step is time-consuming, particularly
affecting the performance of early schemes and resulting in
prohibitively large computation times. However, advancements
within the field of somewhat homomorphic schemes have led
to the development of more efficient schemes that support
a larger number of additions and multiplications, thereby
reducing the frequency of bootstrapping steps. Additionally,
the emergence of more effective bootstrapping methods has
further improved the process. Although the overhead remains
significant, the combined advancement of somewhat homo-
morphic schemes and more effective bootstrapping methods
brings real-world applications within reach.

V. MULTI-PARTY FULLY HOMOMORPHIC ENCRYPTION

In our specific application, a traditional FHE scheme is not
applicable. Instead, we are facing a scenario where multiple
operators wish to perform calculations on their joined data
sets on a shared server without disclosing their information to
one another or the server. To address this challenge, mainly
two distinct multi-party FHE frameworks exist.

In threshold FHE (compare, e.g. [22], [23]) the parties
collectively generate a shared public key and a secret key,



TABLE I
HIGH-LEVEL COMPARISON OF MULTI-KEY FHE AND THRESHOLD FHE.

Multi-key FHE Threshold FHE

Encryption type symmetric or asymmetric asymmetric

Key generation independent collaborative

Encryption under different keys under the same key

Decryption collaborative collaborative

Integration of easy costly
new parties

Server-sided growing with constant
computational effort number of parties

which is distributed among all participants. Each party
can encrypt their respective data using the public key.
Consequently, the server processes the calculations on data
encrypted under the same key. Since each party holds a share
of the secret key, decryption requires the participation of a
certain number of parties, known as the threshold. In our
scenario, to maintain privacy in all cases, the full-threshold
scenario is employed, where all parties must participate in
the decryption process. It is important to note that adding a
new party to a threshold FHE scheme is resource-intensive,
as it necessitates a new key setup for all parties. However,
due to the shared key, the computational cost on the server
side is comparable to a single-party scenario, making this
framework particularly appealing for complex calculations or
scenarios with many parties.

Another approach to achieve multi-party FHE is the
utilization of multi-key FHE (see, e.g. [24], [25]). In
this framework, each operator independently generates an
encryption key and encrypts the own data accordingly. In
this setup, the server must be capable of handling ciphertexts
encrypted with different keys and still accurately compute
the collision risk. Notably, decryption must be performed
collectively by all parties involved. One advantage of the
multi-key framework is that the theoretical number of
participants is unlimited, allowing the inclusion of all satellite
operators within a common framework where computations
are performed pairwise. Integration of new parties is also
straightforward. However, while the multi-key scenario is
manageable from the client-side, the computational burden
for the server increases polynomially with the number of
parties involved [26]. A high-level summary of the differences
between both types of multi-party FHE schemes can be found
in Table I.

VI. FULLY HOMOMORPHIC ENCRYPTION FOR SATELLITE
COLLISION

One of the most significant hurdles impeding the
widespread usage of FHE schemes is the high computational
complexity, which results in substantial computation times. In
this regard, threshold FHE offers a more attractive alternative

for most scenarios, particularly as the number of participating
parties increases. As a consequence, threshold FHE schemes
have emerged as the preferred variant for multi-party FHE
applications, and as such, will be the primary focus of
the following discussion. However, it is worth noting that
multi-key FHE schemes remain an active area of research,
and given that our application only requires computations to
be performed between two parties, it may serve as a use case
for multi-key schemes as well.

One of the inherent features of full-threshold FHE schemes
is the collaborative decryption. However, this necessity poses
a significant threat to the overall system reliability, particularly
in scenarios where one or more parties become unreachable.
To mitigate this risk, we employ a pairwise approach,
leveraging the inherently pairwise nature of satellite collision
risk analysis. This includes generating a full-threshold FHE
scheme between each pair of operators, thereby resulting
in a more resilient system that is better equipped to handle
the failure of individual parties. Furthermore, this approach
simplifies the integration of new parties, as the existing
pairwise relationships remain unaffected.

Remark 1: In contrast to the threshold FHE setting, the
multi-key scenario inherently lends itself to a pairwise
approach. Typically only the parties that actively participated
in the computation need to be involved in the decryption
process. Hence, multi-key FHE schemes exhibit inherent
resilience against failures of single parties.

Most threshold FHE schemes are restricted to processing
bit or integer inputs and are unable to handle the real values
required for calculating the collision probability integral.
We can address this limitation by scaling all real numbers
by a suitable factor, performing the calculations on the
resulting integers, and then rescaling the results. While
this approach ensures that the calculations can be executed
homomorphically, it simultaneously restricts the precision
that can be achieved.

To avoid manual scaling, we consider the CKKS (Cheon–
Kim–Kim–Song) scheme [2] in a threshold scenario. The
CKKS scheme operates on complex and, consequently,
on real numbers, making it suitable for our application
without further manual modifications. To handle complex
and real numbers, CKKS employs approximate arithmetic,
which involves performing operations on the real numbers
with a small, controlled approximation error. By facilitating
bootstrapping, CKKS enables an unlimited number of
operations, as outlined in Section IV.

Using the implementation of threshold CKKS in OpenFHE
[27], we construct a threshold setting, in which we aim to
calculate the collision risk. As input values, we obtain the
radii as well as the covariance matrices from two operators as
described in Section II. For simplification, we assume that the
data has been previously transformed into the encounter-plane
coordinate system, yielding values for r, σx′ , and σz′ . Each



operator is presumed to possess an additive share of these
values. We now approximate the collision probability integral
in (3) using the different integration rules presented above.

Given that homomorphic schemes, by default, support only
additions and multiplications, the evaluation of the function
p(y, ϕ) in (3), including the exponential function, inverses,
and trigonometric functions, presents a significant challenge.
Hence, as an initial step, we employ a precomputation strategy
utilizing an encrypted lookup table. Specifically, during a
preliminary calculation phase, we generate tables containing
encrypted function evaluations p(y, ϕ) for various values of
σx′ and σz′ . These tables are then stored in conjunction with
the encrypted values of σx′ and σz′ .

Upon initiation of a collision probability analysis,
the encrypted parameters for the true covariances need
to be compared against the available table parameters.
However, direct comparison within homomorphic schemes
is not possible. Several approaches exist to enable secure
comparison in homomorphic settings (see, e.g., [28], [29]).
However, a comprehensive examination of these approaches
is beyond the scope of the present paper. Hence, for the
purposes of this discussion, we presuppose the ability to
identify the correct table. When utilizing a precomputed table
to evaluate the integral, the requisite operation is merely
the addition of encrypted values. Notably, this process is
significantly more efficient than multiplication, owing to the
reduced rate of noise growth. If we isolate this step and
consider it separately, it becomes apparent that even a partially
homomorphic scheme would suffice for the calculation. In
fact, alternative approaches may be more optimal for this
specific step. However, as our ultimate objective is to explore
the feasibility of fully homomorphic computation of the
integral, it is necessary to employ a fully homomorphic
scheme like CKKS at this juncture.

The implemented CKKS scheme was initialized with a
security level of 128 bits. A notable feature of the CKKS
scheme is its flexibility in allowing the user to specify the
multiplicative depth, which represents the maximum number
of consecutive multiplications that can be performed before
the accumulation of noise renders decryption infeasible.
From a mathematical perspective, as the multiplicative depth
increases, the dimension of the underlying ring increases
simultaneously making every operation increasingly costly. In
the context of utilizing precomputed tables, no multiplicative
depth is required and the scheme is computationally efficient,
as illustrated in Table II for the exemplary values r = 5,
σx′ = 50 and σz′ = 25 (in meters). The calculations leverage
the inherent feature of CKKS to perform computations within
multiple slots simultaneously, thereby minimizing the number
of required additions. Notably, for all parameter choices,
the costly bootstrapping step is not used, which further
contributes to the scheme’s efficiency.

As illustrated in the table, for the selected input values and
parameters, the trapezoidal rule requires the fewest function

evaluations, yet its convergence rate is slower compared to
the Gaussian quadrature. Notably, the implementation of
Simpson’s rule does not yield significant improvements, and
considering the associated computational cost, it is not a
viable option. Depending on the desired level of precision,
we recommend employing a Gaussian quadrature of order
2 or 3 with a larger step size as a compromise between
accuracy and the number of function evaluations. However,
due to the parallel computation, all numerical integration
rules can be executed within a reasonable time frame. It
is essential to acknowledge that the CKKS scheme is an
approximate method, which inherently limits the achievable
precision of the numerical integral rules. Furthermore, the
parallel calculation may introduce scaling errors, as all slots
are scaled uniformly. These limitations should be taken into
account when selecting and implementing a CKKS scheme.

The approach of utilizing precalculated tables is beset
by several drawbacks. Firstly, the requirement to securely
compare table parameters poses a significant challenge
within the homomorphic setting. Additionally, reliance on
pre-existing tables can introduce considerable errors if the
actual values of σx′ and σz′ do not precisely align with
the table’s parameters, necessitating the selection of the
best-fitting table instead. Moreover, the storage of these
precalculated tables demands substantial memory resources.

Therefore, in a second step, we evaluate the possibility of
calculating the function evaluation homomorphically in real
time using the encrypted values of r, σx′ , and σz′ instead
of precomputed tables. Provided that the computation can
be performed within a reasonable time frame, this approach
is expected to provide a more feasible solution for practical
applications.

When the overall number of multiplications required for a
specific computation exceeds the multiplicative depth of the
scheme, bootstrapping has to be employed at least once during
the computation. Note that each bootstrapping step itself
contains multiplications and thus needs to be triggered in time
such that its application does not exceed the multiplicative
depth of the scheme. For example, the bootstrapping step
in the CKKS scheme requires 16 multiplications and a
multiplicative depth of 26 thus effectively allows for 10
multiplications on the encrypted data at a time. Choosing
the multiplicative depth is generally a trade-off between
overall speed of the scheme and the number of bootstrapping
steps required. Without claiming to be optimal, we have
chosen a depth of 26 for our implementation. Notably, this
parameter adjustment has a profound impact on the scheme’s
performance, as evident in Table III, which compares the run
times of the CKKS scheme using the Gaussian quadrature of
order 2 with precomputed function evaluations for both depths.
The data reveals a substantial slowdown in the scheme’s
execution time, underscoring the significant computational
overhead associated with increased multiplicative depth, or
equivalently, increased dimension of the underlying ring.



TABLE II
APPROXIMATION OF THE COLLISION PROBABILITY Pcol WITH THE THRESHOLD CKKS SCHEME WITH DIFFERENT NUMERICAL INTEGRATION RULES

AND STEP SIZES FOR r = 5, σx′ = 50, AND σz′ = 25 (IN METERS). THE EXACT FUNCTION EVALUATIONS ARE PRECOMPUTED AND STORED IN LOOKUP
TABLES. THE NUMBER OF ADDITIONS (+) IS RECORDED FOR A NON-PARALLEL COMPUTATION FOR COMPARISONS WITH OTHER SCHEMES.

Integration rule hr hϕ Abs. error Rel. error Time # of function # of +(in %) (in s) evaluations

Trapezoidal 0.5 0.5 4.69 · 10−7 4.94 · 10−3 0.16 143 480
0.1 0.1 2.29 · 10−8 2.33 · 10−4 0.16 3,213 12,400
0.05 0.05 6.00 · 10−9 6.06 · 10−5 0.21 12,726 50,000

Trapezoidal + Simpson 0.5 0.5 6.06 · 10−7 6.39 · 10−3 0.16 286 1,200
0.1 0.1 2.46 · 10−8 2.50 · 10−4 0.17 6,426 31,000
0.05 0.05 6.19 · 10−9 6.23 · 10−5 0.17 25,452 125,000

Gaussian quadrature (order 2) 0.5 0.5 7.18 · 10−11 7.56 · 10−7 0.16 480 480
0.1 0.1 1.51 · 10−11 1.54 · 10−7 0.16 12,400 12,400
0.05 0.05 4.01 · 10−12 4.05 · 10−8 0.17 50,000 50,000

Gaussian quadrature (order 3) 0.5 0.5 9.20 · 10−13 9.69 · 10−9 0.16 1,080 1,080
0.1 0.1 1.89 · 10−14 1.93 · 10−10 0.16 27,900 27,900
0.05 0.05 1.39 · 10−14 1.41 · 10−10 0.19 112,500 112,500

Gaussian quadrature (order 4) 0.5 0.5 4.21 · 10−14 4.44 · 10−10 0.16 1,920 1,920
0.1 0.1 1.99 · 10−14 2.03 · 10−10 0.22 49,600 49,600
0.05 0.05 1.49 · 10−14 1.51 · 10−10 0.24 200,000 200,000

TABLE III
CKKS RUN TIME FOR THE GAUSSIAN QUADRATURE RULE OF ORDER 2

WITH DIFFERENT MULTIPLICATIVE DEPTHS.

hr hϕ

Time (in s) Time (in s)
(mult. depth = 0) (mult. depth = 26)

0.5 0.5 0.16 213.16
0.1 0.1 0.16 215.62
0.05 0.05 0.17 227.12

On top of that, the function evaluations contribute massively
to the computation time. As indicated in equation (3), the
function p to be evaluated entails the calculation of inverses
for σx′ and σz′ , as well as their squared values. Moreover,
it necessitates the evaluation of cosine, sine, and exponential
functions. Given that within fully homomorphic encryption
schemes, every function needs to be expressed in terms of
additions and multiplications, computing these components
poses a significant challenge.

To illustrate the computational complexities and time re-
quirements associated with such calculations, we perform
point evaluations of p utilizing the CKKS scheme with depth
26. For the sake of simplicity, we assume that the inverses of
σx′ , σz′ , and their squared values are known precisely without
further computation, which could, for example, be realized by
lookup tables. We subsequently approximate the exponential
function and the cosine function via their respective Taylor
series expansions, given by

exp(x) =

N1∑
n=0

xn

n!
and cos(x) =

N2∑
n=0

(−1)n
x2n

(2n+ 1)!

for approximation orders N1, N2 ∈ N. Table IV presents
the calculated error, computational time, and number of

TABLE IV
HOMOMORPHIC APPROXIMATION OF A SINGLE FUNCTION EVALUATION
p(y, ϕ) USING CKKS FOR APPROXIMATION ORDERS N1 AND N2 WITH

PARAMETERS y = 5, σx′ = 50, σz′ = 25 (IN METERS), AND ϕ = 2π. WE
LIST RUN TIME, NUMBER OF BOOTSTRAPPING STEPS (BS), ABSOLUTE

AND RELATIVE ERROR, AND NUMBER OF ADDITIONS (+) AND
MULTIPLICATIONS (·).

N1 N2
Time # of Abs. error Rel. error # of
(in s) BS (in %) + / ·

5 5 363.79 4 3.39 · 10−4 53.51 12 / 30
5 10 449.02 5 4.80 · 10−9 7.58 · 10−4 17 / 40

10 10 650.64 7 5.48 · 10−10 8.65 · 10−5 22 / 50
10 15 2,439.25 25 5.58 · 10−8 8.81 · 10−3 27 / 60

bootstrapping steps for the single point evaluation p(y, ϕ),
where y = 5, ϕ = 2π, σx′ = 50, and σz′ = 25 (in meters).
The results indicate that the precision of the calculation
is inherently limited by the parameters of the CKKS
homomorphic encryption scheme. Specifically, augmenting
the multiplicative depth to achieve higher precision comes
at the cost of increased computational time. It is worth
noting that the results presented in the table pertain to
a single point evaluation. However, the CKKS scheme
does offer the possibility of parallelizing computations
across multiple slots, which could potentially accelerate the
process. Nevertheless, this parallelization also introduces an
additional, non-negligible error due to the scaling operation
being performed across all slots simultaneously.

As indicated in [12], the relative error of the approximation
of the collision probability by to the method of Foster and
Estes in use is in the range of 10−6 percent. If we aim to reach
a similar level with homomorphically encrypted calculations,
precise calculation of the function evaluations is necessary.



But as shown above, this requires a large multiplicative
depth, which in turn results in prohibitively large computation
times. Furthermore, our model still incorporates certain
simplifications that would need to be addressed in real-world
applications. In an operational context, frequent updates of
the collision probability are necessary, underscoring the need
for an efficient and accurate computation method. Despite its
efficiency, the implemented scheme is not suitable to fulfill
all requirements simultaneously.

As mentioned before, the collision risk approximation by
Foster and Ester that we are basing our work on is just one
possible solution – other methods or representations might be
more suitable for homomorphic calculations. Depending on the
requirements for precision and run time, other schemes with
their own strengths and weaknesses may also be considered.
With the rapid development of more efficient schemes and
bootstrapping procedures, we see great potential for future
use of FHE in satellite collision risk analysis. As a result,
the increasing risk of satellite collisions, associated with a
potential satellite loss and an increasing amount of space
debris, can be minimized in a privacy-preserving manner.
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