

Numerical and Experimental Investigation of the Structural Behavior during Aircraft Emergency Landing on Water

Dr. Martin Siemann1,2, Dieter Kohlgrüber²

¹ Airbus Operations GmbH ² German Aerospace Center Structure Team Next Gen (1ARSNX) Institute of Structures and Design

Note that all work presented herein has been performed at the German Aerospace Center (DLR).

7 th Airbus & Ariane Group Sloshing & Ditching Symposium Hamburg, 20 Feb 2024

Background

- Aircraft emergency condition with controlled impact on water
- Analysis and proof of compliance required as part of aircraft type certification

- High forward velocity
- Hydrodynamic Phenomena
- Nonlinear structural response
- Complex fluid-structure interaction

State of the Art: Design & Certification Procedures

- **1. Comparison with A/C of similar design that were proven to satisfy ditching regulations**
- **2. Experiments using sub-scale models 3. Uncoupled numerical analyzes**

Experiment with EADS CASA CN-235 (1:8)

No Coupling 1. Analytical Method 2. FEA [3] $2D$ *p(t,x)* EADS CASA CN-235 $\frac{1}{\sqrt{4}}$ [4] [3] Pérez et al., *Survey of aircraft structural dynamics non-linear problems and some recent solutions*, The Aeronautical Journal 115, pp. 653–668, 2011. [4] Climent et al., *Aircraft Ditching Numerical Simulation*, in: 25th ICAS, Hamburg, Germany, 2006.

US Airways A320, Januar 2009, Hudson River, New Jersey, USA

[1] http://img.planespotters.net/media/photos/original/076000/PlanespottersNet_076460.jpg, Zugriff 15.06.2016

[2] NTSB, *Structures Group Chairman's Factual Report, Attachment 2, Photos, SA-532 7-F*, Technical Report Addendum 1, NTSB, Washington DC, USA, 2009.

Claim and Research Questions

How and to which extent?

Which mechanisms characterize and affect the structural response?

Structural deformations significantly affect the hydrodynamic loads acting during a ditching as they **modify the boundary conditions** the fluid is facing.

Therefore, they should be taken into account for an **accurate assessment of the structural behavior** through **coupled simulations**.

> Can the SPH-FE approach predict the structural response?

Investigated Cases

(1) Guided Ditching Experiment (SMAES¹ **)**

 \rightarrow Fundamental knowledge and validation

¹ SMAES = SMart Aircraft in Emergency Situations [1] http://img.planespotters.net/media/photos/original/076000/PlanespottersNet_076460.jpg, Accessed 15.06.2016

(2) Generic lower fuselage panel

 \rightarrow Transfer toward application

Key Experimental Findings

Simulation Approach and Models

Simulation Results & Analyses

Conclusion and Outlook

Guided Ditching Experiment – Overview

ON STITUTO DI INGEGNERIA DEL MARE

High-speed camera

Instrumentation

- **Accelerations**
- Velocity
- Forces
- Pressures
- Strains

 \rightarrow **Structural deformations significantly**

- **Lower peak pressures** that are still of short duration, thus, insignificant for structural loading
- More voluminous p -*t* curves \rightarrow integral p(t) dt larger **momentum increases**

 \rightarrow **Structural deformations significantly increase hydrodynamic loads**

- **Higher normal forces** over complete impact duration
- Distinct normal force peaks prior to leading edge immersion

 \rightarrow **Structural deformations significantly**

- **Lower peak pressures** that are still of short duration, thus, insignificant for structural loading
- More voluminous p -*t* curves \rightarrow integral p(t) dt larger **momentum increases**

 \rightarrow **Structural deformations significantly increase hydrodynamic loads**

- **Higher normal forces** over complete impact duration
- Distinct normal force peaks prior to leading edge immersion

- **Lower peak pressures** that are still of short duration, thus, insignificant for structural loading
- More voluminous p -*t* curves \rightarrow integral p(t) dt larger **momentum increases**

 \rightarrow **Structural deformations significantly increase hydrodynamic loads**

- **Higher normal forces** over complete impact duration
- Distinct normal force peaks prior to leading edge immersion

- **Lower peak pressures** that are still of short duration, thus, insignificant for structural loading
- More voluminous p -*t* curves \rightarrow integral p(t) dt larger **momentum increases**

$→$ **Structural deformations significantly increase hydrodynamic loads**

- **Higher normal forces** over complete impact duration
- Distinct normal force peaks prior to leading edge immersion

- **Lower peak pressures** that are still of short duration, thus, insignificant for structural loading
- More voluminous p -*t* curves \rightarrow integral p(t) dt larger **momentum increases**

$→$ **Structural deformations significantly increase hydrodynamic loads**

- **Higher normal forces** over complete impact duration
- Distinct normal force peaks prior to leading edge immersion

• Results are qualitatively associated to three **key mechanisms of structural response**

Which mechanisms are the key contributors?

Key Experimental Findings

Simulation Approach and Models

Simulation Results & Analyses

Conclusion and Outlook

Objectives

- Simple and robust
- Efficient
- Accurate (structural response)

Challenges

- Multiscale problem in time and space
- Nonlinear structural response
- Large fluid displacements
- Complex free surface shapes

SPH-FE Approach

Investigated Cases

(1) Guided Ditching Experiment (SMAES¹ **)**

 \rightarrow Fundamental knowledge and validation

¹ SMAES = SMart Aircraft in Emergency Situations [1] http://img.planespotters.net/media/photos/original/076000/PlanespottersNet_076460.jpg, Accessed 15.06.2016

(2) Generic lower fuselage panel

 \rightarrow Transfer toward application

Structural Models

Key Experimental Findings

Simulation Approach and Models

Simulation Results & Analyses

Conclusion and Outlook

70 80 90 **Analysis of Structural Response** 60 50 40 3 mm AL panel 30 **Initial mesh** *vX,0* = 40 m/s, *α* = 6° • Concave curvature \sqrt{a} \sqrt{a} \sqrt{a} \sqrt{a} \sqrt{b} amplified) $e = 10$ (2 x amplified) • Local reduction of vertical velocity $\alpha^*\Delta+i+1$ (temporary) • Change of local pitch angle def. \mathcal{Y} ------ starr $v_{X,0} = 45$ m/s & $\alpha = 4^{\circ}$ $v_{X,0} = 40$ m/s & $\alpha = 6^{\circ}$ $17.5 \frac{v_{X,0} = 30$ m/s & $\alpha = 10^{\circ}$ 17.5 10^{-1} \circ 15.0 \circ 15.0 15.0 $\overline{\circ}$ $20 -20$ $\bar{1}\bar{2}.\bar{5}$ $\frac{12.5}{10.0}$ σ^* 12.5 σ^* σ^* 10.0 $10₀$ 7.5 7.5 80 Local Pitch Local Pitch Local Pitch $\frac{5.0}{2.5}$ $\frac{5.0}{2.5}$ $\frac{5.0}{2.5}$ $\overline{0}$. $\overline{0}$ $0.($ -2.5
 -5.0 -2.5
 -5.0
 -7.5 -2.5 -5.0 $V_{\rm\ddot{\rm\ddot{\rm\bf R}}}$ $V_{\rm DLR}$ $V_{\rm DLR}$ $-\tilde{7}\cdot\tilde{5}$ -7.5 20 20 40 60 80 100 120 20 120 60 80 100 120 40 60 80 100 40 Time $t [ms]$ Time t [ms] Time t [ms]

Analysis of Structural Response

vX,0 = 40 m/s & *α* = 6°

Results (Generic Lower Fuselage Panel)

- Qualitatively similar normal force time histories compared to GDS with unstiffened panels
- Progressive increase due to convex curvature

→ Structural deformations significantly increase hydrodynamic loads

Analysis of Structural Response II

10

 Ω

 -20

 -10

*v*_{*X*} = 40 m/s, α = 6°, t_{sk} = 0.8 mm, t_{str} = 1.0 mm

20

Key Experimental Findings

Simulation Approach and Models

Simulation Results & Analyses

Conclusion and Outlook

Conclusions

- **1. Fundamental knowledge about structural response** under characteristic ditching loads established (experimental & numerical)
	- **Structural deformations significantly increase hydrodynamic loads** during water impact at ditching conditions
- **2. Coupled simulation approach** for **analysis of structural response** developed, validated, and assessed based on simple structures and applied to generic lower fuselage panels
	- **→ Detailed investigation and assessment of structural response became possible**

• The application of **coupled numerical approaches** is recommended for an **accurate analysis of the structural behavior**.

Conclusion⁰⁰

[1] Siemann, M. H. (2016) **Numerical and Experimental Investigation of the Structural Behavior During Aircraft Emergency Landing on Water.** Dissertation, University of Stuttgart.

+ 5 journal / 13 conference papers (incl. presentations) and 4 BSc/MSc thesis during 2011-2017

during ditching? (How? To which extent? …)

Outlook

• **Transfer to larger structures incl. structural failure**

• Full aircraft ditching simulation \rightarrow effects of local deformations on global aircraft kinematics

→ Continuous research at DLR-BT-SIN (Stuttgart) to extend ditching **numerical simulation capabilities**

Thank you for your attention!

Numerical and Experimental Investigation of the Structural Behavior during Aircraft Emergency Landing on Water

Dr. Martin Siemann1,2, Dieter Kohlgrüber²

¹ Airbus Operations GmbH ² German Aerospace Center Structure Team Next Gen (1ARSNX) Institute of Structures and Design

martin.siemann@airbus.com, dieter.kohlgrueber@dlr.de

