
Belief propagation for general graphical models with loops

Pedro Hack,1, 2, ∗ Christian B. Mendl,1, † and Alexandru Paler3, ‡

1Technical University of Munich, Germany
2German Aerospace Center, Germany

3Aalto University, Finland

Belief Propagation (BP) decoders for quantum error correcting codes are not always precise.
There is a growing interest in the application of tensor networks to quantum error correction in
general and, in particular, in degenerate quantum maximum likelihood decoding and the tensor
network decoder. We develop a unified view to make the generalized BP proposal by Kirkley et. al
explicit on arbitrary graphical models. We derive BP schemes and provide inference equations for
BP on loopy tensor networks and, more generally, loopy graphical models. In doing so we introduce
a tree-equivalent approach which allows us to relate the tensor network BlockBP to a generalized
BP for loopy networks. Moreover, we show that the tensor network message passing approach relies
essentially on the same approximation as the method by Kirkley. This allows us to make tensor
network message passing available for degenerate quantum maximum likelihood decoding. Our
method and results are key to obtaining guidelines regarding how the exchange between complexity
and decoding accuracy works between BP and tensor network decoders. Finally, we discuss how the
tree-equivalent method and the method by Kirkley can justify why message scheduling improves
the performance of BP.

I. INTRODUCTION

Graphical models are used as error correction tools in
classical and quantum error correction [1–6]. In both
of them, a graphical model contains all the available in-
formation that one has in order to correct errors. This
information, however, is only implicitly available and has
to be brought forward via some computation. It is in
this computation where the complexity issue, otherwise
known as the decoding problem, lies.

The most extended approach to the decoding problem
is belief propagation(BP) [1], an algorithm introduced in
cognitive sciences [7] that allows to compute quantities
that are relevant to decoding, like the partition function,
internal energy, Shannon entropy or marginal over a few
variables, in a computationally non-expensive way.

Provided the graphical model under consideration is a
tree, BP achieves exact results [1, 7]. Despite the fact
that BP has been empirically shown to work somewhat
well for graphical models that locally resemble trees [8],
the issue remains that the exactness deteriorates as the
graphical models becomes more loopy.

To obtain a method that improves on BP whenever it
is not accurate, a natural approach is to try to better
account correlations by computing them exactly, that is,
to use more computational power in order to obtain ac-
curacy. The first such attempt was named generalized
BP [9], an approach that was celebrated when it was in-
troduced [10–12], and that is still pursued, even within
the quantum error correction community [13].

The main problem with generalized BP is that it does
not provide a specific recipe, but rather a general ap-

∗ pedro.hack@tum.de
† christian.mendl@tum.de
‡ alexandru.paler@aalto.fi

proach that ought to be tuned to the concrete case in
consideration. This was realized by Kirkley, Cantwell
and Newmann [14, 15], which lead them to the devel-
opment of a new method (in the following, the KCN-
approach or KCN-method) that, although following
an idea similar to generalized BP, provides an explicit
construction. Despite its success, however, the method
has the drawback that it only applies to networks.

A. Motivation

Recently, and given the growing interest in the appli-
cation of tensor networks to quantum error correction in
general [5, 16–20] and in degenerate quantum maxi-
mum likelihood decoding [3, 6] and the tensor net-
work decoder [21–25] in particular, approaches similar
to KCN-method have been introduced in the context of
tensor networks.

KCN-approaches follow the basic idea already in gen-
eralized BP in two different ways: either they construct
a new tensor network by grouping tensors together, like
BlockBP does [26, 27], or, in the spirit of the KCN-
method, they construct several directed graphs by group-
ing tensors together and combine the results given by
them when doing inference, like tensor network mes-
sage passing does [28]. Here, we relate these two sorts
of approaches and extend them to arbitrary graphical
models.

B. Contribution

First, we introduce the tree-equivalent method
(and its inference equations), an approach for networks
that is closely related to BlockBP but follows the graph
decomposition in the KCN-method. We relate the tree-

mailto:pedro.hack@tum.de
mailto:christian.mendl@tum.de
mailto:alexandru.paler@aalto.fi

2

equivalent method in terms of accuracy and complexity
to the KCN-method (Section II B).

Second, we extend both the tree-equivalent and the
KCN-method to tensor networks (Section IV) and then
to graphical models (Section V). We provide inference
equations for both of them. As a result, we improve on
tensor network message passing by providing an algo-
rithm that works for any tensor network and obtaining
inference equations for global quantities. This results in
the method being useful for degenerate quantum maxi-
mum likelihood decoding [3, 27] (Section VI A).

We also improve on the relation between graphical
models and its two simplest subfamilies (Appendix D),
provide a less complex generalization of the KCN-method
to arbitrary graphical models given some symmetry prop-
erties (Appendix C) and use the KCN-method to justify
the improvement on BP given by scheduling in some in-
stances (Appendix VI C).

II. BACKGROUND

A. Graphical models

Take a bipartite graph G = (F ∪ V, E) whose edges E
join elements in F with elements in V. A graphical model
on G is a function

P (x1, . . . , xn) = 1
Z

∏
a∈F

fa(x∂a), (1)

that is defined via a set of functions {fa}a∈F , fa :
{xi}i∈∂a → C (also known as factors or potentials), a
set of variables {xi}i∈V and a normalization constant or
partition function

Z =
∑

x1,...,xn

∏
a∈F

fa(x∂a). (2)

In particular, for all a ∈ F , the factor fa depends on xi

provided there exists some e ∈ E joining them and we
use the notation ∂a and x∂a for the set of variables that
fa depends on and for a specific configuration of them,
respectively. In fact, we will indistinctly refer to fa as
a for all a ∈ F . Similarly, when dealing with a variable
xi, we will indistinctly refer to it by its associated node
i ∈ V , and use the notation ∂i for the set of functions
that depend on xi.

We will use the following definitions and conventions:

• Given a graphical model P , we call its associ-
ated graph G the factor graph or the Tanner
graph [1];

• all the considered graphical models are connected,
such that the associated factor graph is connected;
otherwise, we simply apply our analysis to each of
its connected components;

(a) (b)

(c)

FIG. 1: The classes of graphical models we consider
here: (a) General graphical model, (b) network, and (c)

tensor network.

• we assume all graphs to be undirected, unless ex-
plicitly stated otherwise;

• each variable xi takes values from the same finite
set X fulfilling |X| ≥ 2 for simplicity;

• in the context of error correction, we study the
restricted case where fa : {xi}i∈∂a → R≥0 for
all a ∈ F , the so-called probabilistic graphi-
cal models [1, 7, 29]. Nonetheless, we consider
a specific case of interest [19, 23, 25, 30] where
fa : {xi}i∈∂a → C in Appendix G.

We consider the following classes of graphical models
(Figure 1):

• networks [14] (also known as graphical models with
pairwise potentials [9]) are graphical models whose
functions {fa}a depend at most on two variables,
|∂a| ≤ 2 for all a ∈ F ;

• tensor networks [31, 32] are graphical models such
that, for each variable xi, there are at most two
functions that depend on xi, |∂i| ≤ 2 for all i ∈ V

B. The KCN-Method: BP for networks with loops

Since the functions that compose a network P only
depend on at most two variables, P admits a simple rep-
resentation via a graph G = (V, E), where we associate
one node in V to each variable in P and one edge in E
to each function in P . Moreover, a node is an endpoint
of an edge whenever the function associated to the edge
depends on the variable associated to the node. We call
G the simplified factor graph associated to P .

An example of a factor graph and its associated sim-
plified factor graph can be found in Figure 2. Note that,
in the following, we assume we are given a network whose
functions depend exactly on two variables. If there were

3

(a) (b)

FIG. 2: The factor graph of a network (a), and its
associated simplified factor graph (b).

some functions depending on a single variables, these can
be naturally incorporated into the scheme [14].

In order to introduce their BP equations on a network,
Kirkley et al. [14] define the following neighborhoods (i.e.
subgraphs of the simplified factor graph G) given some
parameter ℓ0 ∈ N, which we call the KCN-parameter,
and some variables i, j ∈ V:

(i) The neighborhood around variable i, N ℓ0
i , includes

node i plus the edges that have it as endpoint and
the other endpoints of its edges (i.e. the nearest
neighbors of i in V), together with the edges and
nodes that belong to a path of length ℓ0 − 2 or
less connecting two nearest neighbors of i. (Note
that we use the parameter ℓ0 in N ℓ0

i with a slightly
different different meaning compared the original

notation in [14]. In particular, what we call N ℓ0
i

corresponds to N ℓ0−2
i in the notation they use.)

(ii) The neighborhood difference from variable i to j,
N ℓ0

i\j , consists of i together with all the edges that
belong to N ℓ0

i and are not included in N ℓ0
j plus the

nodes at their ends.

In what follows, for simplicity, we may drop the pa-
rameter ℓ0 and simply write Ni or Ni\j . Note that we,
once we choose the parameter ℓ0, we use it to construct
all the neighbourhoods.

Using these neighborhoods, Kirkley et al. [14] proposed
a variation of BP, the KCN-method or KCN-approach,
that uses the set of messages

{m(t)
i→j}i∈V,j∈Ni,t≥0, where

m
(t)
i→j : X → R≥0.

(3)

In their variation, the messages are uniformly initial-
ized,

m
(0)
i→j(xi) ≡ 1/|X| for all xi ∈ X, (4)

and are updated, for t ≥ 0, according to the following
equation:

m
(t+1)
i→j (xi) ≡ 1

M
(t+1)
i→j

∑
xNi\j

\xi

∏
a∈Ni\j

fa(x∂a)
∏

k∈Ni\j

m
(t)
k→i(xk) for all xi ∈ X, (5)

where M (t+1)
i→j is a normalization constant

M
(t+1)
i→j ≡

∑
xNi\j

∏
a∈Ni\j

fa(x∂a)
∏

k∈Ni\j

m
(t)
k→i(xk), (6)

and xNi\j
denotes the set of variables in Ni\j . (Note that,

in general, the normalization of messages in BP schemes
is not an actual theoretical necessity, but a practical addi-
tion to avoid numerical underflow [7, 33]. Preventing this
will justify the appearance of normalization constants in
all the update equations that follow.) Note also that,
in the following, we will give preference to the compact
tensor notation tr(·) [31] to avoid explicitly writing the
variables in the sum like those in Eq. (5). Similarly, we
denote by tr\A(·) the trace over the variables outside of
a set A.

Once the update equations have converged (or we have
ran out of iterations), Kirkley et al. [14] provide infer-
ence equations through which we can compute quantities
of interest like marginals, the internal energy, Shannon
entropy or the partition function.

Importantly, whenever the length of the loops in G is
bounded by the KCN-parameter ℓ0, the inference equa-

tions provide exact values for the computed quantities.
This is the case since, whenever the bound holds, we can
use the neighborhoods to construct a tree equivalent to
the original network.

Note that, in case the KCN-parameter is smaller than
the largest loops length, the update equations are still
well defined, although they are no longer exact. Still,
these equations have been reported to give good results
in this context [14].

III. A TREE-EQUIVALENT APPROACH TO
NETWORKS

We can think of the KCN-method as computing over
several trees (one per node in G) and then, when do-
ing global inference, averaging over the inference results
each tree provides. To explain this into more detail, we
show how to construct a tree starting from each individ-
ual node (Section III A) and discuss how this method is
related to the KCN-approach (Section III B).

4

A. Construction method

In order construct a tree with parameter ℓ0, we can
use the following procedure:

(Pi) Pick randomly a node i0 ∈ V, which in the following
we call the seed, and take A = {i0}.

(Pii) While there exist vertices in Ni0 \ A that are con-
nected to vertices outside of Ni0 , pick randomly any
such that a vertex i ∈ Ni0 \A and add it to A.

(Piii) Take as i the first element in A such that there
exist vertices in Ni\p(i) \ A that are connected to
vertices outside of Ni\p(i), where p(i) is the parent
of i in A (that is, the element through which i was
added to A), pick randomly any such that a vertex
i ∈ Ni\p(i) \A and add it to A.

(Piv) Repeat (Piii) until A = V.

Given some i ∈ A, we will denote the descendants of
i, that is, the set of j ∈ A such that p(j) = i, by D(i).

If we take G0 the graph whose vertices are in the set

{Ni0} ∪ {Ni\p(i)}i∈A\{i0} (7)

and whose edges connect Ni0 with Ni\p(i) provided p(i) =
i0 and Ni\p(i) with Nk\p(k) provided p(i) = k, then, by
construction, G0 is a tree.

One can run a BP algorithm similar to the one pro-
posed by the KCN-method on this graph, where, if we
relabel the vertices in Eq. (7) taking i0 for Ni0 and i for
Ni\p(i), then we can define the set of messages

{m(t)
i→p(i),m

(t)
p(i)→i}i∈A,t≥0, where

m
(t)
i→p(i),m

(t)
p(i)→i : X → R≥0.

The messages are uniformly initialized,

m
(t)
i→p(i)(xi),m(t)

p(i)→i(xi) ≡ 1/|X| for all xi ∈ X, (8)

and are updated, for t ≥ 0, according to the following
equations:

m
(t+1)
i→p(i)(xi) ≡ 1

M
(t+1)
i→p(i)

tr

Si\p(i)
∏

k∈D(i)

m
(t)
k→i


m

(t+1)
p(i)→i(xi) ≡ 1

M
(t+1)
p(i)→i

tr

Sp(i)\p(p(i))m
(t)
p(p(i))→p(i)

∏
k∈D(p(i))\{i}

m
(t)
k→p(i)

 (9)

for all xi ∈ X, where {Si\p(i)}i∈A denotes the product
of functions included in either Ni\p(i), provided i ∈ A \
{i0}, or Ni0 , if i = i0, and M

(t+1)
i→p(i) and M

(t+1)
p(i)→i are

normalization constants

M
(t+1)
i→p(i) ≡

∑
xi

tr

Si\p(i)
∏

k∈D(i)

m
(t)
k→i


M

(t+1)
p(i)→i ≡

∑
xi

tr

Sp(i)\p(p(i))m
(t)
p(p(i))→p(i)

∏
k∈D(p(i))\{i}

m
(t)
k→p(i)

 .
(10)

Once the messages have converged, and denoting them
by {mi→p(i),mp(i)→i}i∈A\i0,t≥0, we can use the following
inference equations:

(Ii) To compute the marginals pi, provided i ∈ Nj\p(j),
we use the following equation:

pi(xi) = 1
Mi

tr\xi

Sj\p(j)mp(j)→j

∏
k∈D(j)

mk→j



for all xi ∈ X, where Mi is a normalization con-
stant:

Mi ≡ tr

Sj\p(j)mp(j)→j

∏
k∈D(j)

mk→j

 .

(Iii) To compute the internal energy U , we use the fol-
lowing equation:

U = −
∑
a∈F

1
Z∂a

tr

log (fa)Sia\p(ia)
∏

k∈D(ia)

mk→ia

 ,

(11)
where Z∂a is a normalization constant

Z∂a ≡ tr

Sia\p(ia)
∏

k∈D(ia)

mk→ia


and Nia\p(ia) denotes the neighborhood that fa be-
longs to.

5

(Iiii) The partition function Z can be computed through
the following equation:

Z =
∏
a∈A

tr

Sia\p(ia)m̂p(ia)→ia

∏
k∈D(ia)

m̂k→ia

 , (12)

where {m̂i→p(i), m̂p(i)→i}i∈A\{i0},t≥0 is a rescaling
of the messages such that

Tr
(
m̂i→p(i)m̂p(i)→i

)
= 1. (13)

(Iiv) The Shannon entropy S can be computed via the
following equation from statistical mechanics:

S = logZ + U. (14)

Instead of proving these inference equations now, we
will show how to derive similar equations in other con-
texts (namely, (Ii) and (Iii) can be derived as Eq. (18)
and Eq. (20) and (Iiii) as Eq. (33)).

In case we group using a KCN-parameter that is
smaller than the largest loop length, we can also asso-
ciate a graph G0 (which will not be a tree), and use the
same inference equations (adapted for the new topology
of the graph in a natural way). In particular, in order
to construct this graph, we follow (Pi)-(Piv) and then,
instead of using {Si\p(i)}i∈A in the update equations, we
use {Sim\∪m−1

n=1 in
}m≥0, where A = (im)m≥0 is a number-

ing of A according to the order in which they are incor-
porated following (Pi)-(Piv). Note that, in this instance,
some messages will have dimension larger than |X|.

To complement this section, we consider another tree-
equivalent method in Appendix H.

B. The tree-equivalent method vs the
KCN-methods

The tree-equivalent method can explain why the KCN-
method is exact only when the largest loop length is
bounded by the KCN-parameter. Moreover, in Ap-
pendix VI C we discuss how the relation between the
tree-equivalent and the KCN-method can provide some
justification to the improvement on BP given by schedul-
ing.

We can think of the KCN-method as creating one tree
Gi

0 following (Pi)-(Piv) using each i ∈ G as seed node. In
particular, the KCN-method follows (Pi)-(Piv) for each
i ∈ G except for the fact that the tree is directed, in
the sense that the edge between each pairs of nodes in
that tree is directed from Nj\p(j) to Np(j)\p(p(j)). The
edge direction means that we only send a single messages
along the edge. Once the messages have converged, we
average (in some sense) the inference results given by
each of them to obtain the quantities of interest.

One may think that Kirkley et al. give preference to
their method over the tree-equivalent one since it allows,

at least provided the loop length is bounded by the KCN-
parameter, to reduce the computational complexity while
keeping the accuracy intact. However, this is not neces-
sarily the case (Appendix A):

• when there are only bounded loops (i.e. the
KCN-parameter bounds the loops lengths), one can
find for most graphs G a seed such that either the
tree-equivalent method is less complex than the
KCN-method, or vice versa;

• when there are unbounded loops (i.e. with
length larger than the KCN-parameter), it may
be difficult to predict which seed to use in the
tree-equivalent method in order to achieve the best
trade-off between accuracy and complexity.

In the case of unbounded loops, averaging over all pos-
sible trees as the KCN-method does is a sensible choice.
In particular, note that the KCN-method does not just
run a set of tree-equivalent methods in parallel, but pro-
vides a way that can potentially reduce the runtime com-
plexity.

In general, we are interest in the unbounded loop case,
such that it feels more natural to use the KCN-method
for our analysis. Therefore, in Section IV and Section V,
we will first build inference equations for the bounded
loop case, and then continue by generalizing it to the
unbounded loop case.

IV. BP FOR LOOPY TENSOR NETWORKS

The KCN-method can be adapted to tensor networks.
The same holds for the tree-equivalent method for the
reasons discussed in Section III B. In Section VI B we
show that BlockBP [26, 27] is actually an instance of
this method on tensor networks.

Since the variables that compose a tensor network
T = (Ti)i are only shared (at most) by two functions,
T admits a simple representation via a graph G = (V, E),
where we associate one node in V to each function in T
and one edge in E to each variable in T . Moreover, a
node is an endpoint of an edge whenever the function
associated to the node depends on the variable associ-
ated to the edge. We call G the simplified factor graph
associated to T . An example can be found in Figure 3.
(Note that, in the following, we assume we are given a
tensor network whose variables are shared exactly by two
tensors. If there were some variables such that a single
tensor depends on them, the so-called dangling edges,
these can be naturally incorporated into the scheme.)

Note that, in the case of tensor networks, the normal-
ization constant of the graphical model coincides with the
trace of the tensor network Z = tr(T). Recall, further-
more, that we assume the tensor networks in this work to
be connected. (Otherwise, we apply our method to each
connected component.)

6

(a) (b)

FIG. 3: The factor graph of a tensor network (a) and its
associated simplified graph (b).

In order to provide a BP algorithm for tensor networks
in the spirit of [14], we first consider the case where the
maximal loop length ℓ is bounded by the KCN-parameter
ℓ0, ℓ ≤ ℓ0, and then the case where ℓ > ℓ0. The reason
we consider them separately is that, contrary to the case
of networks, the update equations will no longer be well
defined when the loop bound is not fulfilled and we have
to introduce new messages in that scenario.

Before we introduce the update and inference equa-
tions, we define some neighborhoods that fulfill a role
similar to those in Section II B.

In fact, the definitions in our case can be used to write
the update equations directly, simplifying their form.

Given tensor Ti, we define its ℓ0-tensor-neighborhood
Sℓ0

i as Ti together with its nearest tensor-neighbors plus
all the tensors that belong to a path of length lower or
equal to ℓ0 that joins two nearest tensor-neighbors to
Ti. Since the neighborhood is defined using only ten-
sors (that is, only vertices in the simplified associated
graph), and given another tensor Tj , we can define the
analogous of the neighborhood difference, namely the
ℓ0-tensor-neighborhood difference Si\j , and the related
ℓ0-tensor-neighborhood intersection Sℓ0

i∩j , directly via set
operations on the tensor-neighborhoods,

Sℓ0
i\j ≡ Sℓ0

i \ Sℓ0
j ,

Sℓ0
i∩j ≡ Sℓ0

i ∩ Sℓ0
j .

As in the case of networks, we drop the ℓ0 index in the
following for simplicity.

A. Bounded loop length

In case the loops’ length is bounded by ℓ0, we can
define the BP equations similar to those in [14]. We
define the set of messages

{m(t)
i→j}i∈V,j∈Ni,t≥0, where

m
(t)
i→j : X |Ti\j | → R≥0

and Ti\j denotes the set of variables that Ti depends on
and that are shared by some tensor that does not belong
to Sj . (In the following, in case |Ti\j | = 0, we assume
mi→j to have dimension one and to be equal to one for
simplicity.)

We initialize the messages uniformly

m
(0)
i→j(xi\j) ≡ 1/|X||Xi\j | for all xi\j ∈ Ti\j , (15)

and update them, for t ≥ 0, according to the following
equation:

m
(t+1)
i→j (xi\j) ≡ 1

M
(t+1)
i→j

tr

Si\j

∏
k∈Si\j

m
(t)
k→i

, (16)

where M (t+1)
i→j is a normalization constant

M
(t+1)
i→j ≡

∑
xi\j

tr

Si\j

∏
k∈Si\j

m
(t)
k→i

. (17)

Note that the approach in [30] corresponds to a weaker
version of ours where the neighborhood does not even
include the nearest neighbors of the tensor but only the
tensor itself.

Given the fact that we group using the bound on the
loops ℓ0, the iteration of the previous equations converges
to a fixed point, that is, m(T +k)

i→j = m
(T)
i→j for all k ≥

0, where T is the diameter of a certain graph that is
associated to the grouping procedure. We denote the
set of converged messages by eliminating the time label
{mi→j}i∈V,j∈Ni,t≥0, where mi→j = m

(T)
i→j .

Once the messages have converged, we can use them
to infer local and global quantities of interest, like
marginals, the internal energy, the partition function and
the Shannon entropy. In particular, as we show in Ap-
pendix B, we have the following equations:

(Ei) The marginal over variable i, pi, fulfills the follow-
ing equation:

pi(x) = 1
2Zi1

tr\xi

Si1

∏
k∈Si1

mk→i1

+ 1
2Zi2

tr\xi

Si2

∏
k∈Si2

mk→i2

 for all x ∈ X, (18)

7

where Ti1 and Ti2 are the tensors that depend on
variable i, and Zi1 and Zi2 are, respectively, nor-
malization constants

Zij
≡ tr

Sij

∏
k∈Sij

mk→ij

 (19)

for j = 1, 2.

(Eii) In order to compute the internal energy U , we treat
the tensor network as if it were encoding a Boltz-
mann distribution. In particular, if we denote by
∂Ti the set of variables that tensor Ti depends on,
and we associate to the tensor network a set of en-
ergy functions {Ei}i∈G , where

Ei : X |∂Ti| → R≥0, and
Ei(x∂Ti

) ≡ − log Ti(x∂Ti
) for all x∂Ti

∈ ∂Ti,

then we get that

U = −
∑
i∈V

1
Z∂Ti

tr
(

log (Ti)Si

∏
k∈Si

mk→i

)
, (20)

where Z∂Ti
is a normalization constant

Z∂Ti ≡ tr
(
Si

∏
k∈Si

mk→i

)
. (21)

(Eiii) The partition function Z = tr(T) can be computed
via the following equation:

Z =

∏
i∈V tr

(
Si

∏
j∈Si

mj→i

)
∏

((i,j))∈G tr
(
Si∩jmj→i

∏
k∈Si∩j

mk→j

) 2
|Si∩j |

,

(22)
where ((i, j)) ∈ G denotes the set of pairs of tensors
Ti, Tj such that Ti ∈ Sj and Tj ∈ Si.

(Eiv) Lastly, we can compute the Shannon entropy S via
Eq. (14).

B. Unbounded loop length

In this case, the inference equations are well defined,
but we may find instances where using the update equa-
tions directly may result in a contraction over tensor net-
works with missing legs. Figure 4 illustrates an example
of this situation.

The missing legs are not an issue in the network case
since all messages are vectors of dimension |X|. For ten-
sor networks, however, Eq. (16) is not well defined be-
cause the missing legs. In order for us to compute m(t+1)

i→j

for some t ≥ 0, we need to contract Si\j with m(t)
k→j for all

Tk ∈ Si\j . However, Si\j may contain tensors that share

(a)

(b)

FIG. 4: A subgraph of the lattice (a). The colored
dashed lines enclose the N4

i neighborhoods for the node
i of the same color. Using directly the update equations

in the KCN-method fails, since the message (b) from
the blue node to the red node is not well-defined, as it

does not contract over the edges in red.

some variables with tensors that belong to Si∩j \ {Si}.
Hence, by definition, these edges are not shared by m(t)

k→i
for any k ∈ Si\j and the contraction in Eq. (16) is not
well defined.

To solve the issue with the missing legs and the up-
date of m(t+1)

i→j for t ≥ 0, we will add some more mes-
sages. Before we do this formally, we first note that,
given Tk ∈ Si\j , we have, for each variable v that Tk

8

depends on, that v connects Tk to a tensor that is ei-
ther in (i) Si\j , (ii) Si∩j or (iii) T \ Si. Hence, since the
connections between tensor within Si\j are internal to
Si\j and the connections to tensors in T \ Si are those
in {m(t)

k→i}k∈Si\j
, it is sufficient to add a message m(t)

i∩j→i
with the dimension of the variables that connect tensors
in Si\j to tensors in Si∩j \{Si}. The new message m(t)

i∩j→i
also needs to be updated. Reasoning analogously, we can
compute m(t+1)

i∩j→i by contracting the tensors in Si∩j with
m

(t)
i→j and, for each Tk ∈ Si∩j \ {Si}, with m

(t)
k→i.

Formally, whenever the KCN-parameter is smaller
than length of the largest loops, then we define the set of
messages

{m(t)
i→j ,m

(t)
i∩j→i}i∈V,j∈Ni,t≥0, where

m
(t)
i→j : X |Ti\j | → R≥0 and

m
(t)
i∩j→i : X |Xi∩j→i| → R≥0,

with Ti\j having the same meaning as in Section IV A and
Xi∩j→i denoting the set of variables that connect tensors
in Si\j to tensors in Si∩j \{Si}. (In the following, in case
|Xi\j | = 0 or |Xi∩j→i| = 0, we assume m(t)

i→j or m(t)
i∩j→i,

respectively, to have dimension one and to be equal to
one for all t ≥ 0.)

We initialize the messages uniformly

m
(0)
i→j(xi\j) ≡ 1/|X||Ti\j |

for all xi\j ∈ Ti\j ,

m
(0)
i∩j→i(xi∩j→i) ≡ 1/|X||Xi∩j→i|

for all xi∩j→i ∈ Xi∩j→i,

and update them, for t ≥ 0, according to the following
equations:



m
(t+1)
i→j (xi\j) ≡ 1

M
(t+1)
i→j

tr
(
Si\jm

(t)
i∩j→i

∏
k∈Si\j

m
(t)
k→i

)
for all xi\j ∈ Ti\j ,

m
(t+1)
i∩j→i(xi∩j→i) ≡ 1

M
(t+1)
i∩j→i

tr
(
Si∩jm

(t)
i→j

∏
k∈Si∩j

m
(t)
k→i

)
for all xi∩j→j ∈ Xi∩j→j ,

(23)
where M (t+1)

i→j and M (t+1)
i∩j→i are normalization constantsM

(t+1)
i→j ≡

∑
xi\j

tr
(
Si\jm

(t)
i∩j→i

∏
k∈Si\j

m
(t)
k→i

)
,

M
(t+1)
i∩j→j ≡

∑
xi∩j→i

tr
(
Si∩jm

(t)
i→j

∏
k∈Si∩j

m
(t)
k→i

)
.

(24)
Note that Eq. (23) coincides with Eq. (16) provided

|Xi∩j→i| = 0, which is exactly the situation whenever
the loop length is bounded by the KCN-parameter.

An example of how we can solve the issues regarding
the update of the messages presented in Figure 4 using

(a)

(b)

FIG. 5: One sort of intersection message (a) and the
message update it enables (b). By symmetry, this figure

together with Figure 6 cover all cases.

the new messages can be found in Figures 5 and 6. Note
that the only two types of messages that we include are
sufficient since, by symmetry, the rest are essentially the
same.

As a last remark, note that the only issue when the
KCN-parameter is smaller than the maximal loop length
takes place in the update equations. Once we have con-
verged (or run out of iterations) we can use the same
inference equations (Ei)-(Eiv) as if the the maximal loop
length was bounded by the KCN-parameter.

The only issue is that, if that is not the case, then
the inference equations will no longer be exact, but ap-
proximate. The use of the same inference equations (up
to some minor modifications, see Appendix B), however,
is common in the BP field and goes back to the Bethe

9

(a)

(b)

FIG. 6: One sort of intersection message (a) and the
message update it enables (b). By symmetry, this figure

together with Figure 5 cover all cases.

approximation [1, 34]. (Note that the Bethe approxima-
tion essentially consists in overcounting the information
in certain variables and then subtracting what has been
overcounted [1], which is what we do when we infer the
partition function and entropy, the difference being that,
in our case, we overcount not only variables but also func-
tions.)

In some instances, it may be possible to find less com-
plex BP update rules by using some symmetries in the
graph. This is the case for the lattice, as we discuss in
Appendix C.

V. BP FOR LOOPY GRAPHICAL MODELS

The KCN-method can be adapted to arbitrary graphi-
cal models, too. Similarly, once more, the same holds for
the tree-equivalent method for the reasons discussed in
Section III B.

The intuition behind our extension is to treat variables
and factors in the same way when defining neighborhoods
and to only distinguish them when introducing the mes-
sages. At this stage we will treat factors in the spirit of
tensors from the tensor network approach, and variables
in the spirit of variables from the network approach.

To begin with, take a graphical model P and consider
its associated factor graph G = (F ∪ V, E). Following our
approach to tensor networks, for each vertex i ∈ F ∪ V,
we create a neighborhood Si as before and define Si\j

and Si∩j in the same way. We treat the factor graph of
a general graphical model as the simplified factor graph
of a tensor network.

A. Bounded loop length

In case the loops in G are bounded by the KCN-
parameter, we define the set of messages

{m(t)
i→j}i∈F∪V,j∈Ni,t≥0, where

m
(t)
i→j : X |Xi\j | → R≥0 if i ∈ F and

m
(t)
i→j : X → R≥0 if i ∈ V,

(25)

with Xi\j denoting the set of variables that factor i de-
pends on and that do not belong to to Sj .

We initialize the messages uniformly{
m

(0)
i→j(xi) ≡ 1/|X| for all xi ∈ X if i ∈ V,

m
(0)
i→j(xi\j) ≡ 1/|X||Xi\j | for all xi\j ∈ Xi\j if i ∈ F ,

(26)
and update them, for t ≥ 0, according to the following

equations:



m
(t+1)
i→j (xi) ≡ 1

M
(t+1)
i→j

tr\xi
(Si\j

∏
k∈Si\j

m
(t)
k→i)

for all xi ∈ X if i ∈ V,

m
(t+1)
i→j (xi\j) ≡ 1

M
(t+1)
i→j

tr\xi\j
(Si\j

∏
k∈Si\j

m
(t)
k→i)

for all xi\j ∈ Xi\j if i ∈ F ,
(27)

where M (t+1)
i→j are normalization constants defined as

before.
Once the messages have converged, we can take the set

of converged messages {mi→j}i∈F∪V,j∈Ni
and use them

for inference purposes as in Section IV. For instance, we
can compute the marginal pi for each i ∈ V via the fol-
lowing equation:

pi(xi) = 1
|∂i| + 1

(
1
Zi

tr\xi

(
Si

∏
k∈Si

mk→i

))

+ 1
|∂i| + 1

 |∂i|∑
j=1

1
Zij

tr\xi

Sij

∏
k∈Sij

mk→ij

 , (28)

10

where {ij}j=1,...,|∂i| are the factors that depend on
variable xi, and Zi and Zij

are appropriate normaliza-
tion constants.

As in the case of Eq. (18) and thinking of the case
where the KCN-parameter does not bound the loop

length, we again give preference to Eq. (28) since it av-
erages over the other inference equations for pi.

Assuming the graphical model represents a Boltzmann
distribution as in Section IV, we obtain the following
equation for the internal energy:

U = −
∑
i∈F

tr

log (Ti)
1

|∂Ti| + 1

 1
Z∂Ti

tr\∂Ti

(
Si

∏
k∈Si

mk→i

)
+
∑

j∈∂Ti

1
Zj

tr\∂Ti

Sj

∏
k∈Sj

mk→j

 , (29)

where Z∂Ti
and Zj for each j ∈ ∂Ti are appropriate nor-

malization constants.

Regarding the partition function and Shannon entropy,
we can use the same formulas as for the tensor net-
work case, namely Eq. (22) and Eq. (14), with the set of
neighborhoods that corresponds to an arbitrary graph-
ical model and a slight modification. In particular, for
the partition function, we take Si∩j to be the set of fac-
tors within Ni\j while |Si∩j | counts all vertices within
Si∩j . For Shannon entropy, we use the modified internal
energy and partition function.

B. Unbounded loop length

Whenever the loop length is not bounded by the KCN-
parameter, we again take care of the missing legs issue
by adding intersection messages. In this case, we define
the set of messages

{m(t)
i→j ,m

(t)
i∩j→i}i∈F∪V,j∈Ni,t≥0, where

{m(t)
i→j}i∈F∪V,j∈Ni,t≥0 is defined as in Eq. (25) and

m
(t)
i∩j→i : X |Xi∩j→i| → R≥0,

(30)

withXi∩j→i denoting the set of variables in Si∩j\{i} that
are connected to functions in Si\j . (In the following, in
case |Xi∩j→i| = 0, we assume m(t)

i∩j→i to have dimension
one and to be equal to one for all t ≥ 0.)

We initialize the messages uniformly following Eq. (26)
and

m
(0)
i∩j→i(xi∩j→i) ≡ 1/|X||Xi∩j | for all xi∩j→i ∈ Xi∩j→i,

(31)
and update them, for t ≥ 0, according to the following
equations:



m
(t+1)
i→j (xi) ≡ 1

M
(t+1)
i→j

tr\xi
(Si\jm

(t)
i∩j→i

∏
k∈Si\j

m
(t)
k→i)

for all xi ∈ X if i ∈ V,

m
(t+1)
i→j (xi\j) ≡ 1

M
(t+1)
i→j

tr\xi\j
(Si\jm

(t)
i∩j→i

∏
k∈Si\j

m
(t)
k→i)

for all xi\j ∈ Xi\j if i ∈ F ,

m
(t+1)
i∩j→i(xi∩j→i) ≡ 1

M
(t+1)
i∩j→i

tr\xi∩j→i
(Si∩jm

(t)
i→j×∏

k∈Si\j
m

(t)
k→i)

for all xi∩j→i ∈ Xi∩j→i,

(32)
where M (t+1)

i→j and M
(t+1)
i∩j→i are appropriate normaliza-

tion constants.
After convergence (or after we run out of iterations),

we use the inference equations for the case where the
KCN-parameter bounds the loop length.

To conclude, note that, in case the graphical model
is a network (tensor network), the update equations in
Eq. (32) reduce to Eq. (5) (Eq. (23)). Arguing along the
same lines of Appendix D, translating an arbitrary graph-
ical model to an equivalent network (or a tensor network)
and then using the BP methods defined for them is in
general suboptimal regarding complexity.

VI. UNIFYING BP FOR LOOPY TENSOR
NETWORKS

In this section, we discuss different approaches to BP
on tensor networks. In particular, we focus on two ap-
proaches which are related one to each other: tensor
network message passing [28], a variation of the KCN-
method, and block BP [26, 27], an instance of the tree-
equivalent approach. Appendix D discusses whether one
could simply map a tensor network into an equivalent
network and apply the KCN-method directly. To this
end, we consider the association of an equivalent simpler
graphical model to another one.

11

A. Tensor network message passing is the
KCN-method with different neighborhoods

The closer to our approach is the one by Wang, Zhang,
Pan and Zhang [28], where they provide a modification of
the algorithm by Kirkley at al. [14] that applies to certain
tensor networks associated with statistical mechanics. In
particular, they start from a network (just like [14] does)
and then turn it into a tensor network. The algorithm
they present, which they call tensor network message
passing, is then tailored to these specific types of ten-
sor networks. In particular, since the method essentially
passes messages between variables the way [14] does, the
issue with the missing leg does not occur. This prevents
their method from applying to general tensor networks.
In contrast, this does not occur for our method.

A second shortcoming in [28] is that no equation to
infer a global quantity, as is provided. The (local) in-
ference equations for they derive can be found in [28,
Equations (S7) and (S8)]. We will devote the rest of this
section clarify the relation between the method by Wang
et al. and that by Kirkley et al. and, as a result, we will
show that one can use the inference equations we derived
for the KCN-method also for the Wang method, which
we refer to as the WZPZ-method or WZPZ-approach.
This implies, that we make the WZPZ-method available
for quantum degenerate maximum likelihood decoding.

The key difference between the work by Wang et al. [28]
and that by Kirkley et al. [14] is the definition of the
neighborhoods. Although [28] introduces neighborhood
in the context of tensor networks, there is no difference if
we do so in the context of networks, which we can then
directly compare to Kirkley. In the following, we will
refer to the neighborhoods in the KCN-method as KCN-
neighborhood (and denote them by N ℓ,K

i) and to those
in the WZPZ-method as WZPZ-neighborhoods.

Given the simplified graph of a network G, we define
WZPZ-neighborhoods using a parameter that plays a role
similar to that of the KCN-parameter ℓ0 in the previous
discussion. Given a subset of the network N ⊆ G, the
outer distance of N , min(a,b)da,b(∂N), is the length of the
smallest path outside of N that connects two variables
in the boundary of N , a, b ∈ ∂N . (The boundary of N
refers to variables that have a function that depends on
them and is not contained in N .)

Given some variable i ∈ G and a parameter ℓ0,
its WZPZ-neighborhood NW,ℓ0

i is constructed by in-
corporating variables and functions into NW,ℓ0

i until
min(a,b)da,b(∂NW,ℓ0

i) ≥ ℓ0. More specifically [28], one
can construct NW,ℓ0

i by recursively adding variables and
edges as follows:

(Ri) Add i as well as all the edges connected to it and
the variables they connect it to.

(Rii) For each ℓ ≤ ℓ0 starting from ℓ = 1, add all vari-
ables and edges along paths of length ℓ or less that
connect a pair of variables in the boundary NW,ℓ0

i .

Repeat the procedure until neither edges nor vari-
ables can be added anymore. After that, start the
step again, this time with ℓ+1 (provided ℓ+1 ≤ ℓ0).

We refer to the iteration at which each node v (and anal-
ogously for each edge) is incorporated to NW,ℓ0

i as its
generation and denote it by gi(v) or, whenever i is clear,
g(v).

Although they use KCN-neighborhoods, both the ap-
proach by Kirkley et al. to networks and our approach to
tensor networks can analogously be applied using WZPZ-
neighborhoods or, respectively, their natural extension to
tensor networks. Moreover, we can use the same infer-
ence equations. To see this, let us argue as in the context
KCN-neighborhoods.

We start by assuming that the neighborhoods we use
{NW,ℓ0

i }i∈V take into account all the correlations in the
graph, min(a,b)da,b(∂NW,ℓ0

i) = ∞. If that is the case,
then one can show (see the proof of (Wvii) in Ap-
pendix E 1) that there exists some tℓ0 ∈ N such that

NW,ℓ0
i = N

K,tℓ0
i

for all i ∈ V. Hence, one is under the assumptions
where one can derive exact inference equations via KCN-
neighborhoods and, since the neighborhoods are equal,
the same equations also hold for WZPZ-neighborhoods.
This allows us to go beyond [28] and provide inference
equations for global quantities. If the assumption that
min(a,b)da,b(∂NW,ℓ0

i) = ∞ fails, we can again use the
equations derived assuming it holds and do approximate
inference using them (see Appendix E 2).

We consider the general relation between WZPZ- and
KCN-neighborhoods in Appendix E 1.

B. BlockBP is the tree-equivalent approach

Following the translation of standard BP to tensor net-
works [30], BlockBP was recently introduced [26, 27] in
the spirit of the tree-equivalent method but in the con-
text of tensor networks.

In Block-BP, a PEPS tensor network [26, 31, 32] is
partitioned into blocks of square shape and messages
are exchanged between blocks in the spirit of the tree-
equivalent method. Hence, at the expanse of fully con-
tracting within the blocks (although approximate con-
traction methods like bMPS have also been consid-
ered [26, 27]), the correlations within the blocks can be
computed to larger accuracy, hence improving the per-
formance compared to simply doing BP directly.

We can think of Block-BP (and of the tree-equivalent
methods in general) as a limit case of our extension of
the KCN-approach to tensor networks, in the sense that
only variables belong to the intersection between different
neighborhoods. Hence, although the inference equations
from Section IV may not be well-defined, they can be
naturally extended to this limit case. As an instance

12

(a) (b)

(c)

FIG. 7: An improvement on the BlockBP algorithm
when using a Kirkley-like algorithm. (a) Original graph,

(b) an instance of BlockBP, (c) an instance of a
KCN-like algorithm.

of this, we can consider the inference equation for the
partition function used in [27]:

Z =
∏
i∈G

tr

Si

∏
j∈N N (i)

m̂j→i

 , (33)

where {Si}i∈G are the blocks used in BlockBP, N N (i)
refers to the blocks that share variables with Si,
{mi→j}i∈G,j∈N N (i) are the BP messages between blocks,
and {m̂i→j}i∈G,j∈N N (i) are the rescaled messages that
fulfill

tr (m̂i→jm̂j→i) = 1. (34)

for all i ∈ G, j ∈ N N (i).
We can interpret Eq. (33) as a simplification of

Eq. (22), where the only redundant information shared
between blocks is in the variables that connect them.
Similarly to how we avoid overcounting in Eq. (22)
by subtracting the overlap between different tensor-
neighborhoods, we avoid it here by normalizing the mes-
sages along the indexes shared between blocks Si and Sj .
To clarify what we mean by this, in Appendix F, we de-
rive Eq. (33) along the lines of our derivation of Eq. (22).

Although one can improve on BlockBP in some in-
stances where the algorithm is exact (see Figure 7 for
example), it is in general not possible to do so when the
blocks form a two-dimensional tree. We discuss the rela-
tion between the two methods whenever BlockBP is not
exact in Section VII.

C. Application: Improving BP through scheduling

Scheduling is a variation of the original BP scheme
where messages are not sent through all the edges of
the Tanner graph at every time step (flooding). Instead,
there is a schedule that determines which parts of the

Na
Nb\a

b

(a)

Na\b Na∩b
Nb\a

a b

(b)

FIG. 8: The Tanner graph of the tree-equivalent
method (a – i.e. BP without scheduling) and the

KCN-method (b – i.e. BP with scheduling).

Tanner graph exchange information with others at every
time step. Despite it having been reported in some in-
stances [35, 36], the improvement provided by scheduling
is not well understood.

Herein, we argue that the KCN-method is a theoreti-
cal construction that profits from scheduling in order to
improve the performance of BP. For simplicity, we do
so in the context of networks, although we could argue
analogously for any graphical model.

Whenever the KCN-parameter bounds the loop length,
we can think of the KCN-method as the introduction
of a scheduling into the tree-equivalent method, where
we achieve exact results (as we would without schedul-
ing) using less computational power and, hence, we im-
prove on the performance of BP. In order to achieve the
improvement, one needs to pick the seed for the tree-
equivalent method following the proof of (Tii) in Ap-
pendix A. In the following, when we refer to the tree-
equivalent method, we assume that the seed has been
picked in such a way.

In order to understand how the scheduling is related
to the improvement, let us consider a graph G such that
G = Na ∪ Nb for a, b ∈ V and some KCN-parameter
ℓ0. Taking a as seed in the tree-equivalent method,
then ma→b communicates all the information in Na to
Nb\a and mb→a communicates all the information in
Nb\a to Na. This corresponds to flooding. On the
other hand, the KCN-method profits from the fact that
G = Na∩b ∪ Na\b ∪ Nb\a to get ma→b to communicate
all the information in Na\b to Na∩b and mb→a to com-
municate all the information in Nb\a to Na∩b. Since it
is only after the update process has finished, i.e. at the
inference stage, that the information in Nb\a reaches Na

and the information in Na\b reaches Nb, we can think
of the KCN-method as the tree-equivalent method with
scheduling and, since it achieves accurate results with
less complexity, it provides an instance where the im-
provement given by scheduling can be clearly explained.
The Tanner graph for these tree-equivalent and KCN-
instances can be found in Figure 8.

13

VII. CONCLUSION

We have considered the tree-equivalent and KCN-
methods in the context of networks, tensor networks
and graphical models in general, deriving BP schemes
and providing inference equations. As a result, we
have developed a unified view regarding the algorithms
that have been proposed in order to make generalized
BP explicit. As concrete links, we related BlockBP to
the KCN-method by introducing the tree-equivalent ap-
proach. Moreover, aside from showing how to extend
it to arbitrary tensor networks, we have shown that the
WZPZ-approach essentially relies on the same approxi-
mation as the KCN-method, allowing us to make it avail-
able for degenerate quantum maximum likelihood decod-
ing.

Several question remain to be answered. From a the-
oretical point of view, it would be interesting to under-
stand better how BP works whenever the graph (or mul-
tiple graphs in case of the KCN- or WZPZ-approach)
that we construct by gathering nodes together is not
a tree. In particular, it would be key to obtain some
guidelines regarding how the exchange between complex-
ity and accuracy works depending on how the grouping
is done. This ultimately boils down to gaining insight
regarding the Bethe approximation, which remains to be
properly understood. It would also be interesting to con-
tinue along the lines of using symmetry to reduce com-
plexity in the KCN-approach. More specifically, it would
be meaningful to provide results regarding under what
symmetry conditions (and by how much) one can reduce
the complexity while not getting a significant decrease in
accuracy.

From an applied point of view, it would be interest-
ing to use the principled approach given by the KCN-
method, together with the numerical evidence coming
from the usual BP on loopy graphs, as a guideline to con-
structing codes where the decoding through this method
would seem to give good results and then testing it.
Regarding previous approaches, it would be interesting
to compare our tensor network methods with BlockBP.
In particular, to check if one can obtain a similar ac-

curacy than BlockBP by using less computational re-
sources. In order to do so, one could pick any instance
of BlockBP, which reduces to picking some block size,
and then run our tensor network approach with these
blocks as neighborhoods. In this scenario, our tensor
network method is still well defined and it would require
less space and time complexity and, hence, it would be
interesting to check how the accuracy in the partition
function varies. It should be noted that, even if the
accuracy reduces, this does not necessarily mean that
the performance of the tensor network decoder must de-
crease, since as long as the maximal computed partition
functions among the logical cosets coincides with the ac-
tual maximal one [3, 27], we will be able to successfully
do degenerate quantum maximum likelihood decoding.
For such an implementation, let us note that, just like
BlockBP reduces complexity by using the MPS-MPO
approximation [26, 27], we can use a sweep line algo-
rithm [24] provided the tensor network is 2D or follow
a Markov chain Monte Carlo importance sampling ap-
proach [14, Section II.C]. Lastly, it would be interesting
to see if one can exploit the connection we pointed out
between scheduling and the KCN-method in order to ob-
tain improvements on BP more in general.

ACKNOWLEDGEMENTS

P. Hack acknowledges funding by the Munich Quan-
tum Valley, section K7. The research is part of the Mu-
nich Quantum Valley, which is supported by the Bavarian
state government with funds from the Hightech Agenda
Bayern Plus.

This research was developed in part with funding from
the Defense Advanced Research Projects Agency [un-
der the Quantum Benchmarking (QB) program under
award no. HR00112230006 and HR001121S0026 con-
tracts]. The views, opinions and/or findings expressed
are those of the author(s) and should not be interpreted
as representing the official views or policies of the De-
partment of Defense or the U.S. Government.

[1] M. Mezard and A. Montanari, Information, physics, and
computation (Oxford University Press, 2009).

[2] D. Poulin and Y. Chung, On the iterative decoding of
sparse quantum codes, arXiv preprint arXiv:0801.1241
(2008).

[3] S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms
for maximum likelihood decoding in the surface code,
Physical Review A 90, 032326 (2014).

[4] P. Iyer and D. Poulin, Hardness of decoding quantum sta-
bilizer codes, IEEE Transactions on Information Theory
61, 5209 (2015).

[5] C. Cao and B. Lackey, Quantum lego: Building quan-
tum error correction codes from tensor networks, PRX

Quantum 3, 020332 (2022).
[6] A. de Marti i Olius, P. Fuentes, R. Orús, P. M. Cre-

spo, and J. E. Martinez, Decoding algorithms for surface
codes, arXiv preprint arXiv:2307.14989 (2023).

[7] J. Pearl, Probabilistic reasoning in intelligent systems:
networks of plausible inference (Morgan kaufmann,
1988).

[8] B. J. Frey and D. MacKay, A revolution: Belief propaga-
tion in graphs with cycles, Advances in neural informa-
tion processing systems 10 (1997).

[9] J. S. Yedidia, W. Freeman, and Y. Weiss, Generalized
belief propagation, Advances in neural information pro-
cessing systems 13 (2000).

14

[10] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Bethe free
energy, kikuchi approximations, and belief propagation
algorithms, Advances in neural information processing
systems 13 (2001).

[11] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Charac-
terization of belief propagation and its generalizations,
IT-IEEE 51, 2282 (2001).

[12] J. S. Yedidia, W. T. Freeman, Y. Weiss, et al., Under-
standing belief propagation and its generalizations, Ex-
ploring artificial intelligence in the new millennium 8,
0018 (2003).

[13] J. Old and M. Rispler, Generalized belief propagation
algorithms for decoding of surface codes, Quantum 7,
1037 (2023).

[14] A. Kirkley, G. T. Cantwell, and M. Newman, Belief prop-
agation for networks with loops, Science Advances 7,
eabf1211 (2021).

[15] G. T. Cantwell and M. E. Newman, Message passing
on networks with loops, Proceedings of the National
Academy of Sciences 116, 23398 (2019).

[16] A. J. Ferris and D. Poulin, Tensor networks and quantum
error correction, Physical Review Letters 113, 030501
(2014).

[17] T. Farrelly, R. J. Harris, N. A. McMahon, and T. M.
Stace, Tensor-network codes, Physical Review Letters
127, 040507 (2021).

[18] C. T. Chubb and S. T. Flammia, Statistical mechanical
models for quantum codes with correlated noise, Annales
de l’Institut Henri Poincaré D 8, 269 (2021).

[19] J. Tindall and M. Fishman, Gauging tensor networks
with belief propagation, SciPost Physics 15, 222 (2023).

[20] J. Tindall, M. Fishman, E. M. Stoudenmire, and D. Sels,
Efficient tensor network simulation of IBM’s eagle kicked
Ising experiment, PRX Quantum 5, 010308 (2024).

[21] C. Piveteau, C. T. Chubb, and J. M. Renes, Ten-
sor network decoding beyond 2d, arXiv preprint
arXiv:2310.10722 (2023).

[22] J. Gray and S. Kourtis, Hyper-optimized tensor network
contraction, Quantum 5, 410 (2021).

[23] S. Sahu and B. Swingle, Efficient tensor network simu-
lation of quantum many-body physics on sparse graphs,
arXiv preprint arXiv:2206.04701 (2022).

[24] C. T. Chubb, General tensor network decoding of 2d
pauli codes, arXiv preprint arXiv:2101.04125 (2021).

[25] T. Begušić, J. Gray, and G. K.-L. Chan, Fast and con-
verged classical simulations of evidence for the utility of
quantum computing before fault tolerance, Science Ad-
vances 10, eadk4321 (2024).

[26] C. Guo, D. Poletti, and I. Arad, Block belief propagation
algorithm for two-dimensional tensor networks, Physical
Review B 108, 125111 (2023).

[27] A. Kaufmann and I. Arad, A blockBP decoder for the
surface code, arXiv preprint arXiv:2402.04834 (2024).

[28] Y. Wang, Y. E. Zhang, F. Pan, and P. Zhang, Tensor
network message passing, Physical Review Letters 132,
117401 (2024).

[29] D. Koller and N. Friedman, Probabilistic graphical mod-
els: principles and techniques (MIT press, 2009).

[30] R. Alkabetz and I. Arad, Tensor networks contraction
and the belief propagation algorithm, Physical Review
Research 3, 023073 (2021).

[31] R. Orús, A practical introduction to tensor networks:
Matrix product states and projected entangled pair
states, Annals of physics 349, 117 (2014).

[32] J. C. Bridgeman and C. T. Chubb, Hand-waving and in-
terpretive dance: an introductory course on tensor net-
works, Journal of physics A: Mathematical and theoreti-
cal 50, 223001 (2017).

[33] Y. Weiss, Correctness of local probability propagation in
graphical models with loops, Neural computation 12, 1
(2000).

[34] H. A. Bethe, Statistical theory of superlattices, Pro-
ceedings of the Royal Society of London. Series A-
Mathematical and Physical Sciences 150, 552 (1935).

[35] J. Du Crest, F. Garcia-Herrero, M. Mhalla, V. Savin, and
J. Valls, Layered decoding of quantum LDPC codes, in
2023 12th International Symposium on Topics in Coding
(ISTC) (IEEE, 2023) pp. 1–5.

[36] Y.-M. Chang, A. I. V. Casado, M.-C. Chang, and R. D.
Wesel, Lower-complexity layered belief-propagation de-
coding of LDPC codes, in 2008 IEEE International Con-
ference on Communications (IEEE, 2008) pp. 1155–1160.

[37] D. J. MacKay, A conversation about the bethe free en-
ergy and sum-product, Tech. Rep. of Mitsubishi Electric
Research Lab. (2001).

[38] F. Eaton and Z. Ghahramani, Model reductions for in-
ference: Generality of pairwise, binary, and planar factor
graphs, Neural computation 25, 1213 (2013).

[39] Y. Weiss and W. T. Freeman, On the optimality of so-
lutions of the max-product belief-propagation algorithm
in arbitrary graphs, IEEE Transactions on Information
Theory 47, 736 (2001).

[40] I. Glasser, N. Pancotti, and J. I. Cirac, From probabilis-
tic graphical models to generalized tensor networks for
supervised learning, IEEE Access 8, 68169 (2020).

[41] J. Pearl et al., Models, reasoning and inference, Cam-
bridge, UK: CambridgeUniversityPress 19, 3 (2000).

[42] R. J. Wilson, Introduction to graph theory (Pearson Ed-
ucation India, 1979).

15

Appendix A: Comparing the tree-equivalent and the
KCN-method for networks in terms of complexity

Given a network with simplified factor graph G and
loop length bounded by ℓ0, the following statements hold:

(Ti) There exists an instance of the tree-equivalent
method whose time complexity is smaller than that
of the KCN-method if and only if there exists some
i ∈ G such that N ℓ0

i ⊊ G.
(Note that by time complexity we refer to the
complexity of updating the messages until conver-
gence together with that of computing the most
complex inference equation.)
To show (Ti), we begin by considering necessity.
To prove it, we argue by contrapositive and assume
that N ℓ0

i = G for all i ∈ G. In this case, the update
equations are trivial for both methods and the in-
ference equations use the same neighborhoods and,
hence, are equally complex. Hence, all instances
of the tree-equivalent method are equivalent to the
KCN-method regarding time complexity.
We conclude by showing sufficiency. We split the
proof in three different cases:

(I) There exists some v0 ∈ G such that N ℓ0
v0

= G.
In this case, denoting by i0 ∈ G some ver-
tex such that N ℓ0

i0
⊊ G, the tree method that

uses i0 as seed is faster than the KCN-method.
In particular, the time complexity of the tree-
equivalent method is, essentially, twice (one
for updating and one for inferring) that of
the maximum complexity of summing overNi0

or Nv0\i0 . In contrast, the complexity of the
KCN-method is, at least, the sum of that of
summing over Nv0\i0 (update complexity) and
that of summing over Nv0 (inference complex-
ity). One can then consider separately the
cases where summing over Ni0 is more com-
plex than doing so over Nv0\i0 and its oppo-
site, and conclude the tree-equivalent method
is less complex.

(II) For all i ∈ G, N ℓ0
i ⊊ G and there is no in-

stance of (Pi)-(Piv) such that p(p(i)) exists.
This case cannot happen, as we will show by
reduction to the absurd. If this case was pos-
sible, then let us pick a vertex a ∈ G. Since
N ℓ0

a ⊊ G, there exists some vertex b ∈ N ℓ0
a

such that there exists a vertex c ∈ N ℓ0
b\a. This

leads to a contradiction, since, if we take a as
seed and follow (Pi)−(Piv), then p(p(c)) = a.

(III) There exists some i0 ∈ G and an instance
of (Pi)-(Piv) such that p(p(i0)) exists. To
show this case, let us initiate the tree con-
struction method (Pi)-(Piv) with p(p(i0)) as
seed. If i0 fulfills Ni0\p(i0) = ∅, then we take
v0 ≡ i0. Otherwise, we take v0 to be the

first descendant of i0 such that Nv0\p(v0) = ∅.
If we use v0 as the seed for a new tree con-
struction process (Pi)-(Piv), we can see that
this results in a method faster than that by
Kirkley. In particular, the update process
sums over neighborhoods that either are Nv0

or Nb\p(b) for some b ∈ G \ {v0}. However,
since Nv0 ⊆ Np(v0)\p(p(v0)) (where we take p(·)
in the sense of the first tree-equivalent method
considered here), the update equations are at
most as complex as those in the KCN-method.
Regarding the inference equations, they are
less complex since Nv0 ⊊ Np(v0) (this is the
case since p(p(v0)) exists) and Nb\p(b) ⊊ Nb.

(Tii) There exists an instance of the tree-equivalent
method whose time complexity is larger than that
of the KCN-method if and only N ℓ0

i ⊊ G for all
i ∈ G.
To show this, we begin considering necessity. To
prove it, we argue by contrapositive. We assume
that N ℓ0

i = G for some i ∈ G and consider the
following cases:

(I) If N ℓ0
i = G for all i ∈ G, then we can follow

the proof of necessity for (Ti).
(II) There exists some i0 ∈ G such that N ℓ0

i0
⊊ G.

If this is the case, and we use as seed for the
tree-equivalent method some i1 ∈ G such that
N ℓ0

i1
= G, then, following the proof of (I), the

KCN-method offers no complexity advantage.
If we fix some i0 ∈ G such that N ℓ0

i0
⊊ G and

use it as seed for the tree-equivalent method,
then the time complexity is twice that of sum-
ming over some neighborhood N ⊊ G (one
contribution coming from inference and one
from updating). However, one can show that
this complexity is bounded by that of the
KCN-method, which has (at least) a contribu-
tion coming from summing over N ℓ0

i1\i0
during

the update and one from summing over N ℓ0
i1

during inference.

To conclude, we show sufficiency. In order to do
so, fix i0 ∈ G a vertex such that summing over N ℓ0

i
is maximal for i = i0, consider the tree-equivalent
method with seed i0 and note, moreover, that, by
definition of i0, and since N ℓ0

i\j ⊊ N ℓ0
i for all i ∈ G

and j ∈ N ℓ0
i , the complexity of summing over N ℓ0

i0

is strictly larger than that of summing over N ℓ0
i\j for

all i, j ∈ G. The complexity of the tree-equivalent
method is twice that of summing overN ℓ0

i0
, with one

contribution coming from the update and the other
from inference. However, although the complexity
of inference in the KCN-method is exactly the same
as that of this tree-equivalent instance, its update
complexity is the maximum over i ∈ G and j ∈ N ℓ0

i

16

of the one that sums over N ℓ0
i\j , which is strictly

smaller than that of summing over N ℓ0
i0

.

Note that the advantage in (Ti) works for most graphs
of interest, since it only requires that there exists some
vertex such that the graph not only consists of loops
around this vertex. The advantage in (Tii) is similar,
although it requires the stronger property that there is
no vertex such that the graph consists of loops around
this vertex.

Note that reducing the complexity of the KCN-method
requires to first find a specific vertex i0 ∈ G that we use
as seed in the tree-equivalent method. While one could

add this to the complexity, in practice (for instance in the
context of decoding) it is not important since it can be
effectively done and it only depends on the topology of
the graph, that is, it can be found once and then used in
the following as long as the topology remain unchanged.

Appendix B: Derivation of the inference equations
for tensor networks

1. The largest loop length is bounded by the
KCN-parameter

(Ei) follows since we have that

pi(x) = 1
Zi1

tr\xi

Si1

∏
k∈Si1

mk→i1

 = 1
Zi2

tr\xi

Si2

∏
k∈Si2

mk→i2


= 1

2Zi1

tr\xi

Si1

∏
k∈Si1

mk→i1

+ 1
2Zi2

tr\xi

Si2

∏
k∈Si2

mk→i2

 .

(B1)

Although the first two equations are simpler, in the
spirit of [14], we will give preference to the last equality
(i.e. to Eq. (18)) in case the KCN-parameter ℓ0 is strictly
smaller than the largest loop length.

(Eii) is directly obtained via the following chain of
equalities:

U =
∑

x

p(x)E(x)

= −
∑

i

∑
x

p(x) log Ti(x∂Ti)

= −
∑

i

∑
x∂Ti

p(x∂Ti
) log Ti(x∂Ti

)

= −
∑

i

1
Z∂Ti

tr
(

log (Ti)Si

∏
k∈Si

mk→i

)
.

(B2)

(Eiii) can be shown in a few steps. First, before we ar-
gue why the equation holds, we first note that the denom-
inator is well-defined, that is, that exchanging i and j in
the denominator does not affect the computation. This is
the case since mk→j = mk→i for all Tk ∈ Si∩j \ {Ti, Tj}.
(To see this, one has to notice that, if Tk ∈ Si∩j and the
KCN-parameter is larger than all loop lengths, then

Sk∩j = Sk∩i = Si∩j . (B3)

Hence, Sk\j = Sk \ Sk∩i = Sk \ Sk∩i = Sk\i and mk→j =
mk→i.)

We show now the validity of (Eiii). If we define ni→j

such that mi→j = ni→j/Mi→j for all i ∈ G and j ∈
Si, where Mi→j is the product of all the normalization

constants that have been introduced into mi→j during
the iteration of the BP equations, then we have that

Z = tr

Si

∏
j∈Si

nj→i

 and

Z = tr

Si∩jnj→i

∏
k∈Si∩j

nk→j

 .

(B4)

(Note that we have implicitly used Eq. (B4) when
showing (Ei).)

Hence, disregarding for the moment the normalization
constants, we have∏

i∈V tr
(
Si

∏
j∈Si

mj→i

)
∏

((i,j))∈G tr
(
Si∩jmj→i

∏
k∈Si∩j

mk→j

) 2
|Si∩j |

∝
∏

i∈V Z∏
((i,j))∈G Z

2
|Si∩j |

= Z |V|

Z

∑
{((i,j))∈G}/∼

2
|Si∩j |

∑|Si∩j |−1
t=1

t

= Z |V|

Z

∑
{((i,j))∈G}/∼

|Si∩j |−1

= Z |V|

Z |V|−1

= Z,

(B5)

where we use Eq. (B4) to go from line one to line two,
Eq. (B3) and, for all pairs ((i, j)), ((k, ℓ)) ∈ G, the

17

equivalence relation ∼ with ((i, j)) ∼ ((k, ℓ)) provided
Si∩j = Sk∩ℓ in the first equality, the arithmetic series
sum identity in the second, and the fact that, if we enu-
merate the vertices in G via (Pi)-(Piv) using some seed
i0 ∈ V, then each vertex m ∈ V \ {i0} is only counted

once in ∑
{((i,j))∈G}/∼

|Si∩j | − 1,

namely, for the equivalence class of Sm∩p(m), where p(m)
is the parent of m in the enumeration procedure. Hence,
the sum equals |V| − 1 and we get the third equality.

To conclude, we show that the normalization constants
cancel out. In particular, we have that

∏
i∈V

∏
j∈Si

Mi→j∏
((i,j))∈G

(
Mj→i

∏
k∈Si∩j

Mk→j

) 2
|Si∩j |

=
∏

i∈V
∏

{j∈G|((i,j))∈G}/∼ M
|Si∩j |−1
i→j∏

i∈G

(∏
{((k,ℓ))∈G|i∈Sk∩ℓ and k,ℓ ̸=i} M

2
|Sk∩ℓ|

i→k

)(∏
{((k,ℓ))∈G|ℓ=i} M

2
|Si∩k|

i→k

)

=
∏

i∈V
∏

{j∈G|((i,j))∈G}/∼ M
|Si∩j |−1
i→j∏

i∈V
∏

{j∈G|((i,j))∈G}/∼ M
|Si∩j |−1
i→j

= 1,

(B6)

where the first two equalities essentially follow from
the fact that, whenever i ∈ Sj∩k, then mi→ℓ is the same
for all ℓ ∈ Sj∩k \ {i}, and the grouping into equivalent
classes that we introduced in Eq. (B5).

2. The largest loop length is not bounded by the
KCN-parameter

In this case, we use the same inference equations ex-
cept for (Eiii), which we have to modify slightly. First,
let us note that, under the assumption that the KCN-
parameter bounds the loop length, we have that

tr

Si

∏
j∈Si

mj→i

 = tr

Ti

∏
j∈Si/∼

pj→i

×

∏
j∈Si

 tr
(
Si∩jmj→i

∏
k∈Si∩j

mk→j

)
tr (Timi→jpj→i)


1

|Si∩j |−1

where, taking an appropriate x,

pj→i(x) ≡ tr

Si∩j

Ti
mj→i

∏
k∈Si∩j\{i}

mk→j

 .

Lastly, provided the loop bound is not fulfilled, we can

estimate the partition function via

∏
((i,j))∈G

tr

Si∩jmj→i

∏
k∈Si∩j

mk→j

 1

(|Si∩j |
2)

×

tr

Ti

∏
j∈Si/∼

pj→i

1−
∑

j∈Si

1
|Si∩j |−1 −

∑
j∈N N (i)

Wi,j

×

∏
(i,j)∈G

tr (TiTjmj→imi→jqj→i)Wi,j ,

where, taking an appropriate x,

qj→i(x) ≡ tr

Si∩j

TiTj

∏
k∈Si∩j\{i}

mk→j


and, denoting by χ the indicator function,

Wi,j ≡ 1 −
∑

((ℓ,k))∈G

1(|Sℓ∩k|
2
)χ{(i,j)∈Nℓ,k}

in order to avoid overcounting.

Appendix C: Less complex tensor network algorithm
when the largest loop length is not bounded by the

KCN-parameter

Whenever the KCN-parameter ℓ0 is smaller than the
maximal loop length, the update equations may require

18

more computational resources than they would if that
was not the case. This happens since we ought to be
able to contract over Si∩j and Si\j instead of only over
Si\j , which may be computationally more expensive in
some instances. An instance where this happens in the
lattice. For example, if we take NK,4

i as neighborhoods
(that is, a 3 × 3 block around each node i), the the num-
ber of both functions and variables required for updat-
ing increases. In particular, updating m(t)

i→j and m
(t)
i∩j→i

involve, respectively, (at most) 16 and 17 variables. Al-
though this is a modest difference, it may be significant
in other instances, and the purpose of this section is to
show how one may find a less complex algorithm.

In the lattice case, and in some other instances, we may
be able by inspection to profit form a certain regularity in
the graph to avoid the extra computational cost. To do
this, in the case of the lattice with neighborhoods NK,4

i ,
we incorporate to our BP scheme some messages that are
sent from some actual nodes to some virtual nodes that
we incorporate in the edges of the graph. To see why
this is sufficient, it is enough to note that, if we denote
each node by its (x, |y|) coordinates with (0, 0) being the
top left corner, then each node receives messages from
its neighboring nodes along the edges that connects it to
them according to Figure 9 (a).

The construction works as follows: We turn a t × t
lattice G into a (t+ 2) × (t+ 2) extended lattice G′ by
adding the required virtual vertices and edges. The new
messages are sent from non-virtual to virtual nodes treat-
ing G′ as if it was the actual graph and using the neigh-
borhoods accordingly. Aside from the messages already
in the original lattice G, we need to add the messages
mi→j with

(i, j) =


((x, 1), (x, 0)) for 1 ≤ x ≤ t,

((x, t− 1), (x, t)) for 1 ≤ x ≤ t,

((1, y), (0, y)) for 1 ≤ |y| ≤ t, and
((t− 1, y), (t, y)) for 1 ≤ |y| ≤ t.

An illustration of the resulting graph G′ as well as of the
newly incorporated messages can be found in Figure 9
(b).

Using the newly incorporated messages and profiting
from the symmetry, we can avoid computing the inter-
section messages. We show how to do so in Figure 10.

It should be noted that, since we can run all message
updates in parallel, the addition of new messages (which
are as complex as the original ones) does not affect the
complexity. Moreover, once the messages have converged
or we run out of iterations, we can use the same inference
equations as before, since they do not suffer from the
missing legs issue.

(a)

(b)

FIG. 9: (a) Messages sent to a node from its nearest
neighbors. (b) Extended lattice G′ formed by the

original lattice G (in black) and the virtual nodes and
edges (in blue).

Appendix D: Mapping arbitrary graphical models to
networks and tensor networks

1. General results

We consider here the association of an equivalent sim-
pler graphical model to another one. In particular, we
consider the two opposing sides of the spectrum: net-
works, where factors depend at most on two variables,
and tensor networks, where variables are shared by, at
most, two functions.

Although it is known not to be always optimal [37], it
is customary to introduce algorithms for graphical mod-
els in the restricted case of pairwise potentials [9–12, 38].
In fact, it is known that for any graphical model there
is an equivalent graphical model with pairwise potentials
(see [39, Appendix A] or [38, theorem 4]). Moreover, we
can extend the equivalence to graphical models with pair-
wise potentials that depend (at most) on three variables.

The reduction from graphical models to tensors net-
works has received less attention, with the closest to what
we are interested in being [40]. As we will see, tensor net-

19

(a)

(b)

FIG. 10: Less complex update rules (cf. Figures 5
and 6) for a lattice G using the messages from its

extended lattice G′.

works play a role dual to that of networks, that is, any
graphical model has an equivalent tensor networks whose
tensors depend, at most, on three variables.

Given a graphical model

P (x1, . . . , xn) = 1
Z

∏
a∈F

fa(x∂a),

the following statements hold:

(Si) There exists an equivalent network P0 = P . This
was first noted in [39, Appendix A]. In particular,
without loss of generality, their strategy can be vi-
sualized in [39, Figure 6].

(Sii) There exists an equivalent network P0 = P whose
variables are shared, at most, by three factors. This

can be found in [38] and the references therein. In
particular, without loss of generality, their strategy
can be visualized in [38, Equation 3.8].)

(Siii) In general, there is no equivalent network P0 whose
variables are shared, at most, by two factors. This
was shown in [41]. (See also [38, Section 3.2.1].)

(Siv) There exists an equivalent tensor network P0 = P .
This can be achieved by introducing delta-tensors,
as one can visualize in [40, Figure 3].

(Sv) There exists an equivalent tensor network P0 = P
whose tensors depend, at most, on three variables.
Since this was not stated before, we give a direct
formal proof: By (Siv), we can associate to P a
tensor network P1 = (fb)b∈F ′ . For each tensor
fb, we either create a copy (f ′)1

b = fb provided
|∂b| ≤ 3 or, if |∂b| > 3, we create a new set of vari-
ables {y1

b , . . . , y
|∂b|−3
b }, where yk

b ≡ (x1
b , . . . , x

k+1
b)

for k = 1, . . . , |∂b|−3 and x1
b , . . . , x

|∂b|
b are the vari-

ables connected to fb. Then, for each yk
b , we create

a factor (f ′)k
b such that (f ′)1

b depends on x1
b , x

2
b and

y1
b and is the product of two deltas

(f ′)1
b(x1

b , x
2
b , y

1
b) ≡ δx1

b
,(y1

b
)1δx2

b
,(y1

b
)2

then, for 1 < k ≤ |∂b| − 3, (f ′)k
b depends on

xk+1
b , yk−1

b and yk
b and is the product of k+1 deltas

(f ′)k
b (xk+1

b , yk−1
b , yk

b) ≡ δxk+1
b

,(yk
b

)k+1

∏
j=1,...,k

δ(yk−1
b

)j ,(yk
b

)j
,

and, lastly, the factor (f ′)|∂b|−3
b depends on

x
|∂b|−1
b , x

|∂b|
b and y

|∂b|−3
b and is a copy of fb

(f ′)|∂b|−2
b (x|∂b|−1

b , x
|∂b|
b , y

|∂b|−3
b) ≡ fb(x1

b , . . . , x
|∂b|
b).

We conclude by noticing that

P0 ≡ ((f ′)k
b)b∈F ′,k∈{1,...,|∂b|−2}

is a tensor network whose tensors have at most
three legs and is equivalent to P . The transforma-
tion we have followed in this point can be visualized
in Figure 11.

(Svi) In general, there is no equivalent tensor network P0
whose tensors depend, at most, on two variables.
Such a tensor network is equivalent to a network
whose variables are shared, at most, by two factors,
that is, the statement was shown in [41].

(Svii) A (connected) graphical model is a network and a
tensor network if and only if its associated factor
graph is a chain. (Recall that a chain is a graph
which consists of an alternating sequence of vertices
and edges x0, e1, x1, . . . , en, xn starting and ending
in vertices such that each edge is incident to the
vertex immediately preceding and following it. See
Figure 12.)

20

x1 x2 x3 x4 x5

f

(a)

x1 x2 y1 x3 y2 x4 x5

f ′
1 f ′

2 f ′
3

(b)

FIG. 11: A tensor network consisting of a tensor that
depends on five variables (a) and an equivalent tensor
network with tensors of degree at most three (b). The

map from (a) to (b) is specified in (Sv).

f1 f2

x1 x2

(a)

f1 f2

x1 x2

(b)

FIG. 12: A (connected) graphical model that is both a
tensor network and a network is either an open (a) or a

closed (b) chain.

Note that, alternatively, one can use (Sii) together with
the idea behind (Si) to show (Sv). In particular, [38,
Theorem 5] shows that any graphical model P has an
equivalent graphical model P1 with factors of degree at
most two and variables of degree at most three. We can
follow the idea behind (Si) independently for each vari-
able of degree three to obtain a graphical model P0 with
factors of degree at most three and variables of degree
at most two. In particular, we substitute each variable x
connected to three functions f1, f2, f3 by three copies of
x, y1, y2, y3, we connect connect fi to yi for i = 1, . . . , 3
and introduce a delta tensor connected to y1, y2 and y3.

Lastly, one can use (Sv) to show (Sii). In particular, by
(Sv), there exists a graphical model P1 equivalent to P
whose variables have degree at most two and whose factor
have degree at most three. In order to do so, we can in-
dependently turn each factor of degree three f(x1, x2, x3)
into a set of factors of degree two, at the expense of in-
troducing one variable of degree three y1,2 ≡ (x1, x2). In
particular, we can substitute f by the degree two factors

x1 x2 x3

f

(a)

x1 x2 y1,2 x3

h1 h2 g

(b)

FIG. 13: A tensor network consisting of a tensor that
depends on three variables (a) and an equivalent

network with variables that are shared at most by tree
factors (b). The map from (a) to (b) is specified at the

end of Section D 1.

g(x3, y1,2), h1(x1, y1,2) and h2(x2, y1,2), where

g1(x3, y1,2) ≡ f((y1,2)1, (y1,2)2, x3),
h1(x1, y1,2) ≡ δx1,(y1,2)1 ,

h2(x2, y1,2) ≡ δx2,(y1,2)2 .

We conclude by noting that the variables y1,2 has degree
three. The transformation we have followed in this point
can be visualized in Figure 13.

2. Mapping a tensor network into a network and
using the approach by Kirkley et al. directly

Turning a tensor network into a network and then us-
ing the KCN-approach is not optimal in terms of com-
plexity. In particular, translating the tensor network
into a network via the usual mappings (see the refer-
ences within Appendix D 1) can increase the size of the
loops and, hence, it results in larger neighborhoods over
which we ought to compute correlations exactly in both
the update and inference equations.

An instance of this issue, when the KCN-parameter
bounds the loop length, can be found in in Figure 14,
where both the space and time complexity increase when
passing from a tensor network to a network. Note that,
since both methods are exact in this case, we can compare
them solely in terms of complexity.

Another instance of this issue, now with the KCN-
parameter not bounding the loop length, can be found
in in Figure 15, where both the space and time complex-
ity increase again when passing from a tensor network
to a network. It should be noted that, while neither of
both methods is exact, the mapping into a network does
not change the graph structure in any meaningful way
and, hence, we do not expect BP to work better on the
network than on the tensor network and we can again
compare them solely in terms of complexity.

21

(a)

(b)

FIG. 14: A tensor network (a) and its associated
network (b). The space and time complexity of

updating (and similarly for inference) increase from
|X|2 and |X|3 in (a) to |X|3 and |X|6 in (b). In this
representation of graphical models [1], variables are

represented by blue dots and factors by black ones, with
the edges showing the connections among them.

Appendix E: The relation between the Kirkley et al.
and the Wang et al. approaches

1. Neighborhoods

In this section, we consider the relation between the
KCN- and WZPZ-neighborhoods. For simplicity, we
will omit the variable that is used as a starting point
when constructing the WZPZ-neighborhoods in our no-
tation, that is, we will write NK

ℓ (NW
ℓ) instead of NK,ℓ

i

(NW,ℓ
i). Moreover, unless specified otherwise, all KCN-

and WZPZ-neighborhoods use the same starting vertex.
The following statements hold:

(Wi) NK
ℓ ⊆ NW

ℓ−1 for all ℓ ≥ 0, where we take NW
−1 ≡

NW
0 . Moreover, in general, NK

ℓ ̸⊆ NW
ℓ−2.

To show the first statement, let us first note that,
for ℓ < 3, NK

ℓ and NW
ℓ−1 consist of the point

through which they are defined plus its nearest
neighbors and the edges that connect it to them.
Since the relation holds directly for those, we can
assume ℓ ≥ 3. To show these cases, take some ver-
tex x ∈ NK

ℓ (we can argue analogously for edges).
If x0 is the starting points for the generation of
the neighborhoods and x is a nearest neighbor of
x0, then x ∈ NW

ℓ0
by definition. Hence, we can as-

sume that x belongs to a path px of length smaller

FIG. 15: The network associated to a square of a lattice
tensor network. The space and time complexity of

updating (and similarly for inference) increase from
|X|2 and |X|17 in the original tensor network to |X|4

and |X|40 in the associated network.

or equal to ℓ − 2 between two nearest neighbors
of x0. Since the nearest neighbors of x0 belong to
NW

ℓ−1, provided x ̸∈ NW
ℓ−1, then there would be two

last vertices in px, y and z, such that y, z ∈ NW
ℓ−1,

where by last we mean they are separated by more
px edges from x0. Given that they are connected
to edges that do not belong to NW

ℓ−1, we have that
y, z ∈ ∂NW

ℓ−1 and, in particular,

min(a,b)da,b(∂NW
ℓ−1) ≤ dy,z(∂NW

ℓ−1) ≤ ℓ− 2.

Hence, x ∈ px ⊆ NW
ℓ−1.

To show the second statement, it suffices to take
ℓ = 3 and a fully connected graph with three ver-
tices.

(Wii) There exist graphs such that, respectively,

{NW
ℓ }ℓ \ {NK

ℓ }ℓ ̸= ∅ and {NK
ℓ }ℓ \ {NW

ℓ }ℓ ̸= ∅.

To see this, note that, given a 4 × 4 (or larger)
lattice, NK

6 ̸∈ {NW
ℓ }ℓ (see Figures 16 and 17). For

the opposite case, Figure 18 shows that NW
4 (i0) ̸∈

{NK
ℓ }ℓ, where i0 is the initial point of the subset.

(Wiii) If there are no loops whose length is larger than ℓ0,
then NW

k ⊆ NK
ℓ0

for all k ≥ 0.

22

FIG. 16: The KCN-neighborhood with ℓ0 = 6 and initial
node x0 (dark blue) in a 4 × 4 lattice. The edges and
nodes not in the neighborhood are represented in red.

To show this statement, we will follow a construc-
tive argument. Start by fixing some k ≥ 0 and
some vertex x0 through which NW

k is defined, and
take some vertex z ∈ NW

k (the case of edges follows
analogously). If z is a nearest neighbor of x0, then
z ∈ NK

ℓ0
by definition. Otherwise, we construct a

sequence of pairs of points ((zt
1, z

t
2))T

t=1 and a se-
quence of paths ((pt

1, p
t
2))T

t=1 as follows:

(I) We take z1
1 and z2

2 to be two points through
which z is incorporated to NW

k in its recur-
sive definition (Ri)-(Rii) and take as p1

1 (p1
2)

the path z1
1 − z (z1

2 − z) through which z is
incorporated to NW

k .
(II) For 0 ≤ t, we define zt+1

1 and zt+1
2 according

to the following two cases:
(II.1) If g(zt

1) < g(zt
2) (and analogously in the

opposite case) and zt
1 and zt

2 are not both
nearest neighbors of x0, then we take
zt+1

1 = zt
1 and pt

1 = ∅. Moreover, if
a ̸= zt+1

1 is one of the two points through
which zt

2 is incorporated into NW
k , then

zt+1
2 = a and we take as pt+1

2 the path
a − zt

2 through which zt
2 is incorporated

to NW
k .

(II.2) If g(zt
1) = g(zt

2), zt
1 and zt

2 are not both
nearest neighbors of x0, and a and b (c
and d) are vertices through which zt

1 (zt
2)

are defined, then: If the paths used in
the recursive definition of NW

k to incor-
porate zt

1 do not intersect with those used
to incorporate zt

2, we can take zt+1
1 = a,

zt+1
2 = c, pt+1

1 to be the path a − zt
1 and

pt+1
2 to be the path a − zt

2. Otherwise,
assuming the first intersection of the path
zt

2 − c is with the path zt
1 − b, we take

zt+1
1 = a, zt+1

2 = b, pt+1
1 to be the path

a− zt
1 and pt+1

2 to be the path b− i− zt
2,

where i denotes the first edge where zt
2 −c

(a) N0(i0)W = NW
1 (i0) = NW

2 (i0).

(b) NW
3 (i0).

(c) NW
k (i0) for ℓ ≥ 4.

FIG. 17: The WZPZ-neighborhoods (in blue) centered
around i0 ∈ G (in dark blue) on a lattice G for different
values of ℓ. For ℓ ≥ 4 and any central node and lattice

size, NW
ℓ = NW

4 = G.

23

(a)

(b)

FIG. 18: A graph G (a) that has a WZPZ-neighborhood
around the central node i0, NW

4 (i0) (b), that does not
belong to the family of KCN-neighborhoods.

and zt
1 − b intersect.

(II.3) If zt
1 and zt

2 are not both nearest neighbors
of x0, then we take T ≡ t and define p0 to
be x0 together with the edges that join it
to zt

1 and zt
2, respectively.

We conclude noting that T is finite since mt ≡
max{g(zt

1), g(zt
2)} is monotonically decreasing in t.

Moreover, note that, w.l.o.g., we can assume that,
for all 1 ≤ t ≤ T , all edges and points in pt

1 \ {zt
1}

(pt
2 \ {zt

2}) have generation g(zt−1
1)(g(zt−1

2)), where
we take z0

1 , z
0
2 ≡ z. Because of this,

p̂ ≡ p0
⋃

t=1,...,T

⋃
i=1,2

pt
i

is a cycle such that z, x0 ∈ p̂. In particular, by
definition, z ∈ NK

ℓ0
.

(Wiv) If the loop length is bounded by ℓ0, then, for all
y, z ∈ ∂NW

ℓ0−1, we have that dy,z(∂NW
ℓ0−1) = ∞.

We will show the statement by contradiction. Un-
der the hypothesis, and by properties (i) and (iii),
we have that NW

ℓ0−1 ⊆ NK
ℓ0

⊆ NW
ℓ0−1. Hence,

NK
ℓ0

= NW
ℓ0−1.

In case dy,z(∂NW
ℓ0−1) < ∞, then, arguing as in (iii),

we could construct a cycle around x0 with vertices
and edges outside NW

ℓ0−1 = NK
ℓ0

. This contradicts
the definition of NK

ℓ0
.

(Wv) NW
ℓ ⊆ NK

t for all ℓ ≥ 0 provided

t ≥ tℓ ≡
ℓ−1∑
s=1

qss, (E1)

where we take q1 ≡ 2 and, for s = 1, . . . , ℓ− 1, qs is
the number of iterations that use s as length in the
recursive construction of NW

ℓ . Moreover, tℓ cannot
be reduced.
To show the first statement, take a vertex z ∈ NW

ℓ
(note that an analogous argument can be done for
edges). We can construct a loop that contains z
and the point through which we define NW

ℓ , x0, fol-
lowing the algorithm in (Wiii). However, to ensure
the bound Eq. (E1) is fulfilled, we need to slightly
modify the algorithm to define ((zt

1, z
t
2))T

t=1 taking
into account the lengths of the paths involved in
their definition. In particular, if 2 ≤ s ≤ ℓ − 1 is
the length used in the generation of zt

1 and zt
2, and

the paths in the generation of zt
1 do not intersect

those in the generation of zt
2, we can pick as pt+1

1
and pt+1

2 the shortest paths in the generation of zt
1

and zt
2, respectively, which then have a length of

(at most) s/2. If the generation paths, which we
denote by p(zt

1), p′(zt
1), p(zt

2) and p′(zt
2), intersect,

then we assume w.l.o.g. that p(zt
1) intersects first

with the generation paths for zt
2 and that its first

intersection with them involves p(zt
2). We call the

intersection vertex i and the distance from i to zt
1

along p(zt
1) (p(zt

2)) d1 (d2). If d2 ≤ d1 (otherwise,
we do the converse), then we take pt+1

2 to be p(zt
2)

between zt
2 and i and p(zt

1) from i onwards, and
pt+1

1 to be p′(zt
1). By construction, pt+1

2 and pt+1
1

do not intersect each other and, if we denote the
length of p(zt

1) by r, their combined length is, at
most, (s − r) + (d2 + r − d1) = s + d2 − d1 ≤ s.
Lastly, note that, although we do not need to con-
sider the iterations with s = 1 since they do not
add to the loop length, we do take q1 = 2 since the
iterations stop at the nearest neighbors of x0. In
summary, z ∈ NK

t for all t ≥ tℓ.
To show the second statement, we provide in Fig-
ure 19 a graph in which the bound is attained for
the case ℓ = 6.

(Wvi) If there exists some ℓ0 such that, if y, z ∈ ∂NW
ℓ0

,
then dy,z(∂NW

ℓ0
) = ∞, then the loop length is

bounded by tℓ0 .
To show this, note that, by hypothesis, if there is a
loop around x0, the point we use to initialize NW

ℓ0
,

then the loop must use edges and vertices within
NW

ℓ0
. As argued when showing property (Wv), the

length of such loops is bounded by tℓ0 .

(Wvii) If there exists some ℓ0 such that, if y, z ∈ ∂NW
ℓ0

,
then dy,z(∂NW

ℓ0
) = ∞, then the inference formu-

las derived for NK
tℓ0

are also exact when using

24

FIG. 19: A graph where the bound in Eq. (E1) is
attained for ℓ = 6. If we take as starting point x0 the

central bottom node (in blue), then any of the four z in
the upper arc (in red) are included in NK

12 but not in
NK

t for t < 12.

NW
ℓ0

. This is the case since, as argued before, we
have that NW

ℓ0
= NK

tℓ0
. Since everything is de-

fined through these sets, the inference equations
are exact and the same as in the case of KCN-
neighborhoods.

As a last point, we note that WZPZ-neighborhoods are
not as useful as KCN-neighborhoods when exchanging
complexity for precision. This is the case since, althoguh
NK

ℓ ⊆ NW
ℓ−1 for all ℓ ≥ 0 as showed in (Wi), we can see,

for instance in the case of the lattice, that the WZPZ-
neighborhood of any vertex is already the whole graph
for ℓ ≥ 4. (See Figure 17.) This is the case since, once
two vertices connected by (a horizontal, say) edge e are
included, so are the two vertices along the immediate
parallel edges e1 and e2. We can argue analogously for
the vertical edges’ case.

2. Inference equations

The inference equations from the KCN methdod can be
applied directly except for the fact that, sometimes, the
equations may need to be interpreted before using them,
provided the bound on the loop length is not fulfilled.
For instance, note that, if min(a,b)da,b(∂NW,ℓ0

i) < ∞, the
WZPZ-neighborhoods do not in general have the prop-
erty that i ∈ NW,ℓ0

j if and only if j ∈ NW,ℓ0
i , as one can

see in Figure 20. However, the equation for the partition
function still works if we, for instance, take the pairs
((i, j)) ∈ G to mean that either i ∈ Nj or j ∈ Ni and we
modify the parameters Wi,j accordingly.

Appendix F: Derivation of the partition function for
the tree-equivalent approach

Let us take m̂i→j = ni→j/M̂i→j , where M̂i→j is the
product of all the normalization constants that have been
introduced into mi→j during the iteration of the BP

j

i

FIG. 20: A graph G where, taking ℓ0 = 5,
j ∈ NW,ℓ0

i = G although i ̸∈ NW,ℓ0
j . In particular, NW,ℓ0

j
only includes j, its nearest neighbors and the edges

connecting j to them.

equations and the rescaling added in order for the mes-
sages to fulfill Eq. (34).

If we assume that the blocks in BlockBP form a tree,
then

Z = tr

Si

∏
j∈N N (i)

nj→i


for all i ∈ G. Moreover, by Eq. (34),

M̂i→jM̂j→i = Tr (ni→jnj→i) = Z.

Putting these together we get that

∏
i∈G

tr

Si

∏
j∈N N (i)

m̂j→i


=
∏
i∈G

tr

Si

∏
j∈N N (i)

nj→i

 ∏
j∈N N (i)

1
M̂j→i

=
(∏

i∈G
Z

) ∏
i∈G,j∈N N (i)

1
M̂j→i


= Z |V| 1

Z |V|−1

= Z,

where, in the second to last equality, we have used the
fact that a tree with |V| vertices has |V| − 1 edges [42,
Theorem 9.1].

If the graph after grouping is not a tree, then the same
formula is used to approximate the partition function.
In fact, instead of this simple derivation, it was shown
that this formula corresponds to the Bethe approxima-
tion [27].

25

Appendix G: The Kirkley et al. method for a double
layer complex-valued tensor network

A complex-valued tensor network of interest T =
(Ti)i [19, 23, 25, 30] is the one that corresponds to the
the scalar ||ψ||2 = ⟨ψ|ψ⟩ for some PEPS |ψ⟩. This
tensor network essentially corresponds to two copies of
the same graph with edges joining each pair of iden-
tical nodes (cf. [30, Figure 1 (b)]). In order to follow
the idea in our version of the Kirkley method for tensor
networks and to have positive semi-definitive messages,
we may define neighborhoods in a somewhat different
way. In particular, given a tensor Ti ∈ |ψ⟩, we define
its neighborhood NTi∪T ∗

i
for some KCN-parameter ℓ0 as

the union of NTi , the ℓ0-neighborhood we get if we ap-
ply the KCN-method centered at Ti to |ψ⟩, together with
NT ∗

i
, the ℓ0-neighborhood we get if we apply the KCN-

method centered at T ∗
i to ⟨ψ|, and the edges that con-

nect NTi
with NT ∗

i
. In order to define messages, given

some pair Tj , T
∗
j ∈ NTi∪T ∗

i
, we consider all the edges

that are connected either to Tj or to T ∗
j and that are not

contained in NTi∪T ∗
i

. With these changes in mind, one
can naturally change our version of the KCN method
for tensor networks and obtain a generalization of the
approach to these sort of tensor networks in the litera-
ture [19, 23, 25, 30].

Appendix H: Tree-equivalent method with
intersection sets

In case the loops are bounded by the KCN-parameter,
one can construct another tree-equivalent method that

requires less complexity and retains exactness. However,
although one can use the idea in this section to reduce the
complexity in the Kirkley method provided the bound is
fulfilled, the method does not generalize nicely to the case
where the bound is not fulfilled. Nonetheless, for com-
pleteness, we sketch it here in the case of networks (one
can analogously use it for graphical models in general).

The basic idea profits from the equivalence classes in-
troduced in Appendix B. In particular, the exhaustive
sums one needs to perform are not those in Ni\j but
those in Ni∩k ≡ Ni ∩Nk for k ∈ Ni\j \ {i}. In fact, one
only needs to consider the equivalence classes of the inter-
section neighborhoods under ∼ (see Appendix B). With
this is mind, one can build a tree-equivalent method with
the set of messages

{mi∩j→i}i∈V,j∈Ni/∼,t≥0,

mi∩j→i : X → R≥0
(H1)

uniformly initialized, and updated, for t ≥ 0, and taking
as Si∩j the set of functions in Ni∩j , according to the
following equation:

m
(t+1)
i∩j→i

(xi) ≡ 1
M

(t+1)
i∩j→i

tr\xi

Si∩j

∏
k∈N

i∩j\{i}

∏
ℓ̸∼j

m
(t)
k∩ℓ→j

 ,

(H2)
where M (t+1)

i∩j→i
is a normalization constant.

	Belief propagation for general graphical models with loops
	Abstract
	Introduction
	Motivation
	Contribution

	Background
	Graphical models
	The KCN-Method: BP for networks with loops

	A tree-equivalent approach to networks
	Construction method
	The tree-equivalent method vs the KCN-methods

	BP for loopy tensor networks
	Bounded loop length
	Unbounded loop length

	BP for loopy graphical models
	Bounded loop length
	Unbounded loop length

	Unifying BP for loopy tensor networks
	Tensor network message passing is the KCN-method with different neighborhoods
	BlockBP is the tree-equivalent approach
	Application: Improving BP through scheduling

	Conclusion
	Acknowledgements
	References
	Comparing the tree-equivalent and the KCN-method for networks in terms of complexity
	Derivation of the inference equations for tensor networks
	The largest loop length is bounded by the KCN-parameter
	The largest loop length is not bounded by the KCN-parameter

	Less complex tensor network algorithm when the largest loop length is not bounded by the KCN-parameter
	Mapping arbitrary graphical models to networks and tensor networks
	General results
	Mapping a tensor network into a network and using the approach by Kirkley et al. directly

	The relation between the Kirkley et al. and the Wang et al. approaches
	Neighborhoods
	Inference equations

	Derivation of the partition function for the tree-equivalent approach
	The Kirkley et al. method for a double layer complex-valued tensor network
	Tree-equivalent method with intersection sets

