A Geo-Contextualized Multi-Genre Scientific
Search Engine
A Novel Conceptual Design and Prototype Evaluation

Johannes Honeder!, Roxanne El Baff?, Tobias Hecking?
Alexander Nussbaumer!, and Christian Guetl!

1 Graz University of Technology, Graz, Austria
{alexander.nussbaumer,c.guetl}@tugraz.at

2 German Aerospace Center (DLR), Germany
{roxanne.elbaff,tobias.hecking}@dlr.de

Abstract. Scientific research is nowadays challenging due to the over-
whelming access to information. Current scientific search tools have two
shortcomings: (1) they lack a contextualized search framework where
the user can search based on geolocation, and (2) they do not intercon-
nect different text genres (e.g., publications and blogs). To tackle these
issues, this paper presents a novel, generic conceptual design for a sci-
entific search tool that applies to any domain. Our approach focuses on
two main components within the search engine: (1) steering search re-
sults towards geolocation-oriented search where location expressions are
extracted from the user query and used within the search process, and
(2) enabling multi-genre text retrieval to increase synergy discovery. We
built a prototype for the earth observation and science domain, where
geolocation is salient. Our qualitative evaluations show the benefits of vi-
sually representing scientific research on map views, but they also reveal
crucial points to improve our design further. The code is available here:
https://zenodo.org/records/13788713, and the post-evaluation version is
available here: https://zenodo.org/records/13789303.

Keywords: Open Web Search, science search, Specialized information retrieval

1 Introduction

Apart from traditional outlets today, much scientifically relevant information
can be found online (e.g., science blogs, news reports). However, research data
and websites are still very much disentangled. In this work, we aim to tighten
the integration of geo-annotated web information and earth observation data
products to facilitate scientific discovery in the environmental sciences, allow-
ing for:1) enabling contextualized search using geolocation for more meaningful
results and, 2) interlinking relevant scientific data across different genres (e.g.,
scientific papers, blogs).

Even though existing work facilitates science search through specialized search
applications, they have two shortcomings: 1) The lack of incorporation of geolo-
cation information limits users from conducting a nuanced search and discover-
ing regionally scientific work for scientific knowledge or collaboration. And, 2)
the usage of one-genre science-related data (e.g., publications, research datasets,
or open-source software), ignoring the considerable potential of relevant infor-
mation available on the web nowadays [4], consequently restricting users from
exploring and interlinking different scientific genres.

Datasources
/) —— ——
User Q Keywords Graph Database Create
ser Quer;
i —— &’ Scientfic Scientific
Filters Query Articles Artifacts
Analyzer | Geolocation ; Documents Knowledge Graph)

R Search Query Create

User Retrieval

Science Domain-specific
.H Index WebURL List
Interface Engine

Search Query
Scientific

Artifacts,

a
J <

Fig.1: A modular overview of the conceptual architecture of the search engine.
It includes on the frontend side the User Interface (Green) where the user sends
natural language queries, then, on the Backend side (in Yellow), the Query An-
alyzer extract the keywords and geolocation information from the query and
sends it to the Retrieval Engine (RE). The RE retrieves ranked documents from
three different datasources, curated for the scientific domain (in Blue): a.) a
knowledge graph combining scientific articles and artifacts, b) a search index
containing scientific domain-specific URLs, and ¢) domain-specific artifacts.

To overcome these challenges, we develop a conceptual design for a search tool
for the science domain, as illustrated in Figure 1. The presented design focuses on
augmenting the search results with geolocation data to increase contextual search
and interlink different scientific genres. Our architecture incorporates two core
components to achieve this: The query analyzer (yellow) provides categorized
expressions such as location and keywords for rich contextual results, and a
multi-structural search indices for different text genre interlinkage.

Figure 1 reveals three main components (from left to right): 1) The User
Interface (UI) (Frontend) allows the user to search via a natural language query
and other filters (e.g., Author’s name). After the search hits are fetched, the UI
visualizes the search hits in multiple views, a map view pinning each work to a
location on a map or a list view employing traditional search view results.

2) The Query Analyzer (Backend) extracts geolocation information and key-
words and other criteria from the user’s query, steering the results towards not
only keyword- but also criteria-based focus.

3) The keywords and criteria are sent to the Retrieval Engine containing
different structures of search, each serving different capabilities: a.) Knowledge
Graph Search enables exploratory science search by interconnecting science ar-
ticles and artifacts in a graphical database, b.) Web Search: enables access to
a broad type of web-content (e.g., blogs, journals) with the ease of expansion.
And c.) specialized search enables access to curated domain-specific up-to-date
data. Figure 1-Blue shows an illustration.

The presented concept is generic and, therefore, can be applied to any scien-
tific domain. For this work, we build a prototype specifically targeting the Earth
Observation and Earth Science domains, focusing on studying planet Earth’s
natural systems through satellite data. Given the nature of using satellite im-
agery, geospatial context is salient in these domains. The application targets
geoscientists, earth observation researchers, and users generally interested in the
domains. The development phase included gathering data, building and inte-
grating multi-structural indices, and developing a web application to visualize
the data and facilitate user interaction.

To showcase the usability of our web application, we conducted a qualitative
and qualitative user study to evaluate the prototype by expert and non-expert
users. The evaluation revealed the importance of integrating geolocation data
and interlinking different text genres. However, it also shows a need for improving
the user interface to avoid overwhelming users with information.

Our contributions are three-fold: (1) We propose a generic concept for a
domain-specific scientific search engine that augments geolocation and uses multi-
structural index-based search to provide contextual and synergistic results. (2)
We implement and evaluate a prototype tailored to Earth Observation/Science
domains, revealing our approach’s effectiveness. And (3) we conduct a quantita-
tive and qualitative evaluation that highlights the benefits of our approach and
identifies weaknesses for future improvement.

2 Related Work

Science search is a form of exploratory search, including many open-ended tasks
paired with high timeliness and a large answer volume. Simultaneously, the sci-
entific search process is opportunistic, iterative, and multi-tactical [7]. Therefore,
design principles facilitate exploratory search, and possible connections with re-
search datasets must be established. [7] explore the information needs and spe-
cific requirements of scientific search tasks to determine essential user interface
tools for effective scientific search. They define three sets of tools to improve
users’ exploratory search tasks focusing on 1) querying, 2) visualizing, and 3)
long search: 1) Tools for querying are pivotal in aiding users to formulate
suitable queries for their search tasks. This category includes features such as
rapid query refinement, where the user interface predicts and auto-completes

queries based on previous interactions. Recommending appropriate queries is
another tool that aids users in formulating relevant queries. 2) Tools for ana-
lyzing and visualizing search results are a category of concepts that help the
user make sense of the retrieved documents by visualizing certain aspects of the
data and providing tools that allow users to filter and restrict the search results
(e.g., facets, hierarchical classification, and data visualization tools). 3) Tools
for long search enable social collaborations for scientists to share their search
results among colleagues and save intermediate results to continue search pro-
cesses over a more extended period [7]. Various providers and institutions have
developed web applications within the field of science search, explicitly focusing
on earth observation,- environmental, and earth science. This paper identifies
and compares analogous applications to draw inspiration for the design. In to-
tal, 13 applications were investigated in terms of user interface, visualization
techniques, and search capabilities (see Table 2.1), from which we identify and
collect valuable features and design ideas for the proposed science search appli-
cation while taking into consideration the difference in objectives between each
of the 13 applications and our work.

For the science search applications in the domain of earth science and EO,
two related applications were identified in this domain: Science Discovery Engine
[1] developed by NASA and Pangaea [3], a search application and data portal for
georeferenced data in the domain of earth system science (see Figure 2.9). Both
search applications mainly host scientific data and publications related to the
specific domain of the application. Both applications have a simple yet satisfying
UI design, with Pangaea also implementing an interactive map component for
showing search results and filtering documents based on their geospatial data.
Also, both search applications allow for simple keyword searches but also allow
more sophisticated searches based on topics, tags, and other criteria.

3 Conceptual Design

This section explains the conceptual design behind the scientific search tool, as
illustrated in Figure 1. This architecture has several interconnected modules that
work together to enhance the search capabilities of a domain-specific search tool.

As an overview, following the user interaction flow: first, the user submits a
query using the user interface (UI) (Figure 1-Green), which triggers a search re-
quest to the Backend module (Figure 1-Yellow) instantiating two steps. Within
the backend, the first step involves the Query Analyzer module extracting
relevant information from the keyword query, such as location and topic expres-
sions, which are sent to the Retrieval Engine. The Retrieval Engine processes
these parameters to fetch content from multiple indices (Figure 1-Blue) that are
based on multiple datasources (Figure 1-Purple). It aggregates the results and
ranks them based on relevance and geospatial proximity. After consolidating the
responses, the Retrieval Engine forwards the final aggregated and ranked search
results to the Ul to visualize them in a map view or genre-specific document list.

Given the importance of geospatial context in many scientific domains, par-
ticularly in Earth Sciences, our design integrates geolocation data at the core of
the search process. The following sections describe the Query Analyzer and
the Retrieval Engine.

3.1 Query Analyzer

The leading search query is a textual content search, where users can express
their information needs with a simple keyword query in natural language. The
text query is processed to extract specific information to fine-tune the search with
specific criteria (e.g., location expression). Because we focus on the geospatial
use case, the Query Analyzer mainly takes as input textual data. It extracts the
following parameters: (a) Spatial (Geospatial): Identifies geographic locations
mentioned in the query, and (b) Topic / Theme: Extracts keywords and phrases
from the natural language query.

3.2 Multi-Structural Search Index

To provide comprehensive search re-

sults, we employ a multi-structural de-

sign for the search indices, targeting

ety three multi-purpose search types, as il-

Science lustrated in Figure 2: 1) Exploratory

e Science search uses a knowledge

’ graph to interconnect scientific pub-

Web Search ‘ Feomn” lications with other artifacts, such as

geospatial data and code repositories,

empowering users to discover relation-

ships between different resources. 2)

Fig.2: Intersecting domains of the Web Search builds a broad scientific-

search application domain web index that contains sci-

entific articles, blogs, and more. The

indexed links are manually curated to

ensure domain-specific relevance and genre diversity go hand in hand. 3) Spe-

cialized Search uses scientific domain-specific datasource(s) curated by experts

for fetching the latest research and information that usually are not indexed on
the web.

The Retrieval Engine concurrently queries all three search indices and
aggregates the results.

Figure 1-Blue shows that the presented approach intersects exploratory search,
web search, and specialized search, combining information from various sources
into a single user interface. Ultimately, the proposed search application will en-
able researchers to find synergy by interlinking different sources.

Integrating query-geolocation focus with these three search types would lead
to a more holistic and general approach to discovering and accessing scientific
information and data sources while enabling contextualized search.

3.3 Results view

A search query triggers each of the three search types. Each returns the top
hits based on location and keywords. The results are displayed in a map view or
document list view.

In the map view, search results are visualized as markers on an interactive
map, allowing users to explore results based on location. Users can also click on
a marker to explore further and read more details. Whereas for the document
list view, the search hits are shown in the traditional view of standard search
engines, where the user can toggle between text genres (e.g., publications, web).

This conceptual design integrates geolocation data and diverse data genres,
increasing contextualized search and interdisciplinary synergy.

4 Data

This section specifies the data types and sources used for the Earth Observa-
tion Search Engine. Then, we define the design of each index structure using
the data specified. The following subsections overview the different datasources
used within the three search types and describe the knowledge graph within the
exploratory search.

4.1 The Different Data Sources

Our prototype integrates data from multiple sources to support multi-genre
search capabilities. These sources include Web Documents, scientific publica-
tions, and SpatioTemporal Asset Catalog (STAC) Collections, which is a stan-
dardized format for representing properties of geospatial data, and other: (1)
‘Web Documents: A curated list of 440 websites related to Earth Observation
and natural disasters was used to create a web index partition for web searches
provided by the OWS Service, which includes news outlets, scientific journals,
and popular scientific websites from agencies like NASA and ESA. Scientific
Publications: A dataset of approximately 12,000 scientific publications in Earth
Observation research focusing on natural disasters, provided by the German
Aerospace Center (DLR). The dataset was preprocessed to extract keywords and
author names, (2) SpecioTemporal Asset Catalog (STAC) Collections:
A collection of 166 STAC collections from open Earth Observation catalogs, in-
cluding providers like Planetary Computer, Terrabyte STAC API, and DLR’s
EOC Geoservice. These collections were selected based on relevance and open-
access availability. And (3) Additional Earth Observation Data: Data on
344 Earth Observation missions and 431 instruments from the Committee on
Earth Observation Satellites (CEOS) Database to enrich search results and en-
able further interactions.

4.2 Knowledge Graph

As the core of the system that enables the exploratory search of scientific pub-
lications interconnected with other aspects specific to the Earth Observation

domain, a knowledge graph was built from different data sources that interlink
different information items; earth observation data was systematically harvested
from several providers offering SpatioTemporal Asset Catalogs (STACs)?3. Since
STAC constitutes a common language to describe geospatial information and
make it accessible through APIs, several data sources could be integrated.

We describe below the different datasources used, the graph ontology reveal-
ing the interconnection between the different datasources, and technical tools.

Datasources

— Publication: is a scientific publication.

— STAC Source: is a STAC provider that provides EO data via an API

— STAC Collection: is a STAC Collection

— Author: is a publication author.

— EO Mission: is a satellite mission that provides EO data.

— EO Instruments: is a scientific measurement device on board of an EO
satellite mission.

— Keyword: is a keyword in the context of scientific literature, concepts, or
use-case-specific terms.

Keyword
has keyword T T has keyword
has author contains
Author <+<—— Publication SIIAC — SIAC
Collection Source
| mentions

EO Instrument «+—— EO Mission
is equipped with

Fig. 3: The Ontology of the Knowledge Graph.

Ontology The ontology of a knowledge graph (KG) defines the existing entity
classes and types of relationships between these entities. Figure 3 shows a sketch
of the ontology, which includes all the data described in Section §4.2

The KG holds the publications and STAC collections, that are connected
with each other through the Keyword collection with the relationship HasKey-
word. Publications and STAC Collections are connected to EO Missions and EO
Instruments with the relationship Mentions. Additionally, an EO Mission can
contain multiple EO Instruments, which is represented in the edge relation Is
Equipped With. Relevant to the topic of EO are FO Missions and EO Instru-
ments. Similar to the relationship HasKeyword, both publications and STAC

% https://stacspec.org/

Collections are connected to EO Instruments and Missions with the relationship
Mentions. Also, each EO Mission can contain multiple EO Instruments and is
connected via Is Equipped With.

The HasAuthor edge connects Publications to at least one author. Each
STAC Collection has a STAC provider; therefore, the edge Contains connects
a STAC Source with a STAC Collection. The shared connections from pub-
lications and STAC collections to keywords, EO missions, and EO instruments
allow advanced graph queries connecting the domains of science and EO.

5 Implementation

This section illustrates the development of a search engine prototype for the
Earth Observation and Science domain. Following the presented conceptual de-
sign (§3), below we elaborate on the technical details of the User Interface (fron-
tend) where we describe the input and output, and the two backend components:
Query Analyzer and Retrieval Engine. The prototype focuses on natural disaster
events within Earth Observation and Earth Science. We first frame the prototype
with a focus, then give an overview of the system architecture and the techno-
logical stack we use. After that, we delve into the technical implementation of
each part.

5.1 Focus

For our prototype, we focus on natural disasters such as floods, earthquakes,
wildfires, and landslides, which are highly monitored events within the Earth
Observation and Science domain. Narrowing the scope makes our prototype
feasible within resource constraints.

5.2 System Architecture

Our prototype is developed as a dynamic web application with several intercon-
nected modules. The key components, illustrated in Figure 4, include:

— Search User Interface (Web Client): A dynamic, single-page web ap-
plication that allows users to submit queries and visualize search results.

— BackEnd (ASGI* Web Server): The backend infrastructure that handles
search requests sends them to the Query Analyzer, then to the Retrieval
Engine (RE), where it initiates retrieval modules and communicates with
external services. Within the RE, there are three components:

¢ Knowledge Graph (Graph Database): A central database that hosts
the knowledge graph, enabling the search of scientific publications and
SpatioTemporal Asset Catalog (STAC) collections.

4 Asynchronous Server Gateway Interface (ASGI) specification, handles asynchronous
Python web applications. It is a standardized interface between asynchronous Python
web servers, frameworks, and applications, mainly supporting asynchronous commu-
nication and concurrency.

ASGI WebServer

' Genomes API
User Query Query
ﬁ Analyzer |

Filters \

Keywords Geolocation|
© 5 AQL query

.1__> PR @ Scientific Publications (elib.de)
cuments Graph Ar; DB "
Documents O]
User S STACCollections |

Interface API Query

Retrieval s— EOC GeoService
Engine STAC API Planetary Computer

Ranked
Documents

Open
WebSearch

WebDocuments|

4 <
VVue.js ?":%

Fig. 4: Simplified sketch of the final software architecture (derived from the con-
ceptual architecture in Figure 1), including the Search User Interface developed
with VUE.JS, ASGI Web Server for the backend, and the data pathways

e External Services:

e Open Web Search (OWS) Service: Provides web search capabilities
for web documents.

o STAC API: Allows retrieval of Earth Observation data from different
providers.

Figure 4 presents a simplified software architecture sketch highlighting the in-
teractions between these components.

5.3 Technology Stack

This subsection gives an overview of all the technology and frameworks we used
for our prototype, divided into Frontend and Backend Technology Stack:

Frontend

— Vue.js[13]: A JavaScript framework for building user interfaces [13], with
PrimeVue[8] to build a responsive interface, along with its development
and deployment tool: VueCLI and Webpack.

— Leaflet[12]: An open-source JavaScript library for interactive maps.

— Axios®: For making HTTP requests from the browser.

Backend

— ASGI Webserver: The backend infrastructure is configured as an Asyn-
chronous Server Gateway Interface (ASGI) web server. ASGI® is a Python

® https:/ /axios-http.com/
5 https://github.com/django/asgiref/tree/main

standard facilitating asynchronous communication between web applications
and servers. The web server is instantiated using Uvicorn[11]. The API which
facilitates the communication between the backend server and the web client
is constructed using FastAPI[9].

— spaCy|[5]: For natural language processing tasks, including named entity
recognition [5]. It is used to enable the semantic labeling in the query ana-
lyzer.

— SentenceTransformers[10] :These are used to create text embeddings
used in retrieval.

— Geocoder’: For geoparsing location expressions.

— Graph Database: We use ArangoDB, a NoSQL database system used to
implement the knowledge graph. On top of ArangoDB, we use Corpus Anno-
tation Graph Builder (CAG)[2] for building and populating the knowledge
graph.

— Containerization with Docker:For deploying application modules in contain-
ers [6].

5.4 Knowledge Graph Implementation

The knowledge graph is central to our prototype, connecting different data types
and enabling exploratory search capabilities. Following Section 4.2, where we
defined the ontology, we detail below the creation of the knowledge graph.

The knowledge graph is hosted in an ArangoDB ® graph database, and its
primary purpose is to store, retrieve, and search data. For the search, ArangoDB
provides the ArangoDB Query Language (AQL).

After the data acquisition, the knowledge graph is created with CAG [2], a
framework for creating graphs with ArangoDB. After defining the graph struc-
ture (ontology) within the CAG framework, the graph is initialized and pop-
ulated with the provided data corpus. The pipeline for populating the graph
consists of four data sources that are used to create the graph sequentially: EO
Instruments (n = 432), EO Missions (n = 345), Publications (n = 11379), and
STAC Collections (n = 166).

The EO Instruments are initialized in the first step using the available CSV
file from the CEOS database!?. After the EO Instruments are included in the
graph, the EO Missions, also provided as CSV files from the CEOS database,
are the next data collection added to the graph. Since a single EO Mission can
potentially contain one or more EO Instruments, an outgoing edge Is Fquipped
With is created for each connection to an EO Instrument. After initializing the
graph with the EO missions and instruments, the next step is to populate the
graph with the scientific publications data corpus. Each file contains several
authors and keywords, creating new nodes for these data types. The author

" https://geocoder.readthedocs.io/

8 https://arangodb.com/download/

9 https://docs.arangodb.com/stable/aql/
19 https://database.eohandbook.com/

names are parsed from the publication file, and for each found author, a data
node and an outgoing edge connection HasAuthor from the publication to the
author node is created. Similarly, HasKeyword connects a publication node to a
keyword node.

Each keyword in the publication is checked to determine whether it refers to
an EO Mission or Instrument. Given that a publication file lacks a specific at-
tribute for referencing EO missions or instruments, this connection is established
by comparing each keyword. Upon identifying a link, indicating that a keyword
relates to an EO node, a connection labeled Mentions is established with the
relevant existing EO node.

Lastly, the graph is populated with the STAC Collection nodes. Each STAC
Collection file has dedicated attributes ”platforms” and ”instruments,” referring
to EO missions and EO instruments. For each occurrence, an edge connection
Mentions to the corresponding node is created. Additionally, the keywords from
each STAC Collection are parsed, and HasKeyword edge connections are created.

Sentence Embeddings We generated text embeddings for document attributes
(titles, abstracts, descriptions) using SentenceTransformers. The embeddings
support semantic search between queries and documents.

Search Indices In order to ensure a fast document search within the graph,
ArangoSearch was used to create full-text search indices on top of the document
collections: publications and STAC collections. ArangoDB Analyzers do the text
processing to create the search index. The first analyzer is a text tokenizer that
applies stemming and stopword removal on the text attributes. The second an-
alyzer is an N-Gram analyzer, which computes trigrams on top of the text to
enable fuzzy search, which was applied to enable efficient and fuzzy search ca-
pabilities for fast document retrieval.

The relevant document attributes on which the search views are created are
”title” and ”abstract” for publication documents and "title” and ”description”
attributes for the STAC Collections.

5.5 Query Analyzer and Retrieval Engine

The Query Analyzer and the Retrieval Engine handle search requests and coordi-
nate communication between the user interface and retrieval modules. It consists
of: (1) Query Analyzer — This module extracts location expressions and concept
keywords from user queries using spaCy’s NER model and the Geonames API.
(2) Graph Retrieval Module (Part of RE) — This module queries the knowledge
graph to retrieve relevant publications and STAC collections. It supports simple
search using full-text indices and advanced search using embedding-based simi-
larity calculations. (3) Web Search Module (Part of RE): This module handles
web search requests via the OWS Service and communicates with the OWS API
to retrieve relevant web documents based on the user query and spatial filters.
And (4) the STAC Module (Part of RE), which enables retrieval of STAC items
from external providers based on user-specified parameters such as location and

time interval. Figure 4 shows a detailed architecture of the Retrieval Engine and
its data pathways.

5.6 Search User Interface
The user interface has a multi-view dashboard comprising;:

— Search Header: Allows users to submit queries and filters (e.g., keywords,
authors, and EO missions/instruments).

— Document List: Displays search results in a list view, with custom tem-
plates for different document types (web documents, publications, STAC
collections). Each template highlights relevant metadata.

— Interactive Map: Visualizes search results geospatially using Leaflet. Users
can define spatial filters, switch between base layers (e.g., OpenStreetMap,
World Imagery), and interact with map layers representing web documents,
STAC collections, and STAC items.

Figure ba shows a screenshot of the multi-view search user interface.

(b) Screenshot of the map compo-
* nent, including a filter layer (yel-
(a) Screenshot of the multi-view search user inter- low) and the open Edit Menu in
face. the right corner.

Fig. 5: Screenshots from the Scientific search tool prototype.

The map component in the search user interface consists of an interactive
map built with Leaflet and some additional buttons for user interaction (see
also Figure 5b).

There are two base layers available in the map component that can be dis-
played: 1) OpenStreetMap!! visualizes natural and human-made features on the

" https://www.openstreetmap.org/

map in a classical street view, highlighting the names of places. And 2) base
layer, which is the Esri World Imagery!? layer that is based on EO Imagery.

The base layers can be switched in the Edit Menu in the right corner (Figure
5b). The edit menu also allows the user to show or hide specific layers in the map,
including the Filter Layer, the Spatial Extent Layer, and the Web Document
Layer. These layers are dynamically layered on top of the base layer.

The Spatial Extent Layer represents the spatial extent of a chosen STAC
Collection. This layer is created for specific coordinates and displayed when
”Show Spatial Event” is clicked. The spatial extent coordinates are represented
as GeoJSON objects encoding one or multiple bounding boxes.

The Web Document Layer contains a list of spatial attributes from a set
of web documents. When the web documents are retrieved from a search query,
the geographic layer on the interactive map is automatically created. Each web
document is represented as a single pin on the map (Figure 5b).

The Filter Layer represents a user-defined spatial filter for the different
requests that allow spatial parameters. When clicking ”Draw Filter Area,” users
can draw either a Polygon or Rectangle directly on the map. The selected filter
area can then be used subsequently for search queries as spatial filters or for
STAC Item requests that require a spatial parameter.

The ”Clear Map” button deletes all created layers on top of the map.

Another layer that can be rendered on top of the map is the STAC Item
Layer. Whenever STAC Item Requests are successful, the resulting STAC Items
are rendered in the map as colored polygons (see also Figure 6). Each STAC
Item contains a spatial extent attribute, which decodes the spatial position of
the STAC Item as a GeoJSON feature, which is used directly to create the
map layer. The STAC Item Layer is interactively connected to the Document
List. Clicking on a colored polygon on the map highlights it in red, and the
corresponding STAC item in the document list is highlighted and focused on the
interface.

5.7 Deployment

The containerization architecture ensures consistent environments across devel-
opment and deployment, facilitating scalability. We mainly deploy the search
tool with Docker, containerizing the frontend, backend, and graph database.
ArangoDB container hosts the graph database, listening on internal port 8529.
The Backend container runs the ASGI web server and initializes the knowledge
graph. It listens on port 5000 for requests from the front end. Lastly, the frontend
container deploys the Vue.js web application on port 8080.

12 https://www.arcgis.com/home/item.htm1?id=10df2279f0684e4a9f6a7f08febac2a9

Fig. 6: Screenshot of the document list and the map component in which multiple
STAC Items are rendered, with one being selected in red color.

6 Evaluation

This section describes the quantitative and qualitative evaluation of the Earth
Observation search tool, highlighting the importance of multi-structural indices
and geospatial visualization in the map view.

6.1 Scope and Goal

We prepared a web-based evaluation user guide with three parts: (1) an overview
of the search tool, (2) two defined tasks, and (3) a questionnaire capturing both
quantitative and qualitative aspects.

The participants completed the evaluation independently, as the evaluation
form and the search tool were hosted online. After reading an overview describ-
ing the search tool scope (Earth Observation), data sources, and geolocation
integration, each participant conducted the following two tasks:

— Task 1. Search for “wildfire events” and explore all search-hit genres in the
Document list view, such as publications, webpages, and satellite images.
This task assesses the usability of different data sources for a specific query
(wildfire events).

— Task 2. Search for “Land cover,” focusing on the Map View, where the user
formulates data requests for satellite imagery for a specific area and STAC
Collection.

Research Questions and Questionnaire After completing the tasks, each
participant filled out a questionnaire designed to answer three research questions

(RQs):

— RQ1 How does an integrated web search within a science search applica-
tion affect the scientific search process in the context of exploratory science
search?

— RQ2 How usable is the integration of geospatial data in a search tool for
science search?
— RQ3 How usable is the search tool in exploratory science search?
e (a) How usable are the different features and functionality in the search
user interface?
e (b) How can the prototype be further improved?

The questionnaire contained 17 questions (Q1 to Q17). (1) For our quantita-
tive evaluation, 10 of these questions were closed questions answered on a Likert
scale from 1 (Do not Agree’) to 5 ("Fully Agree’). (2) For our qualitative evalu-
ation, the remaining seven questions were open-ended, allowing participants to
provide written answers. Overall, the questions addressed the conceptual design
of the web-based science search application and the prototype’s usability and
features, as shown in §6.3.

6.2 Participants

In total, 18 participants (5 female, 12 male) completed the tasks and question-
naires. They were affiliated with either a European research institute or a univer-
sity. Fifteen participants held a university degree, while three had a High School
degree. The majority (n=11) work or study in some field of Computer Science,
with the remaining participants spread across Earth Observation, psychology,
migration and urban studies, biochemistry, chemical engineering, biomedical en-
gineering, and medicine.

6.3 Results

After performing the two tasks described in §6.1, participants answered the 17
questions summarized in Tables 1 and 2.

Table 1 shows the average scores and standard deviations for Q1-Q10, each
linked to its respective research question. Higher scores for Q1, Q3-Q8, and Q10
reflect more positive impressions, whereas for Q2 and Q9, lower scores indicate
a more favorable outcome. Participants generally gave high scores (mean > 4),
except for Q8 (3.33). The relatively low score for Q8 suggests that the inter-
face might still be too complex. Results also show that participants appreciate
the geographical dimension of the search results (Q4: 4.94) and the multi-genre
results (Q1: 4.67, Q3: 4.61, and [Q2: 1.78).

The open questions Q11-Q17 are listed in Table 2. In the following subsection
(§6.4), we discuss the results from all 17 questions (Q1-Q17) by grouping them
under the three research questions and highlighting key insights.

6.4 Findings

This subsection addresses the three research questions based on the 18 partici-
pants’ responses (Q1-Q17) and outlines potential improvements and avenues for
future work.

RQ Statement Average (std)

Q1 RQ1l Ilike searching both the web and scientific databases when 1 4.67 (.58)
exploring new research areas

Q2 RQ1l Ido not like the idea of simultaneously searching multiple | 1.78 (.97)
data sources (e.g., websites, scientific publications) in a
single search interface.

Q3 RQ1 It makes sense to combine multiple data types and data 1 4.61 (.68)
sources in a single search application and enable a more
holistic topic search.

Q4 RQ2 For some use cases, it makes sense to visualize the geo- 1 4.94 (0.23)
graphical dimension of search results.

Q5 RQ1 1 like having a simple interface and not having too many 1 4.00 (1.15)
distracting visualizations regarding science search.

Q6 RQ3(b) I could imagine other visualizations (e.g., network graphs, 1 4.50 (0.69)
timeline) for more aspects and metadata of the results.

Q7 RQ2, I found the interactive map component useful for search- 1 4.56 (0.59)

RQ3(a) ing/visualizing geographical information of the results.
Q8 RQ3(a) the interface does not overload the user with information. 1 3.33 (0.94)
Q9 RQ3(a) The (advanced) search was difficult to use. J2.56 (1.01)
Q10 RQ3(a) I like having a ”Dashboard” view to see search results 1 4.50 (0.60)

from different sources in a single screen.

Table 1: Average scores (and standard deviations) for the 10 Likert-scale ques-
tions (#: Q1-Q10). Higher values (1) are generally more favorable, while lower
values (|) are more favorable for negatively worded statements. Bold indicates
the highest or lowest value observed for each type (1 /).

RQ1. Participants appreciated the multi-structural index results (Q1-Q3) but
highlighted the need for a simple interface. Excerpts from open questions include:

— “I like the integrated search of different research items in addition to web
resources.” (Q15)

— “Filtering between Web Documents, Publications, and EO Catalogues sepa-
rately is a useful feature.” (Q15)

RQ2. Participants found the geospatial visualization valuable (Q4, Q7) and
showed interest in additional criteria-based views, such as temporal filtering
(Q11, Q13, Q15). Some comments:

— “I really like the feature ‘show on map’ for the retrieved web documents and
the possibility to click on further locations marked on the map.” (Q15)
— “Filter events based on a time range.” (Q11)

RQ Open Question

Q11 RQ2, RQ3(b) Which functionality would help you to explore scientific top-
ics and concepts?

Q12 RQ3(b) Do you suggest different use cases or research areas that
would benefit from such an integrated science search engine?

Q13 RQ2, RQ3(b) Do you have any suggestions of other (meta) data that can
be visualized in the interface?

Q14 RQ3(b) Do you suggest integrating other data sources in a science
search application?

Q15 RQ1, RQ2, RQ3(a) Which functionalities and features did you like?

Q16 RQ2, RQ3(b) Which functionality and features did you miss in the proto-
type?
Q17 Do you have any final remarks about the prototype?

Table 2: Open questions Q11-Q17, along with their corresponding research ques-
tions (RQ).

RQ3(a). Participants liked the interactive maps and consolidated view for each
data genre (Q7, Q10). While most liked the dashboard view (Q10; e.g., “I like
the dashboard view in general ...” — Q15), a few found it overwhelming (Q8;
e.g., “It could be overwhelming for the user if everything is listed at the same
time...” — Q17). For the advanced search feature, several respondents expected
a graph-based visualization:

— “Maybe the concept of a graph search could be made more layman-friendly.”
(Q17)

— “When I clicked on Graph search, I somehow expected to see a graph of
connected items.” (QLT)

RQ3(b). Suggestions for enhancing the prototype included adding connected
graphs to visualize topic relationships (Q11) and integrating additional data
sources (e.g., the European Open Science initiative). Participants also noted
that the core concept can support many use cases (Q12), from urban studies
to georisk/natural hazards. They suggested extending metadata (Q13), such
as publication dates and open-access information. Finally, UI feedback (Q16)
touched on unclear search results (e.g., distinguishing “no results” from user
errors) and improving readability (Q16).

Overall, the user study highlights the prototype’s strengths and areas for
refinement. As a first step, we released an updated version'? featuring improved
font styles and colors, a simplified dashboard to address information overload,
added query suggestions, and a snippet summary for each data genre. Figures 7

13 https://zenodo.org/records/13789303

food “

Horald Kachele T.S. Amjath-Babu

Normalized Difference Flood Index for rapid flood mapping: taking advantage of EO big data

Fig. 7: Post-evaluation screenshot of the improved science search tool dash-
board— Publication view.

MODIS Snow Cover 8-day

Fig.8: Post-evaluation screenshot of the improved science search tool dash-
board—FO Catalogs view.

and 8 show snapshots of the improved Ul. Future work will explore incorporating
additional data sources, graph database visualization, and a follow-up evaluation
round.

7 Conclusion

This paper introduced a novel generic concept for science search applications
that empower geolocation-aware search, boosted by integrating multi-genre doc-
ument search for knowledge discovery. Our prototype showed that combining
different information sources enables discoveries in the environmental sciences

and increases search efficiency for locating crises. The user evaluation showed
the saliency of geo-based, multi-source search and drew a roadmap for future
enhancements. For example, further leveraging the information in documents’
geospatial and temporal metadata can increase the explorative phenomena of
scientific datasets.

References

11.

12.

13.

Bugbee, K., Acharya, A., Davis, C., Foshee, E., Ramachandran, R., Li, X., Ra-
masubramanian, M.: Nasa’s science discovery engine: An interdisciplinary, open
science data and information discovery service. Tech. rep., Copernicus Meetings
(2023)

El Baff, R., Hecking, T., Hamm, A., Korte, J.W., Bartsch, S.: Corpus annotation
graph builder (CAG): An architectural framework to create and annotate a multi-
source graph. In: Proceedings of the 17th Conference of the European Chapter of
the Association for Computational Linguistics: System Demonstrations. pp. 248-
255. Association for Computational Linguistics, Dubrovnik, Croatia (May 2023),
https://aclanthology.org/2023.eacl-demo.28

Felden, J., Méller, L., Schindler, U., Huber, R., Schumacher, S., Koppe, R., Diepen-
broek, M., Glockner, F.O.: Pangaea - data publisher for earth & environmental
science. Scientific Data 10(1), 347 (Jun 2023). https://doi.org/10.1038/s41597-
023-02269-x, https://doi.org/10.1038/s41597-023-02269-x

Granitzer, M., Voigt, S., Fathima, N.A., Golasowski, M., Guetl, C., Heck-
ing, T., Hendriksen, G., Hiemstra, D., Martinovi¢, J., Mitrovi¢, J., Mlakar,
1., Moiras, S., Nussbaumer, A., Oster, P., Potthast, M., Srdi¢, M.S.,
Megi, S., Slaninovd, K., Stein, B., de Vries, A.P., Vondrdk, V., Wag-
ner, A., Zerhoudi, S.: Impact and development of an open web index for
open web search. Journal of the Association for Information Science and
Technology n/a(n/a) (2023). https://doi.org/https://doi.org/10.1002/asi.24818,
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.24818

Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy:
Industrial-strength ~ Natural Language Processing in Python (2020).
https://doi.org/10.5281/zenodo.1212303

Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux journal 2014(239), 2 (2014)

Nedumov, Y., Kuznetsov, S.: Exploratory search for scientific arti-
cles. Programming and Computer Software 45, 405-416 (12 2019).
https://doi.org/10.1134/S0361768819070089

PrimeVue: The Next-Gen Ul Suite for Vue.js (2023), https://primevue.org/
Ramirez, S.: Fastapi (2023), https://fastapi.tiangolo.com

. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-

networks. CoRR abs/1908.10084 (2019), http://arxiv.org/abs/1908.10084

Tom Christie: uvicorn: A Lightning-Fast ASGI Server for Python (2023),
https://www.uvicorn.org/

Vladimir Agafonkin, Leaflet Contributors: Leaflet.js: An Open-Source JavaScript
Library for Mobile-Friendly Interactive Maps (2023), https://leafletjs.com/

You, E.: Vue.js: The Progressive JavaScript Framework (2023), https://vuejs.org/

