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Abstract
We predict the SARS-CoV-2 infection risk in aircraft cabins by simulating the aerosol transport with computational fluid 
dynamics and taking medical parameters into account. A recently presented new measurement technique allows us to measure 
the rapid virus inactivation after exhalation with high temporal resolution. In addition, much higher airborne SARS-CoV-2 
inactivation rates than in previous studies were obtained. This raises the question of how the new knowledge of SARS-CoV-2 
stability affects the prediction of infection risk. To answer this question, we evaluated 70 Lagrangian particle simulations 
with an index person sitting in all possible seats in an aircraft cabin. We then estimated the infection risk for the other pas-
sengers based on the old and new SARS-CoV-2 stability data. For typical transmission events, we found that the predicted 
infection risk is reduced by about 50% for the new stability data at low CO

2
 (500 ppm). However, elevated ambient CO

2
 

concentrations of 3000 ppm protect the virus from inactivation and increase infection risk by about 50% compared to low 
CO

2
 . In addition, a high relative humidity of the ambient air, e.g., from exhaled breath, delays the rapid inactivation by a 

few seconds, increasing the risk of infection for immediate neighbors.

1  Introduction

Previous publications have reported airborne SARS-CoV-2 
half-lives of 1.1 hours [1], 16 hours [2], or 1.9 hours [3]. 
This means that more than 98 % of viruses remain active 
during particle transport in an aircraft cabin, so that air-
borne inactivation can be neglected [4]. However, using a 
new measurement technique with a high temporal resolution, 
Haddrell et al. (2024) [5] observed a 50 % loss of airborne 
SARS-CoV-2 infectivity within half a minute. In the pre-
sent study, we follow their suggestion (quoting [5]): ‘In the 
future, the effect the rapid loss of infectivity in the aerosol 
phase at low RH [relative humidity] has on short-distance 
transmission risk should be explored using a CFD [compu-
tational fluid dynamics] model.’.

While many infection risk models do not account for 
virus inactivation during particle transport [6], we have 
recently introduced an infection risk model based on CFD 

particle predictions, that is capable of accounting for air-
borne virus inactivation of individual particles [4]. In the 
present study, we report the comparison of the estimated 
infection risk in the cabin of the Dornier 728 (Do728) 
regional aircraft with the SARS-CoV-2 inactivation rates 
obtained using “traditional measurement” (rotating drum) 
[3] and controlled electrodynamic levitation and extraction 
of bioaerosols onto a substrate (CELEBS) [5, 7]. Since CO

2
 

concentrations are typically elevated in aircraft cabins, we 
include the investigation of the influence of CO

2
-dependent 

viral stability measured by [5] on infection risk. To the best 
of our knowledge, the results of Haddrell et al. have not been 
reproduced by another independent research team yet.

2 � Methods

We solve the unsteady Reynolds-averaged Navier-Stokes 
(URANS) equations to predict the airflows in the fully 
occupied Do728 cabin, with 14 rows of seats, five seats in 
each row, and with 70 simulated dummies, each given skin 
temperature and clothing thermal conductivity. We use a 
standard mixed ventilation, with 10 liters of fresh air per sec-
ond per person (700 l/s in total) supplied from the side walls 
above and below the overhead luggage compartments. We 
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assume 100 % efficient particle filters, i. e., no particles re-
enter the cabin with the fresh air supply. The exhaust vents 
are located on the side walls near the floor. A particle cloud 
is then seeded into the time-averaged velocity field and the 
subsequent particle motion is predicted with the Lagrangian 
solver for 600 s. More details on the URANS/Lagrangian 
approach and its validation against experimental measure-
ments can be found in Schmeling et al. [8] and Shishkin 
et al. [9]. To estimate the risk of infection, we created a 
standard case in [4] with the parameters shown in Table 1. 
To improve the stochastic reliability of the particle analysis, 
105 particles were seeded into the CFD domain.

In addition, we used the following four different inacti-
vation rates: the original strain at 20 % RH (unknown CO

2
 

concentration) measured with a rotating drum by Dabisch 
et al. [3], the original strain and Delta strain at 40 % RH 
and 500 ppm ambient CO2, and the inactivation rate of the 
Delta strain at 90 % RH measured with CELEBS at 500 ppm 
and 3000 ppm ambient CO2 [5, 7]. The infection risk is 
then estimated based on a human challenge study [10] in 
which 34 volunteers were exposed to a SARS-CoV-2 dose 
of 10 TCID

50
 in a controlled environment, as discussed in 

Webner et al. [4].
A total of 70 CFD simuations are performed which dif-

fered in the seat position of the index person (IP) occupying 
any possible seat. The individual infection risks and virus 
stabilities predicted in these 70 simulations are averaged to 
obtain a mean infection risk.

3 � Results & discussion

In Fig. 1 the predicted mean infection risk is written over 
each seat written in bold above the mean stability weighted 
by particle concentration. In addition, the infection risk and 
virus stability are averaged over the seat columns and written 
on the right-hand side of the figure. The figure shows four 
seat maps for four different inactivation rates.

For the inactivation rate of Dabisch et al. [3], which we 
also used in [4], the figure shows that when sitting on 14E, 
the infection risk averaged over all 69 other positions of 
the index person (based on the standard case introduced 
in Table 1) equals 0.5 % and 98.5 % of the viruses remain 
active during the transport until inhalation. This is the lowest 

virus stability for this inactivation rate, indicating that air-
borne inactivation is insignificant. Although the virus stabil-
ity on all seats is similar ( ≈ 99 %), the infection risk varies: 
Window seats pose reduced infection risks. This is due to 
the large-scale circulations that moves air from the windows 
to the aisle at face level, then down to the floor and back 
to the sidewalls near the floor. We discussed this effect in 
more detail in [11]. In brief: The large-scale circulations 
carry particles exhaled by the passengers in window seats 
directly to their neighbors. This increases the infection risk 
on the aisle seats. In addition, the risk is higher on the three-
person bench (C, D, E) than on the two-person bench (A, 
B), because there are more potentially infected neighbors.

Considering the original strain at 40 % RH and 500 ppm 
CO

2
 , the lowest virus stability of 38.8 % is still found at 

14E - a significant reduction in the inhaled infectious dose. 
The predicted infection risk is only about half of what we 
estimated based on the inactivation rate previously used for 
all seats. Although there are local differences in viral stabil-
ity, the local differences in infection risk are dominated by 
the local differences in particle concentrations caused by the 
large-scale circulations as discussed above.

For the Delta strain at 90% RH and 500 ppm CO
2
 , we 

obtain strong differences between the seat columns: The 
average stability in column E is only 45.4 % compared 
to 68.8 % in column B. Due to the high temporal resolu-
tion in the inactivation curves measured by Haddrell et al. 
[7], the following insights were obtained: For the original 
strain at 40 % RH, the stability drops to about 50 % almost 
immediately after exhalation, whereas for the Delta strain at 
90 % RH, this rapid inactivation is delayed by a few seconds. 
Therefore, more active particles reach the immediate neigh-
bors (downstream), increasing virus stability on all seats, but 
to a lesser extent at the window seats (upstream). The local 
differences in virus stability are significant and increase the 
average infection risk from 0.5 % to 0.7 % on columns C 
and D, while having no significant effect on window seats. 
Compared to the original strain at lower (40 %) RH, this also 
increases the relative difference of infection risk between 
columns A and C to 0.2 % and 0.7 %, respectively. While air 
in an aircraft is typically dry, the RH of exhaled air is signifi-
cantly higher. Since the inactivation rates for low and high 
RH differ mainly in the first few seconds, as particles float in 
the exhaled humid puff, in most cases the inactivation at high 
RH may be more accurate, even if the ambient air is dry.

For the Delta strain at 90 % RH and elevated ambient CO
2
 

(3000 ppm), the virus stability and the infection risk are sig-
nificantly increased on all seats. This underlines the findings 
of Haddrell et al. [5] that CO

2
 directly affects infection risk 

by protecting the virus from inactivation. Again, the CO
2
 

concentration in the immediate vicinity of the particles is 
highest immediately after exhalation (up to 50,000 ppm), as 
the particles float in the CO

2
-rich exhaled air. As the exhaled 

Table 1   Parameters in the standard case

Quantity Virus 
emission 
rate

Fraction of 
active virus

Pulmonary 
inhalation 
rate

Exposure time

Symbol/unit Ṙ/RNA
s

f/TCID50

RNA
pin / 

liter

min
t/min

Value 500 10−4 6 120
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air mixes with ambient air, the CO
2
 concentration is reduced 

to ambient levels over time. Therefore, for the most accurate 
modeling, experimental measurements of the virus inactiva-
tion at time-dependent RH and CO

2
 corresponding to human 

exhalation would be required.

Figure 2a shows the number of expected infections over 
D∕Dsc , where D is any arbitrary inhaled infectious dose 
and Dsc is the inhaled infectious dose of the standard case 
(see Table 1). This allows the number of expected infec-
tions to be estimated with parameters different from those 

Fig. 1   Infection risk written in bold and virus stability averaged over 70 possible seat locations of the index person on all seats for four different 
inactivation rates. Seat column averages are shown on the right hand side
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in Table 1 (D is proportional to the product Ṙfpint ). The 
expected infections are shown for the different inactivation 
curves.

For the standard case ( D
Dsc

= 1 ), which is based on 

parameter values found in the literature, the number of 
expected infections is low ( ≈ 0.25 − 0.5 ). However, higher 
virus emission rates, higher fractions of active virus, and 
longer flight times are possible (discussed in detail in [4]). 
Therefore, we also consider a super-spreader case with 
D

Dsc

= 100 , for which nearly 14 infections are predicted with 
the inactivation used in [4]. In contrast, considering the 
inactivation rates at 500 and 3000 ppm CO

2
 measured by 

Haddrell et al. leads to approximately 8 and 11 infections, 
respectively. The plot also shows that the absolute differ-
ences obtained for the considered cases are almost constant 
for increasing D

Dsc

.
Figure 2b shows the relative number of expected infec-

tions compared to the case with no airborne inactivation. In 
the standard case, the number of expected infections for the 
original strain is only 46 % compared to no inactivation. For 
the Delta strain at 500 ppm CO

2
 concentration, this increases 

to 53 % at low RH and 61 % at high RH. At elevated CO
2
 

(3000 ppm), the relative number of expected infections 
increases further to 78 %. In the case of a superspreader, the 
inactivation curves for low CO

2
 become similar.

This is because the inactivation rates differ mainly in 
the first few seconds after exhalation, which means that the 
difference mainly affects close neighbors with low parti-
cle travel times. The close neighbors are also exposed to 
the highest particle concentrations. Therefore, as the dose 
increases, the close neighbors are the first to reach ≈100% 
infection risk. Since the initial difference in the inactiva-
tion curves mainly affects close neighbors, the difference 

becomes irrelevant, when the close neighbors reach 
≈ 100% infection risk.

Table 2 summarizes the key results.

4 � Conclusions

Based on the evaluations discussed above, we draw the 
following conclusions for SARS-CoV-2 transmission in 
a Do728 aircraft:

Fig. 2   Number of expected infections (a) and number of expected infections relative to no inactivation (b) over D

D
sc

 for different virus inactivation 
rates for the original strain (OS) and Delta strain (De) at different RHs and CO

2
 concentrations

Table 2   Summary of the key results for the standard case (SC) and 
the superspreader case (SSC)—with a 100 times higher inhaled dose 
than SC—for the original strain (OS) and Delta strain (De)

“Min” and “Max”refer to the minimum and maximum values aver-
aged over the 70 possible seats of the index person, respectively, 
while “Mean” refers to the values averaged over all 70 times 69 possi-
ble seat combinations of the index person and the susceptible person

Mean/min 
stability 
[%]

Mean/max infection 
risk [%]

Expected 
number of 
secondary 
infections 
[1]

SC SC SSC SC SSC

No inactivation 100/100 0.78/1.65 19.7/28.7 0.54 13.6
[3] previously used 

in [4]
99.1 /98.5 0.77/1.64 19.6/28.5 0.53 13.5

OS low RH, low 
CO2 [7]

43.4/38.8 0.36/0.80 12.1/18.6 0.25 8.3

De low RH, low 
CO2 [7]

50.1/36.5 0.42/1.00 11.6/17.9 0.29 8.0

De high RH, low 
CO2 [7]

59.0/39.6 0.48/1.21 12.0/18.3 0.33 8.3

De high RH, high 
CO2 [5]

77.2/69.6 0.61/1.34 16.3/24.1 0.42 11.3
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•	 We revise our previous conclusion in [4] that airborne 
inactivation can be neglected: Using the inactivation 
data measured by Haddrell et al. has significant impact 
on the predicted infection risk.

•	 In average, the delayed rapid inactivation of the Delta strain 
at high RH (90 %) and low CO

2
 (500 ppm) results in higher 

virus stability when reaching passengers downstream of the 
index person (especially in columns B, C, and D), and thus 
an overall 33 % higher infection risk compared to the original 
strain under the same environmental conditions.

•	 For a “typical” index person (standard case), the inactiva-
tion data measured by Haddrell et al. at low ambient CO

2
 

concentrations is expected to result in about half as many 
infections (46 % to 61 %) as no inactivation or “traditional” 
inactivation data. For a super-spreading event, about 5 fewer 
infections are expected with the Haddrell et al. data.

•	 Elevated CO
2
 (3000 ppm) significantly increases infec-

tion risk, resulting in about 3 additional expected infec-
tions for superspreaders or about 50 % more infections 
for a “typical” transmission event.

Acknowledgements  This work was funded by the DLR project GAN-
DALF. The authors gratefully acknowledge the scientific support and 
HPC resources provided by the German Aerospace Center (DLR). The 
HPC system CARO is partially funded by “Ministry of Science and 
Culture of Lower Saxony” and “Federal Ministry for Economic Affairs 
and Climate Action”.

Author contributions  F.W. developed the concept, evaluated the data, 
prepared the figures and wrote the original draft. A.S. generated the raw 
data (CFD). D.S. and C.W. supervised and were also involved in the 
concept development. All authors reviewed the manuscript.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. 

Data availability  Please contact the corresponding author for data and 
materials upon reasonable requests.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

	 1.	 van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, 
M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., 
Thornburg, N.J., Gerber, S.I., Lloyd-Smith, J.O., de Wit, E., 
Munster, V.J.: Aerosol and surface stability of sars-cov-2 as 
compared with sars-cov-1. N. Engl. J. Med. 382(16), 1564–1567 
(2020). https://​doi.​org/​10.​1056/​NEJMc​20049​73

	 2.	 Fears, A.C., Klimstra, W.B., Duprex, P., Hartman, A., Weaver, 
S.C., Plante, K.S., Mirchandani, D., Plante, J.A., Aguilar, P.V., 
FernÃndez, D., Nalca, A., Totura, A., Dyer, D., Kearney, B., 
Lackemeyer, M., Bohannon, J.K., Johnson, R., Garry, R.F., Reed, 
D.S., Roy, C.J.: Persistence of severe acute respiratory syndrome 
coronavirus 2 in aerosol suspensions. Emerg. Infect. Dis. 26(9), 
2168–2171 (2020). https://​doi.​org/​10.​3201/​eid26​09.​201806

	 3.	 Dabisch, P., Schuit, M., Herzog, A., Beck, K., Wood, S., Krause, 
M., Miller, D., Weaver, W., Freeburger, D., Hooper, I., Green, 
B., Williams, G., Holland, B., Bohannon, J., Wahl, V., Yolitz, 
J., Hevey, M., Ratnesar-Shumate, S.: The influence of tempera-
ture, humidity, and simulated sunlight on the infectivity of sars-
cov-2 in aerosols. Aerosol Sci. Technol. 55(2), 142–153 (2020). 
https://​doi.​org/​10.​1080/​02786​826.​2020.​18295​36

	 4.	 Webner, F., Shishkin, A., Schmeling, D., Wagner, C.: A direct 
infection risk model for cfd predictions and its application to 
sars-cov-2 aircraft cabin transmission. Indoor Air 2024, 1–18 
(2024). https://​doi.​org/​10.​1155/​2024/​99272​75

	 5.	 Haddrell, A., Oswin, H., Otero-Fernandez, M., Robinson, 
J.F., Cogan, T., Alexander, R., Mann, J.F.S., Hill, D., Finn, 
A., Davidson, A.D., Reid, J.P.: Ambient carbon dioxide con-
centration correlates with sars-cov-2 aerostability and infec-
tion risk. Nat. Commun. (2024). https://​doi.​org/​10.​1038/​
s41467-​024-​47777-5

	 6.	 Pourfattah, F., Wang, L.-P., Deng, W., Ma, Y.-F., Hu, L., Yang, 
B.: Challenges in simulating and modeling the airborne virus 
transmission: a state-of-the-art review. Phys. Fluids (2021). 
https://​doi.​org/​10.​1063/5.​00614​69

	 7.	 Haddrell, A., Otero-Fernandez, M., Oswin, H., Cogan, T., 
Bazire, J., Tian, J., Alexander, R., Mann, J.F.S., Hill, D., Finn, 
A., Davidson, A.D., Reid, J.P.: Differences in airborne stability 
of sars-cov-2 variants of concern is impacted by alkalinity of 
surrogates of respiratory aerosol. J. R. Soc. Interface (2023). 
https://​doi.​org/​10.​1098/​rsif.​2023.​0062

	 8.	 Schmeling, D., Shishkin, A., Schiepel, D., Wagner, C.: Numeri-
cal and experimental study of aerosol dispersion in the do728 
aircraft cabin. CEAS Aeronaut. J. 14(2), 509–526 (2023). 
https://​doi.​org/​10.​1007/​s13272-​023-​00644-3

	 9.	 Shishkin, A., Schiepel, D., Schmeling, D.: Numerical study 
ofÂ aerosol dispersion inÂ theÂ aircraft cabin. In: Dillmann, 
A., Heller, G., Krämer, E., Wagner, C., Weiss, J. (eds.) New 
Results in Numerical and Experimental Fluid Mechanics XIV, 
pp. 549–558. Springer Nature Switzerland, Cham (2024)

	10.	 Killingley, B., Mann, A.J., Kalinova, M., Boyers, A., Goona-
wardane, N., Zhou, J., Lindsell, K., Hare, S.S., Brown, J., Frise, 
R., Smith, E., Hopkins, C., Noulin, N., Löndt, B., Wilkinson, 
T., Harden, S., McShane, H., Baillet, M., Gilbert, A., Jacobs, 
M., Charman, C., Mande, P., Nguyen-Van-Tam, J.S., Semple, 
M.G., Read, R.C., Ferguson, N.M., Openshaw, P.J., Rapeport, 
G., Barclay, W.S., Catchpole, A.P., Chiu, C.: Safety, tolerability 
and viral kinetics during sars-cov-2 human challenge in young 
adults. Nat. Med. 28(5), 1031–1041 (2022). https://​doi.​org/​10.​
1038/​s41591-​022-​01780-9

	11.	 Webner, F., Shishkin, A., Schmeling, D., Wagner, C.: Identify-
ing the safest in aircraft: Modelling infection risk for 70 differ-
ent source locations, 18th International Conference on Indoor 
Air Quality and Climate (Indoor Air 2024), ISIAQ, Honolulu, 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1056/NEJMc2004973
https://doi.org/10.3201/eid2609.201806
https://doi.org/10.1080/02786826.2020.1829536
https://doi.org/10.1155/2024/9927275
https://doi.org/10.1038/s41467-024-47777-5
https://doi.org/10.1038/s41467-024-47777-5
https://doi.org/10.1063/5.0061469
https://doi.org/10.1098/rsif.2023.0062
https://doi.org/10.1007/s13272-023-00644-3
https://doi.org/10.1038/s41591-022-01780-9
https://doi.org/10.1038/s41591-022-01780-9


	 F. Webner et al.

HI, USA, pp. 646–653 (2025). https://​www.​scopus.​com/​inward/​
record.​uri?​eid=2-​s2.0-​85210​88342​0&​partn​erID=​40&​md5=​
52b8c​45e60​6c3da​b3ce0​0a373​3cd1c​38.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85210883420&partnerID=40&md5=52b8c45e606c3dab3ce00a3733cd1c38
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85210883420&partnerID=40&md5=52b8c45e606c3dab3ce00a3733cd1c38
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85210883420&partnerID=40&md5=52b8c45e606c3dab3ce00a3733cd1c38

	Airborne SARS-CoV-2 in aircraft cabins: new inactivation data significantly influences infection risk predictions
	Abstract
	1 Introduction
	2 Methods
	3 Results & discussion
	4 Conclusions
	Acknowledgements 
	References


