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A B S T R A C T

In the immediacy of an event that disrupts the operation of an infrastructure, the time between its occurrence
and the arrival of qualified personnel for emergency response can be valuable. For example, it can be used for
gathering information about the status of the infrastructure by using automated reconnaissance devices. In an
operation that precedes the intervention of human first responders, such devices can gather information about
the situation, providing knowledge about the locations of stressors (e.g. fire), the inaccessibility of parts of the
infrastructure or the presence of hazardous materials. In this study, we show how a Bayesian Networks can be
used for knowledge representation and how it can be combined with methods from the realm of Multi-Criteria
Decision Analysis (MCDA) for situation reconnaissance and route-optimisation in emergency situations, where
different criteria (current belief about the location of zones of special interest, such as emergency exits, distance
to the next point of interest, etc.) can be considered. As an example, we consider the case of an outbreak of
a fire in a building. A pedantic check of all rooms by an automated reconnaissance device would take too
long and thus delay intervention. Due to the limited time in which the building can be explored, the route is
optimised to gather the greatest possible amount of information in the available time window. Results show
how it is possible to maximise the information collected in a limited time window. This is done by discovering
the location of fire and any hazardous materials through causal inferences automatically calculated by the
Bayesian network. Route optimisation is facilitated by sequential MCDA using a parameter selection that meets
the priorities of the specific application example.
1. Introduction

Infrastructures are confronted with a variety of possible, even un-
expected, disruptive events. Such a disrupting event can result in
an interruption to their core processes and, in the case of working
facilities, jeopardise the health of present employees. The rapid and
effective deployment of forces to contain the disruption, eliminate its
cause and rescue employees is therefore of great importance. However,
in the event of fires breaking out or leaking hazardous gases, there
is a risk that emergency services will endanger themselves. This is
particularly true if information on the situation is uncertain and in-
complete, for example because relevant parameters such as fire sources
or the storage locations of hazardous materials are either entirely
unknown or unclear. In such incidents, fast and efficient support to-
gether with a proper information gathering strategy is an important
element of risk mitigation so that emergency services can be effectively
deployed to minimise damage, help endangered employees and restore
the operational readiness of the infrastructure as quickly as possible.

In principle, robotic systems might be used for such supportive
tasks, for example to assist fire brigades or first responders in their
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work [1]. There are various practical examples of this, ranging from
automatic fire extinguishing and the search for hazardous materials
to the general improvement of situational awareness [1–3]. Ideally,
autonomous robotic support systems arrive at the incident location
prior to the emergency services, i.e. shortly after the alert and before
the arrival of the fire brigade [4]. This period is particularly suitable
to collect information on the situation, ensuring effective and safe
responses. It would therefore be advantageous to use this time window
to autonomously obtain information via robotic systems to provide a
comprehensive picture of the situation and thus efficiently increase
situational awareness [5].

The above-mentioned area of application demands various requi-
sites on a robot system. In addition to the purely technical, physical
and sensory requirements for the robot platform, special properties are
essential for efficient information acquisition:

1. Large number of locations: It may be necessary to explore and
observe a large number of different locations within the in-
frastructure. In order to make efficient use of the limited time
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available to gather information, it is necessary to optimise the
route, considering all the available information.

2. Causally dependent information: Various pieces of the information
necessary to build a reliable representation of the state of the
system might be available. This information may be causally
dependent, e.g. various sensor data that are merged into a
higher-level information, as well as across locations. Hence,
collecting and connecting available data is necessary to create
a comprehensive picture of the situation.

3. Sequential information: Decisions under uncertainty are often in-
herently sequential, requiring to integrate changing information
by sequentially updating the belief about the current state of the
system.

4. A priori expert knowledge: Existing expert knowledge (preliminary
information) should be taken into account and integrated to the
comprehensive picture of the situation.

5. Availability of knowledge: The time between raising the alarm
and the arrival of the emergency services is limited and must
be utilised efficiently. The information retrieval system should
therefore be available as quickly as possible and be able to
analyse current information relying on limited data and very
general assumptions, thus often ruling out tailored simulations
like fluid-/thermo-dynamics-based ones.

6. General applicability : The robotic system should be able to react
autonomously and ad-hoc to a variety of possible incidents or
hazards. It is therefore advantageous to use a method for route
finding and optimised information acquisition that can be easily
adapted to different disruption and hazard scenarios.

1.1. Previous approaches for route optimisation in similar settings

The requirement of optimised route finding mentioned in 1 (Large
umber of locations) is taken up in research in two main lines, which
ave their origins in different disciplines. These are, on the one hand,
rienteering problems from operations research and, on the other hand,
nformative path planning from robotics and information systems.

In the so-called orienteering problems, which extend the well-
nown travelling salesman problem by combining it with the knapsack
roblem, a subset of nodes in a network is to be selected considering
limited number of feasible steps or specific time constraints [6].

he aim of the selection is to maximise a score. For our application,
pproaches from the field of (a) stochastic orienteering problems,
b) generalised orienteering problems and (c) correlated orienteering
roblems may be adapted by maximising the information gain. Specif-
cally, (a) considers uncertainties in the collected score, which might
e interpreted as an uncertain gain in information; (b) uses sets of
cores that depend on different attributes, which in our case could take
he role of values to balance exploration and exploitation; (c) can be
sed to describe the cross-location dependency of information, since
he score collected in a node is here dependent on its neighbours.
owever, the dynamics of the information to be collected addressed in
(Causally dependent information) and 3 (Sequential information) would

equire a sequential approach for the route exploration, based on the
urrent (updated) information situation. Conversely, approaches for
olving an orienteering problem calculate the entire route all at once
t the beginning of the process. A post-disruption emergency mapping
trategy based on correlated team orienteering problems for predicting
azardous materials distributions is investigated by [7]. The authors
evelop a heuristic by optimising the point of interest to be visited.
opulation density is used to prioritise points and individual points are
patially correlated. However, the routes are initially determined with-
ut sequential information updating and without causal connections for
he acquired information.

In operations research, dynamic and stochastic developments of
he Vehicle Routing Problem (VRP) overcome this limitation. In par-
icular, [8] present real-time decision support solutions that link dy-
amic events and stochastic information. The initially optimised path
 t
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s thereby adapted to newly available data at run-time. Typically, such
pproaches are formulated as Markov Decision Processes (MDP) and
ulti-stage stochastic programming. Nevertheless, such approaches are

ften subject to problem-specific strict assumptions, clashing with re-
uirement 6 (General applicability).

The second main literature stream deals with the Informative Path
Planning (IPP) problem. Here, paths are planned for robotics and
information systems in order to maximise the information gain. Al-
though the distinction is not sharp, the focus is usually on trajectories
themselves rather than on specific locations. Applied methods refer,
for example, to the planning of possible movement paths of robots
for navigation. On this topic, [9] provide a review on path planning
techniques for mobile robots, where data are collected by onboard
sensors and used to determine the optimal way of the robot from one
point to another. Algorithms for path planning of Autonomous Under-
water Vehicles (AUVs) and Unmanned Aerial Vehicles (UAVs) based
on Gaussian Processes (GP) and Partially Observable Markov Decision
Process (POMDP) [10,11] aim to balance the exploration/exploitation
trade-off for mapping purposes, covering requirements 1 (Large number
of locations), 5 (Availability of knowledge) and 3 (Sequential information),
ssuming spatial correlations, without explicit causality as discussed
n 2 (Causally dependent information). In fact, information in the event
f a crisis is often not only spatially, but also causally dependent.
urthermore, the integration of a priori expert knowledge may be
ifficult in this approach.

Specific approaches for sequential information collection are for
xample proposed by [12,13]. [13] describe a multi-agent sequential
roblem in which the cooperation of a UAV and a helicopter in forest
ires is optimised. Here, the UAV collects information and the helicopter
orks in firefighting. Both decide at which points to act depending on

he jointly determined policy and available information. The decision
n the next step is made sequentially, whereby Bayesian beliefs are
sed to assess the current situation. The approach enables the effects
f decisions made on subsequent information procurement to be taken
nto account. Closely related, [12] propose a method for ad-hoc in-
ormation gathering for emergency storm response. In this approach,

vehicle is used to gather information for emergency operations on
ower grids. The information is integrated using Bayesian beliefs. An
d-hoc Monte Carlo Tree Search (MCTS) algorithm is used to weight
he exploration and exploitation for optimised information extraction
ased on the current information and to efficiently plan the necessary
epairs. Both methods cover most of the relevant requirements, but
o not explicitly consider Bayesian networks to model various levels
f causal connections between the belief components with respect to
he current state of the system identified as requirement 2 (Causally
ependent information).

.2. Contribution of this work

In a study, Schneider et al. [14] propose a new approach based on
he combined application of Bayesian networks for information process-
ng and an MCDA method for deciding on the next step to be taken
y an autonomous support vehicle. We further develop this approach
n this study to fulfil the six requirements identified in Section 1 by
ombining knowledge model based on a Bayesian network and a route
ptimisation based on MCDA methods. The knowledge model that the
obotic support system is equipped with represents its awareness of
he structure of the building in which it is located and the current
nown scenario-specific state there. The Bayesian network used for
his purpose enables the integration of causally dependent information
nd was set up in a way here, that facilitates the easy adaptation of
he Bayesian network to any realistic building structure with multiple
ooms. At the same time, it supports sequential decision-making based
n the structure of the building, as the MCDA used for this can access
he current knowledge model in every step of the route finding process.
n addition, we introduce the decision criterion of distance to optimise
oute finding under time constraints of requirement 1 (Large number of
ocations). Lastly, the structure of the knowledge model makes it easier

o integrate expert knowledge.
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2. Methods

2.1. Bayesian networks

Bayesian networks (BN) are renowned for their flexibility and ef-
ficiency in modelling a wide array of stochastic phenomena, enabling
the representation of complex probabilistic relationships in a structured
and understandable manner and allowing for the exploration of cause–
effect relationships. Thus, they offer a method for representing complex
interdependencies between variables by capturing the probabilistic
relationships that govern their interactions.

Bayesian networks are based on Bayes’ formula, which quantifies
the probability that an event, say 𝐴, will occur in the presence of
another event, say 𝐵, thus implying probabilistic inference across the
network, relying on specific causal relationships. In particular,

P(𝐴|𝐵) =
P(𝐵|𝐴) ⋅ P(𝐴)

P(𝐵)
, (1)

here P(𝐴|𝐵) is the conditional probability of the event 𝐴 given 𝐵,
(𝐵|𝐴) is the conditional probability of the event 𝐵 given A, while P(𝐴)
nd P(𝐵) are the probabilities of the two events, respectively.

Given a set of variables, we represent them in a Bayesian network
tarting from a causal structure. Each node in the resulting Directed
cyclic Graph (DAG) corresponds to a variable and each link to a di-
ected causal relationship. In this application, we do not infer the causal
tructure from data, but we manually construct the DAG according to
he characteristics of the application domain. The next necessary com-
onents are the Conditional Probability Distributions (CPDs): practical
uantification of the probability of the outcome of a variable given the
alues of its parents in the network. Specifically, for a random variable

with parents 𝗉𝖺(𝑋), we denote P(𝑋|𝗉𝖺(𝑋)) the conditional effects
of 𝗉𝖺(𝑋) on 𝑋, thus probabilistically quantifying the correspondent
causal influence within the network. In the case of a discrete probability
distribution, CPDs can be explicitly represented by tables. However, the
number of entries follows the number of possible state combinations of
parent nodes, thus increasing exponentially with the number of parent
nodes and requiring a proportional number of parameters. One solution
for reducing this potential combinatorial explosion and thus reducing
the computational effort is the technique of parent divorcing [15].

2.2. Multi-criteria decision analysis

Within the realm of decision making, the field of Multi-Criteria
Decision Analysis (MCDA) describes methods that have been developed
for situations in which multiple criteria need to be considered in
the process of selecting one out of multiple alternatives. Among the
numerous methods that exist to perform MCDA (cf. [16] for a review
on MCDA methods), the subfield of multi-attribute decision making
(MADM) focuses on situations where the alternatives are discrete.

Here, we apply the MADM method called PROMETHEE II, from
the family of preference ranking organisation method for enrichment eval-
uation (PROMETHEE), first introduced by [17]. Such methods have
been applied in various fields such as health care, banking, and in-
vestments [18]. PROMETHEE II allows for a complete ranking of
alternatives based on pairwise comparisons (cf. [18] for a detailed
summary). Specifically, pairs of alternatives are compared with respect
to each decision criterion 𝑗 ∈ {1,… , 𝐽}. Afterwards, the results of these
comparisons are aggregated such that all alternatives are ranked in
order of preference.

For each criterion 𝑗 ∈ {1,… , 𝐽}, the deviation between a pair of
alternatives is defined as:

𝑑𝑗 (𝑎𝑖, 𝑎𝑥) = 𝑔𝑗 (𝑎𝑖) − 𝑔𝑗 (𝑎𝑥), (2)

with 𝑎𝑖 being the value of alternative i and 𝑔𝑗 (𝑎𝑖) representing 𝑎𝑖
evaluated according to criterion j. This deviation 𝑑𝑗 between pairs of

alternatives for criterion j is then used to determine the preference
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among the pair of alternatives 𝑃𝑗 (𝑎𝑖, 𝑎𝑥). For each criterion j, a sepa-
rate preference function 𝑃𝑗 needs to be defined. A limited number of
different types of preference functions are usually applied in this step.
A general overview can be found in [18]. The preference functions
employed in this work are shown in Fig. 3. The parameterisation of
preference functions is a required input from the decision maker or the
stakeholder. Another important input that these groups need to provide
is a set of weights 𝛺 = {𝜔1,… , 𝜔𝑗 ,… , 𝜔𝐽 } that assigns a weight to
each of the 𝑗 decision criteria. Based on the pairwise comparison of
alternatives and the criteria weights, a ‘‘net outranking flow’’ 𝜙𝑛𝑒𝑡 is
calculated for each alternative:

𝜙𝑛𝑒𝑡(𝑎𝑖) =
1

𝑛 − 1

𝐽
∑

𝑗=1

∑

𝑎𝑥∈𝐴

[

𝑃𝑗 (𝑎𝑖, 𝑎𝑥) − 𝑃𝑗 (𝑎𝑥, 𝑎𝑖)
]

𝜔𝑗 , (3)

with 𝜙𝑛𝑒𝑡(𝑎𝑖) ∈ [−1, 1]. The alternative with the highest value of 𝜙𝑛𝑒𝑡 is
preferred.

2.3. Proposed strategy

In this study, we further develop the approach of Schneider [14]
and introduce a robotic system equipped with knowledge models that
represent its awareness about the building structure and the current
state of the building in which it is deployed. A Bayesian Network [19]
is used to model this knowledge in the form of the scenario-specific de-
pendencies between relevant factors. For example, measuring elevated
temperatures in one room of the building is considered as an indicator
for a fire in the vicinity of this room and thus increases the probability
(i.e. belief of the robot) of finding a fire in a neighbouring room.
Therefore, requirement 2 (Causally dependent information) is fulfilled in
a scenario-specific manner. Furthermore, the Bayesian Networks allows
expert knowledge to be taken into consideration (requirement 4. A
priori expert knowledge) by representing their opinions about the state
of a system as prior beliefs in the network.

We assume that navigating the building (including the detection of
unforeseen obstacles, etc.) is automatically performed by the robot at
constant speed and we do not take details of these processes into con-
sideration here. Instead, we focus on the strategic optimisation of the
route through the building, i.e., answering the question which room or
section of the building to visit next based on the information available
in the actual situation (requirement 1. Large number of locations).

In order to fulfil requirements 5 (Availability of knowledge) and 6
(General applicability), we follow a relatively simple yet robust ap-
proach: PROMETHEE II, as described by [18,20] is applied as a multi-
criteria decision making (MCDM) algorithm. This algorithm allows for
the consideration of differing (and even opposing) optimisation criteria
to be considered when selecting the next Point Of Interest (POI) to visit.
We consider a fire in a building as an application example. Here, it is
interesting to collect different types of information during the limited
time interval that is available for situation reconnaissance: it might be
interesting to search for humans who are still in the building, to search
for potential threats such as burning hazardous materials or to check
the accessibility of emergency exits in the building.

Depending on the situation, different experts or stakeholders might
have different preferences among these criteria. MCDM-algorithms such
as PROMETHEE II allow for the consideration of these preferences
during the decision-making process. The decision criteria and stake-
holder preferences will likely always be scenario-specific. However, it
is possible with relatively little effort to parameterise this approach for
a selected number of likely scenarios in advance, therefore making it
easily adaptable.

Combining a Bayesian Network knowledge model with an MCDA-
algorithm that has been parameterised by experts creates the opportu-
nity to perform well-informed sequential decisions as part of a contin-
uous route optimisation, while continuously updating the knowledge
model based on newly available sensor information. This approach
ensures an efficient collection of information in a given limited time
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Fig. 1. Floor plan of the building that serves as an application example. The grey areas
numbered from 1 to 21 are the rooms of the building. The shaded area in the centre
represents utilities such as stairways which do not need to be inspected by the robotic
support system.

period during an emergency situation. Details about the combined
application of a Bayesian Network and PROMETHEE II as an MCDM
algorithm for optimised situation reconnaissance in an application
example are described in Sections 3.1.2 and 3.1.3.

3. Evaluation

3.1. Application example

In order to evaluate the suitability of our combination of Bayesian
networks and PROMETHEE II for the optimisation of an information
gathering process, we simulate and analyse the route-optimisation
process of an autonomous robotic support system in a realistic building
in the aftermath of a fire outbreak.

3.1.1. The building structure and the emergency situation
We examine the information gathering process on one complete

floor of a building which comprises 21 rooms (cf. Fig. 1). There are
three smoke detectors installed in different parts of the floor and two
emergency exits, located in room 1 and room 15. As some of the 21
rooms are used as laboratories, it is possible that hazardous materials,
which might pose serious threats to emergency personnel in case of fire,
are present in the building. We assume that any personnel present in
the building immediately leaves the building as soon as a fire alarm
is triggered. Therefore, the presence of humans in the building is not
expected during the information gathering process.

In each of the two examined scenarios, one or multiple smoke detec-
tors have been triggered and fire fighters have been informed in order
to search for fires in the building. Since smoke can spread relatively
easily through the corridors, it is not trivial to limit the set of suspected
rooms which potentially are on fire and thus might have triggered the
smoke detector. Multiple experts who are familiar with the building
have different opinions about possible locations of hazardous materials
within the building. The initial situation is therefore characterised by
uncertainty about the existence and location of fire, the existence and
location of hazardous materials and the accessibility of the emergency
exits.

The autonomous robotic support system that serves as a mobile
sensor platform arrives a few minutes prior to human fire fighters and
is assigned to gather as much valuable information as possible about
the situation before the fire fighters arrive. Therefore, it operates under
time constraints and the examination of all 21 rooms is not feasible.
41 
Fig. 2. Schematic illustration of nodes and edges of the Bayesian Network for two
neighbouring rooms. Meaning of nodes: 𝐻𝑘: belief of expert k on the locations of
hazardous materials, 𝑃𝑖: presence of hazardous material, 𝐹𝑖: presence of fire, 𝐵𝑖: burning
hazardous material, 𝑇𝑖: room air temperature, 𝑆𝑗 : state of smoke detector.

3.1.2. The autonomous robotic support system
The autonomous robotic support system is equipped with two sensor

systems: A temperature sensor that can measure the local air tem-
perature in the immediate surrounding of the robot and a sensor to
detect the local presence of hazardous materials. To conduct these
measurements, the robot must stop for a short time. Furthermore, it
possesses some relevant information about the floor plan of the building
(cf. Fig. 1) which are required for the given task: it has access to data
on all distances which are required to determine the distance from its
current position to the next Point Of Interest (POI) along feasible routes;
based on room identifiers, it can process input from experts regarding
suspected locations of hazardous materials; the positions of all three
smoke detectors and of the two emergency exits are known as well.

A Bayesian network serves as a knowledge model of the situation
(cf. Fig. 2). It is tailored to scenarios involving fire and the potential
presence of hazardous materials inside buildings. Each room i is repre-
sented by four nodes of which nodes 𝑇𝑖 (room air temperature) and
𝑃𝑖 (presence of hazardous material) can be measured by the robot’s
sensors as soon as the robot enters the respective room. The values of
the variables 𝐹𝑖 (presence of fire) and 𝐵𝑖 (burning hazardous materials)
cannot be measured, but only determined through inference based on
values of the other nodes in the network. The other nodes of the
Bayesian network consist of the states of the smoke detectors (nodes
𝑆𝑗 and 𝑆𝑗+1 in Fig. 2), which are influenced by the states of the fire
nodes and nodes 𝐻𝑘, representing the belief of expert k on the locations
of hazardous materials. The latter nodes are only connected to the 𝑃𝑖
node of room i, if one of the experts suspects the presence of hazardous
materials in room i (as indicated by the dashed line in Fig. 2).

As described in Section 2.1, the structure of a node’s CPD depends
on the number of parent nodes and the number of their potential
states. In order to avoid combinatorial explosion when defining the
CPDs of the smoke detector nodes, rooms that are relatively far away
from one detector (i.e. within the ‘‘zone’’ of another smoke detector)
are grouped together by parent divorcing. Therefore, the state of each
smoke detector is modelled to depend on the presence of fire in each
individual room, which is close to this particular smoke detector, and
on the presence of fire in each of the groups of rooms that are located
closer to another smoke detector. According to the positions of smoke
detectors, the rooms are grouped as follows: group 1 consists of rooms
(1, 2, 3, 4, 19, 20, 21), group 2 comprises rooms (5, 6, 7, 8, 9, 10, 11)
and group 3 contains rooms (12, 13, 14, 15, 16, 17, 18).

3.1.3. The route optimisation task
When applying MCDA techniques to the route optimisation task,

multiple criteria can be considered during the determination of the
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optimal next room to visit: (1) For fire fighters, it is valuable to
know whether or not there are burning hazardous materials in any
of the rooms. (2) Fire fighters need to know whether at least one
of the emergency exits is accessible. If one emergency exit has been
identified as being accessible, this criterion can be considered fulfilled
and excluded from the list of optimisation criteria for the rest of the
route optimisation task. (3) As much information as possible should
be gathered during the limited time period which is available to the
support system before the fire fighters arrive. Therefore, the number
of visited rooms should be maximised, i.e. minimising the travelled
distance.

Depending on the current position of the robot, all available al-
ternatives (i.e. rooms that have not yet been visited by the robot)
are evaluated based on these three criteria. That means that for each
room i the following quantities are determined: the distance to the
urrent position of the robot, the distance to the closest emergency exit,
nd the probability of 𝐵𝑖. 𝐵𝑖 is interpreted as a preference percentage

value based on the probabilities of fire (node 𝐹𝑖) and the presence of
azardous materials (node 𝑃𝑖). In particular, node 𝐵𝑖 implicitly balances
he decision maker’s interest in exploring rooms with both fire and
azardous materials or either one of the two. In fact, although our
rimary interest is to discover rooms where both conditions occur, ex-
loring rooms where fire or hazardous materials is likely to be present
an be profitable in terms of improving the belief on the state of the
ystem, thus balancing exploration and exploitation. Given maximum
riority in case of burning hazardous materials (P(𝐵𝑖|𝑃𝑖 = True, 𝐹𝑖 =

True) = 100%), such a balance is weighted by conditional probabilities
P(𝐵𝑖|𝑃𝑖 = True, 𝐹𝑖 = False) and P(𝐵𝑖|𝑃𝑖 = False, 𝐹𝑖 = True).

The belief about the state of the system is updated after each new
ensor measurement in a visited room. Therefore, the optimisation task
an be characterised as a sequential decision problem. That means that
t is not sufficient to optimise the route through the building only
nce in the beginning. The solution to this optimisation problem also
epends on the relative weights that each of the decision criteria is
iven by the decision maker. As described in Section 2.2, we apply
ROMETHEE II as the MCDA method, showing how different weight
arameterisations (cf. Table 6) affect the determined optimal path
hrough the building.

In all scenarios considered, the robot starts at the entrance to the
loor (cf. Fig. 1) and then follows a sequence of actions in a loop:

1. employ the new collected evidence to update probability es-
timations (i.e. states of the nodes) in the Bayesian network;

2. perform MCDA to determine next POI to visit;
3. move to the next POI;
4. measure temperature and presence of hazardous materials;
5. go to 1.

ctions 4, 1 and 2, which are executed for each visited POI, require
total of 3 time units. Furthermore, it is assumed that the dynamics

f fire and smoke are slow compared to the time interval considered
ere. Accordingly, the position of fire and smoke are assumed to be
tatic (i.e. no further spreading of fire or smoke during the operation
f the robot). For this reason and due to time constraints, it is not
easonable to visit the same POI twice. Therefore, each POI, which has
een visited, is eliminated from the list of potential next POIs to select
rom.

.2. Model set-up and parameterisation

Setting-up the structure of the Bayesian network (cf. Fig. 2) for this
pecific application example requires information about the number of
ooms, the locations of emergency exits, the adjacency of rooms (edges
rom 𝐹𝑖 to 𝑇𝑖+1), location of rooms with respect to smoke detectors
edges from 𝐹𝑖 to 𝑆𝑗 and 𝑆𝑗+1) and experts’ belief about potential loca-

ions of hazardous materials (edges from 𝐻𝑘 to 𝑃𝑖). The specification of
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able 1
onditional probability distribution of the temperature in room 𝑖 (node 𝑇𝑖), given left-
nd right hand-side neighbours.
Room Fire (True or False)

Room 𝑖 − 1 True True True True False False False False
Room 𝑖 + 1 True True False False True True False False
Room 𝑖 True False True False True False True False

P(𝑇𝑖 = 𝖧) 1 - 𝜎𝑇 0.3 1 - 𝜎𝑇 0.3 1 - 𝜎𝑇 0.3 1 - 𝜎𝑇 0
P(𝑇𝑖 = 𝖬) 𝜎𝑇 0.7 𝜎𝑇 0.7 𝜎𝑇 0.7 𝜎𝑇 𝜎𝑇
P(𝑇𝑖 = 𝖫) 0 0 0 0 0 0 0 1 - 𝜎𝑇

Table 2
Conditional probability distribution of the presence of hazardous
materials in room 𝑖 (node 𝑃𝑖) when pointed out by an expert as
possible location.

Expert suspects haz.mat. True False

P(𝖯𝑖) 0.8 0.1

Table 3
Conditional probability distribution of node 𝐵𝑖, interpreted as visiting priority for room
𝑖.

Fire (True or False) True True False False
Hazardous material
(True or False)

True False True False

P(𝖡𝑖) 1 - 𝜎𝐵 0.5 0.3 𝜎𝐵

the Bayesian network is completed by defining conditional probability
distributions (CPD) for each type of node in the network.

Each temperature node (𝑇𝑖 in Fig. 2) is dependent on the fire node
of the room itself and of adjacent rooms. Its CPD is shown in Table 1.
The values of the temperature variable are clustered into three distinct
intervals: low (‘‘L’’), medium (‘‘M’’), and high (‘‘H’’). The probability of
a measurement error when no alterations due to fires are occurring is
set to 0.1% (𝜎𝑇 = 0.001).

The probability assigned by the knowledge model of the support
system for the presence of hazardous materials in room (𝑃𝑖, in Fig. 2)
depends on the experts’ belief about potential locations of any such
material (𝐻𝑘 in Fig. 2). If any expert assumes hazardous materials to
be present in a room, the correspondent probability increases to 80%
(cf. CPD in Table 2), otherwise it is set to 10%.

The occurrence of burning hazardous materials in a room (𝐵𝑖 in
Fig. 2) depends on the presence of hazardous material (𝑃𝑖) and the
presence of fire (𝐹𝑖). Moreover, the state of this variable is used as
one of the criteria for route optimisation. It follows that entries of its
CPD (Table 3) are interpreted as priorities and implicitly weighted, as
discussed in Section 3.1.3. An additional parameter 𝜎𝐵 , set to 0.01, is
employed as interpretation error.

Detectors can be triggered by a fire in any of the rooms, but a fully
connected CPD would incorporate 221 combinations. To limit the size of
the CPD for smoke detector nodes (𝑆𝑗 in Fig. 2), the number of parent
nodes is reduced. Therefore, the CPD depends only on a limited set of
rooms in the vicinity of the respective smoke detector and on the status
of the two other clusters of rooms that generate a more uncertain effect
due to the increasing distance (i.e. given an active cluster, its effect on
the detector is set to 0.8). Hence, the number of combinations drops
to 27+2. Table 4 shows the CPD for smoke detector 2, while Table 5
displays the dependency of the state of cluster 2 on the fire nodes of
the set of rooms that are close to smoke detector 2 as an example. The
additional parameter 𝜎𝐷 represents the false alarm probability, here set
to 1%.

Further input required from experts or the decision maker in order
to set up and parameterise the method are the preference functions for
each decision criterion and the corresponding criteria weights. Prefer-
ence functions resemble the degree to which one alternative is preferred

over another, represented as a function of the deviation between these
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Fig. 3. Preference functions for the three decision criteria. The 𝑥-axes of criteria 2 and 3 display the negative deviation 𝑑𝑗 (𝑎𝑖 , 𝑎𝑥) between pairs of alternatives, since these criteria
are to be minimised.
Table 4
Conditional probability distribution of detector node 𝑆2.

Room Fire (True or False)

Room 5 True False . . . False False False False
⋮ ⋮ ⋮ . . . ⋮ ⋮ ⋮
Room 11 True True . . . False False False False

Clusters Smoke spread (True or False)

Clust 1 True False . . . True False True False
Clust 3 True False . . . True True False False

P(detector ON) 1 1 . . . 1 0.8 0.8 0
P(detector OFF) 0 0 . . . 0 0.2 0.2 1 -𝜎𝐷
P(detector FP) 0 0 . . . 0 0 0 𝜎𝐷

Table 5
Conditional probability distribution for cluster 2.

Room Fire (True or False)

Room 5 True False . . . False
⋮ ⋮ ⋮ . . . ⋮
Room 11 True True . . . False

P(cluster ON) 1.0 1.0 . . . 0.0
P(cluster OFF) 0.0 0.0 . . . 1.0

alternatives (cf. Eq. (2)). The decision maker needs to select the type of
preference function and the individual parameter values. Thus, for each
criterion ranges are defined, in which deviations between alternatives
are insignificant or in which one alternative is strongly preferred over
the other. The preference functions of the three criteria used in our case
study are shown in Fig. 3.

The MCDA framework employed here offers the advantage that
decisions can easily be evaluated from the perspective of different
stakeholders. In PROMETHEE II, this is achieved via criteria weights
which are assigned to each criterion by the respective stakeholder.
Table 6 contains two sets 𝛺𝑠, 𝑠 ∈ {1, 2} of different criteria weights,
which we use in our application example to illustrate the effect that
these weights have on the outcome of the route optimisation. Here, the
values of each set of weights add up to one. However, this is not strictly
necessary.

4. Results

The path of the autonomous robotic support system through the
building is computed for two different scenarios. In each scenario, the
two sets of criteria weights (𝛺1, 𝛺2) introduced in Section 3.2 (cf.
Table 6) are tested.

4.1. Scenario 1

In scenario 1, there is a fire located in room 11. This fire leads
to increased temperatures in the neighbouring rooms 10 and 12. Haz-
ardous materials are present in rooms 9, 11, and 17. However, this
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Table 6
Two different sets of weights to be assigned to the three decision
criteria. Each set yields a different solution to the route optimisation
task for information gathering.

Weights of decision
criteria

𝛺1 𝛺2

Criterion
‘‘probability of
burning hazardous
material’’

0.125 0.1

Criterion ‘‘distance
to potential next
POI’’

0.075 0.05

Criterion ‘‘distance
to next emergency
exit’’

0.8 0.85

information is initially not known to the robotic support system and
should be obtained during the information gathering process. The only
information that serves as initial input to the knowledge system con-
cerns the position of the two smoke detectors that have been triggered
(smoke detectors close to rooms 9 and 14), the two sets of rooms in
which two experts suspect hazardous materials (expert 1: rooms 9, 12,
and 17; expert 2: rooms 10 and 18), and the need to check whether
one of the two emergency exits (in rooms 1 and 15) is accessible. The
starting point of the robotic support system is marked with a blue dot
in Fig. 1. Resulting routes for scenario 1 and resulting observations are
summarised in Table 7 for both preference sets 𝛺𝑠, 𝑠 ∈ {1, 2}.

The time required by the robotic system to detect the burning
hazardous materials is almost identical for 𝛺1 and 𝛺2 (90 and 93 time
units). This information is reflected in Table 7 by observations high
temperature and presence of hazardous material. To obtain it, the system
performs one more step on its route for 𝛺1 with five steps than for 𝛺2
with four steps. When using 𝛺1, all locations of hazardous materials are
detected more quickly (108 instead of 155 time units) and the process
takes one step less overall. After 123 (𝛺1) or 155 time units (𝛺2), no
further increase in information is to be expected. This corresponds to
seven steps for both preference sets 𝛺𝑠, 𝑠 ∈ {1, 2}.

Effects of the different weightings for the preference sets 𝛺1 and 𝛺2
are distinguishable during the exploration. As the criterion ‘‘distance
to the nearest emergency exit’’ is weighted higher in 𝛺2, the robotic
support system first heads for the nearest room with an emergency
exit (room 15). Since the emergency exit can be used, this criterion is
then disregarded for further route planning. For this reason, the support
system no longer prioritises the second room with an emergency exit
(room 1). In contrast, when using 𝛺1, the robotic support system first
heads for rooms in which dangerous material is expected according to
previously known expert opinion (steps 1 and 2), as this criterion has
a higher relative weight in 𝛺1. However, since there are no hazardous
materials in room 18, contrary to the information provided by expert
2, the influence of expert 2’s opinion is devalued in the further course
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Table 7
Explored rooms and observations in scenario 1.

Preference set 𝛺1 Preference set 𝛺2

Route Observations Route Observations

Step Current room Elapsed time Temp. Haz.mat. Current room Elapsed time Temp. Haz.mat.

0 0 0 L none 0 0 L none
1 18 13 L none 15 30 L none
2 17 29 L present 10 61 M none
3 15 54 L none 9 75 L none
4 12 76 M none 11 93 H present
5 11 90 H present 12 107 M present
6 9 108 L present 17 139 L none
7 10 123 M none 18 155 L present
8 6 144 L none 5 180 L none
9 7 158 L none 7 198 L none
10 5 176 L none 6 212 L none
11 8 194 L none 8 226 L none
12 13 224 L none 13 256 L none
Fig. 4. Graphical representation of Bayesian preferences of the individual rooms P(𝐵𝑖) for scenario 1 with weight set 𝛺1 in the initial state (a), after checking the emergency exit
in room 15 (b), and after 100 time units (c). These values are the same as those shown in Table 8. The rooms that have already been visited by the robot are indicated by grey
colour.
of route finding. When material is found in room 17, as expected by
expert 1, the belief in the predictions of expert 1 is strengthened.

In the further process, the influence of the different criteria weights
of 𝛺1 and 𝛺2 becomes visible. In some cases, the rooms with the
highest Bayesian preference P(𝐵𝑖) are not selected for the next step,
as the criterion of distance to the current location has priority. This
can be seen, for example, in steps 1 and 3 in Table 8, in which the
Bayesian preferences for all individual rooms and the distance from
the current location are listed for 𝛺1 up to step 6. In step 1, the
Bayesian preference (i.e. interest in exploring the probability of burning
hazardous materials) is higher for room 12 (P(𝐵12) = 18.8%) than for
room 17 (P(𝐵 ) = 13.6%). Nevertheless, room 17 is selected for the
17
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exploration in the next step, as the distance of 3.9 units is significantly
lower than to room 12 (9.8 units). The same phenomenon is observed
in step 3. Here, the Bayesian preference is higher for room 9 (P(𝐵9) =
30.2%) than for room 12 (P(𝐵12) = 28.3%), but again the closer room
is selected for the next exploration step. Here, the distance to room 9
(9.4 units) is larger than the distance to room 12 (5.7 units). After the
selected room has been visited, it is eliminated from the list of potential
next locations (indicated by the ‘‘-’’ signs in Table 8).

Fig. 4 graphically shows Bayesian preferences for scenario 1 with
weights of set 𝛺1 at the initial state (a), after checking the emergency
exit (b) and after 100 time units (c). Initially known knowledge of
experts 1 and 2 is visible in (a), where rooms close to active detectors
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Table 8
(Bayesian preference (%) | Distance) for scenario 1, 𝛺1, step 0-6. Emergency exits in red colour.

Room Step (time)

0 1 (13) 2 (29) 3 (54) 4 (76) 5 (90) 6 (108)

Room 1 3.1 | 9.1 3.1 | 11.5 3.1 | 12.8 3.1 | 16.5 3.1 | 18.0 3.1 | 17.0 3.1 | 14.5
Room 2 3.1 | 7.9 3.1 | 10.3 3.1 | 11.6 3.1 | 15.4 3.1 | 16.9 3.1 | 15.8 3.1 | 13.4
Room 3 3.1 | 5.3 3.1 | 7.7 3.1 | 9.0 3.1 | 12.7 3.1 | 14.3 3.1 | 13.2 3.1 | 10.8
Room 4 3.1 | 3.8 3.1 | 6.2 3.1 | 7.5 3.1 | 11.3 3.1 | 12.8 3.1 | 11.7 3.1 | 9.3
Room 5 7.4 | 3.3 8.2 | 6.5 8.7 | 7.9 9.9 | 11.6 4.5 | 9.2 5.6 | 8.1 5.6 | 5.7
Room 6 7.4 | 4.7 8.2 | 8.0 8.7 | 9.3 9.9 | 11.7 4.5 | 8.0 5.6 | 6.9 5.6 | 4.5
Room 7 7.4 | 5.1 8.2 | 8.3 8.7 | 9.7 9.9 | 12.1 4.5 | 8.4 5.6 | 7.3 5.6 | 4.9
Room 8 7.4 | 5.3 8.2 | 8.5 8.7 | 9.8 9.9 | 10.5 4.5 | 6.8 5.6 | 5.7 3.1 | 3.3
Room 9 18.4 | 6.3 19.3 | 9.6 28.6 | 10.9 30.2 | 9.4 18.2 | 5.7 19.4 | 4.7 –
Room 10 18.4 | 7.4 12.2 | 10.6 12.8 | 11.3 14.1 | 8.3 8.4 | 4.6 9.5 | 3.6 6.9 | 3.3
Room 11 7.4 | 8.8 8.2 | 11.1 8.7 | 9.9 9.9 | 7.0 32.7 | 3.3 – –
Room 12 18.4 | 9.8 18.8 | 9.8 27.7 | 8.6 28.3 | 5.7 – – –
Room 13 7.4 | 9.2 7.7 | 8.6 7.9 | 7.4 8.4 | 4.5 25.2 | 3.2 3.1 | 4.5 3.1 | 6.9
Room 14 7.4 | 7.7 7.7 | 7.1 7.9 | 5.9 3.1 | 3.0 3.1 | 5.1 3.1 | 6.4 3.1 | 8.8
Room 15 7.4 | 8.3 7.7 | 7.7 7.9 | 6.5 – – – –
Room 16 7.4 | 6.0 7.7 | 5.4 3.1 | 4.2 3.1 | 5.0 3.1 | 7.1 3.1 | 8.4 3.1 | 10.9
Room 17 18.4 | 4.5 13.6 | 3.9 – – – – –
Room 18 18.4 | 3.2 – – – – – –
Room 19 3.1 | 4.3 3.1 | 6.6 3.1 | 8.0 3.1 | 11.7 3.1 | 13.2 3.1 | 12.1 3.1 | 9.7
Room 20 3.1 | 6.1 3.1 | 8.5 3.1 | 9.8 3.1 | 13.5 3.1 | 15.0 3.1 | 14.0 3.1 | 11.5
Room 21 3.1 | 8.2 3.1 | 10.6 3.1 | 11.9 3.1 | 15.6 3.1 | 17.1 3.1 | 16.1 3.1 | 13.7
Table 9
Explored rooms and observations in scenario 2.

Preference set 𝛺1 Preference set 𝛺2

Route Observations Route Observations

Step Current room Elapsed time Temp. Haz.mat. Current room Elapsed time Temp. Haz.mat.

0 0 0 L none 0 0 L none
1 18 13 L none 15 30 H none
2 17 29 L present 1 88 L none
3 15 54 H none 18 129 L none
4 1 112 L none 16 150 M none
5 9 164 L present 12 177 M none
6 12 187 M present 13 191 M none
7 13 199 M none 14 207 H none
8 14 215 H none 17 230 L present
9 10 244 M none 9 269 L present
10 11 259 H present 10 283 M none
11 8 281 L none 11 298 H present
12 6 296 L none 8 320 L none
have higher priority and the experts’ suggestions regarding locations
of hazardous materials are added to rooms via the Bayesian network
structure. In (b), room 10 has lost priority due to the incorrect sugges-
tion on room 17 from the expert who indicated it, while the neighbours
of the already explored rooms have low priority due to the measured
low temperature. After 100 time units only room 9 – which, in fact,
contains hazardous materials – has a high priority.

4.2. Scenario 2

In scenario 2, the fire has spread over three rooms (11, 14, and 15),
leading to increased temperatures in the neighbouring rooms 10, 12,
13, and 16. All other boundary conditions (rooms containing hazardous
materials, triggered smoke detectors, beliefs of experts about locations
of hazardous materials, position of emergency exits and starting point
of the robotic support system) are identical to the ones presented in
scenario 1. It should be noted that the emergency exit in room 15 is
blocked by the fire. Table 9 shows the paths of the robotic support
system for scenario 2 using 𝛺1 and 𝛺2.

The gathering of the most important information takes significantly
longer in this scenario than in scenario 1 (see Section 4.1). The reason
for the longer time required in both variants is the non-accessibility of
the emergency exit in room 15. This means that the criterion ‘‘distance
to next emergency exit’’ is included further in the route planning until
the robotic support system explores the second emergency exit in room
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1. Thus, the criterion of distance optimisation is less important overall.
When using 𝛺1, the robotic support system requires ten steps or 259
time units until the accessibility of the emergency exits is checked, the
hazardous materials are detected and the fire is localised. For 𝛺2, the
system requires 298 time units and eleven steps for these tasks. For this
preference set, the robotic support system accepts longer distances to
check the accessibility of the emergency exits, as the weighting of this
criterion is higher than for 𝛺1.

This is shown by the fact that, in contrast to 𝛺1, the emergency exit
in room 1 is explored directly in step 2 when using 𝛺2 as soon as the
system has detected the non-accessibility of the emergency exit in room
15 in the first step (cf. Table 9). Due to the more dominant distance
optimisation in 𝛺1, the robotic support system first explores the closer
room 18 and room 17, in which the system detects existing dangerous
material (cf. Table 9) and only reaches the unavailable emergency
exit in room 15 in step 3. The second emergency exit in room 1 is
then checked immediately in the following step, analogous to 𝛺2. The
resulting time advantage for 𝛺2 is 112 − 88 = 24 time units. This
time advantage is then reversed for the collection of all information
in 298 − 259 = 39 time units in favour of 𝛺1.

After the available emergency exit in room 1 has been localised, the
criterion of the accessibility of emergency exits is dropped for 𝛺1 and
𝛺2 in the further course of the exploration route. Due to the distance
optimisation, the route for both preference sets is then similar. For 𝛺2,
room 18 and room 17, already explored at the beginning of 𝛺1, are

also explored in the course of the exploration route. Apart from that,
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the order of the information discovery is otherwise identical for 𝛺1 and
2.

. Discussion

The presented approach aims to achieve improved ad-hoc situation
wareness in emergency situations by using an autonomous robotic
upport system. To optimise the deployment route of the system in
erms of rapid information gain, we propose a combination of Bayesian
etworks and the MCDA method PROMETHEE II. The results presented
n Section 4 show the properties of the proposed algorithm for opti-
ised route finding. In particular, with regard to its suitability for use
ith an autonomous robotic support system in emergency situations, a
etailed consideration of these results is useful, taking into account the
equirements 1–6 identified in Section 1.

The route calculated by the system in the application examples is
ptimised for exploration using MCDA in combination with a Bayesian
etwork, where the weighting of the MCDA criteria enables a bal-
ncing of the different types of information to be obtained and the
inimisation of the route length (cf. Section 4.1, Table 8). As stated

n requirement 1 (Large number of locations), the approach is able
o utilise the limited time efficiently while taking existing informa-
ion into account. Causal and spatial dependencies of data for the
ormation of higher-level information (requirement 2. Causally depen-
ent information) are also considered in the proposed procedure. For
he application example, the information on the smoke detectors is
lustered via parent divorcing in the Bayesian network presented in
ection 3.1.2. This method achieves a simplified representation of the
hysical phenomenon of smoke propagation. For temperature propaga-
ion, the information from neighbouring rooms is included, which takes
nto account their spatial dependency.

Requirement 3 (Sequential information) is addressed by incorporat-
ng the information from newly explored rooms into the Bayesian
etwork based knowledge model by updating the probabilities after
ach step (see Section 3.1.3). The decision on the next step made by
CDA is then based on the current belief of the systems’ state. This

ehaviour can be observed in Table 8: Here, the Bayesian preference
or exploring the rooms in the application example changes at each
tep. The proposed approach also takes into account the requirement
o consider a priori expert knowledge (4. A priori expert knowledge).

In the treated application example, the assumptions made by experts
about the presence of hazardous materials are directly integrated into
the knowledge model as a prior (cf. Fig. 2). These assumptions inte-
grated via the node 𝐻𝑘 thus influence the route finding decisions. This
becomes particularly clear in the calculated routes for Scenario 1 in
Section 4.1. Here, the robotic support system for 𝛺1 initially (steps
1 and 2) explores the rooms in which the experts suspect hazardous
materials (cf. Table 7). Additionally, we demonstrate how the evalu-
ation of the expert knowledge provided is implemented via inference
in the Bayesian network. In this case, the significance of the a priori
information decreases if it cannot be confirmed by exploration.

In principle, the proposed simple structure of the decision logic is
easily adaptable. As soon as a suitable knowledge model based on a
Bayesian network for relevant information in the current scenario and
a spatial plan of the concerned locations are available, it can be used
in combination with an autonomous robotic support system. It should
be noted here that the general approach allows to create a suitable
Bayesian network in advance only based on the relevant information.
The system then requires little additional initial information to be ready
for use. In particular, due to the simple logical mapping of physical
phenomena in the Bayesian network, complex tailored simulations are
not needed. Taken together, these properties fulfil the requirements 5
(Availability of knowledge) and 6 (General applicability).

Overall, the approach addresses the requirements identified in Sec-
tion 1. Here we try to balance effort and accuracy. We show that a

Bayesian network and a connected MCDA can be used to optimise a
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route with little initial information. In particular, a sequential strategy
was implemented that incorporates existing information into the route
planning at each step. It should be noted here that the approach pre-
sented was only tested in the scenarios presented with the preference
sets (𝛺1, 𝛺2). Application in more complex scenarios could provide
further insights regarding the flexibility of the approach for different
application examples. This also applies to possible limitations, whereby
two points in particular should be emphasised here. First, we are not
dealing with the details of the technical solution for the robotic system,
i.e. we are assuming autonomous navigation. Thus, we assume that the
map is known to the robotic system and unknown obstacles must be
overcome with the help of its onboard navigation system. Second, we
do not take into account the temporal dynamics of physical hazards
and crisis situations. In particular, this means that state information can
change quickly, causing older information to quickly lose its relevance
for exploring the current situation. Although this is less relevant for this
very short-term focused approach for rapid information gain, it would
be important for longer explorations. A first solution could be the use
of soft evidence methods in the proposed Bayesian network. Here, the
degree of belief, which determines the influence of information in the
Bayesian network, could be used to integrate the decreasing relevance
of obtained information over time.

6. Conclusion

We have presented a novel approach for route optimisation of
support systems for situational awareness in emergency situations. In
order to meet the special constraints imposed by this scenario, we have
combined the widely used methods of Bayesian networks and MCDA,
in specific PROMETHEE II. In particular, the approach allows the
sequential consideration of limited available data in the case of rapid
availability in an emergency. In this way, the limited time window
available between alerting and the arrival of emergency services can
be optimally utilised.

To develop the approach, we first identified six requirements based
on the application example of an autonomous robotic support system
for rapid information gathering in the event of a crisis, also discussing
the pros and cons of existing approaches. It turns out that the rapid
availability of the overall system, the sequential consideration of lim-
ited information and its causal dependency, as well as the inclusion
of a priori existing expert knowledge are of great importance. Based
on these findings, we introduced our alternative solution combining
Bayesian Networks and the MCDA method PROMETHEE II. We eval-
uated it in two selected scenarios, where the approach is presented in
detail.

For the evaluation, we simulated the two scenarios and the resulting
behaviour of the robotic support system for two sets of criteria weights
(𝛺1 and 𝛺2). The results confirm that the requirements can be fully
addressed. Specifically, the developed solution can easily be adjusted
to reflect the scenario-dependent priorities of the decision maker re-
garding the exploration task. The robotic support system then does not
follow a rigid pre-defined route, but adjusts its information-gathering
activities based on all the momentarily available information. Due to
the limitations discussed in Section 5, especially the requirement of
an operational system capable of autonomous navigation and the non-
consideration of the temporal development of emergency situations,
the application potential should be analysed for more complex sce-
narios. Nevertheless, the presented approach shows great potential in
route optimisation for creating short-term ad-hoc situation awareness
in emergency situations.
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