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Optimierung der Crashsicherheit im Design, Optimierung mit Surrogatmodellen, Gemischt-
ganzzahlige Optimierung, Passive Sicherheit, Gaußscher Prozess, CS-Opt. 
 
Pietro Lualdi 
DLR, Institut für Fahrzeugkonzepte, Stuttgart 
 
Surrogat-Modell-gesteuerte Strukturoptimierung zur Verbesserung der Crashsicherheit 
von Fahrzeugen 
Universität Stuttgart 
Trotz neuer Sicherheitsvorschriften bestehen nach wie vor Bedenken hinsichtlich der 
Fahrzeugsicherheit, was sich in hohen Unfallraten niederschlägt. Gleichzeitig steht die 
Automobilindustrie vor der doppelten Herausforderung, die Kraftstoffeffizienz zu verbessern und 
die CO2-Emissionen zu reduzieren, was zu einem Wandel hin zu leichteren, aber sichereren 
Fahrzeugstrukturen führt. Leider stehen diese Ziele im Konflikt zueinander, da die Reduzierung 
der Fahrzeugmasse negative Auswirkungen auf die allgemeine Fahrzeugsicherheit haben kann. 
Die inhärente Komplexität der Fahrzeugsicherheitsanalyse, die umfangreiche numerische 
Simulationen erfordert, schließt den Einsatz traditioneller Optimierungsmethoden aufgrund ihrer 
zeitaufwendigen Natur und der Komplexität der Crashproblemfunktionen aus. Die bestehende 
Literatur bietet begrenzte, oft ineffiziente Optimierungslösungen, die in der Regel auf spezifische 
Fälle zugeschnitten sind und denen es an einer breiten Anwendbarkeit mangelt. 
In Anerkennung der Tatsache, dass eine universelle Lösung für die Optimierung der 
Fahrzeugstruktur nicht realisierbar ist, konzentriert sich diese Forschung auf die Erzielung 
signifikanter Verbesserungen sowohl in der Effizienz als auch in der Qualität der 
Crashworthiness-Auslegung. In dieser Arbeit wird eine auf Ersatzmodellen basierende 
Optimierungsmethode vorgestellt, die hauptsächlich auf Gaußschen Prozessen basiert, um reale 
Crashworthiness-Funktionen und ihre komplexen nicht-linearen Beziehungen effizient zu 
modellieren. Der vorgeschlagene Ansatz beinhaltet eine gründliche Evaluierung bestehender 
Methoden in der Literatur, deren Verbesserung und Weiterentwicklung sowie die Einführung 
neuer Optimierungstechniken, um bestehende Wissenslücken zu schließen. 
Ein zentraler Beitrag dieser Arbeit ist die erfolgreiche Implementierung der Materialauswahl durch 
diskrete Variablenkodierung. Ebenfalls implementiert wird eine aktive Lernlogik, die 
sequenzielles und aktives Sampling nutzt, um den Informationsgewinn aus jeder numerischen 
Simulation zu maximieren. Die Methodik lernt effektiv aus komplexen Datenstrukturen unter 
Verwendung von additiven Kernen und produktiven Kernen und belebt veraltete 
aufeinanderfolgende Metamodellierungstechniken wieder, indem sie deren Wirksamkeit auch in 
herausfordernden Szenarien wie Frontalkollisionen nachweist. Zusätzlich wird die Integration von 
diversen Datenquellen zur Verbesserung der Crashworthiness-Vorhersagen erforscht. 
Die in dieser Arbeit vorgestellte Optimierungsmethode zeigt nicht nur eine bemerkenswerte 
Anpassungsfähigkeit und Effizienz in einem breiten Spektrum von 
Crashsicherheitsanwendungen, sondern unterstreicht auch das Potenzial, verbesserte 
Designlösungen mit deutlich geringerem Rechenaufwand zu erzielen. Abhängig von der 
Rechenleistung und den parallelen Strategien, die für eine bestimmte Aufgabe verwendet 
werden, liefert der vorgeschlagene Ansatz oft verbesserte - oder zumindest vergleichbare - 
Fahrzeugsicherheitsdesigns in etwa der Hälfte der Iterationen, die üblicherweise von aktuellen 
Spitzenmethoden benötigt werden. 
Die in dieser Studie eingeführte Optimierungsmethodik ist speziell auf die Bedürfnisse von 
Berechnungsingenieuren und Konstrukteuren in der Automobilindustrie zugeschnitten und 
vereinfacht den Entwicklungsprozess, indem sie iterative Abstimmungsschleifen zwischen 
Design- und Engineering-Teams reduziert. Die Methode setzt Software für numerische 
Simulationen voraus, sowie ein grundlegendes Verständnis der Prinzipien von Crashworthiness 
und Designoptimierung. Der vorgeschlagene Ansatz berücksichtigt unterschiedliche 
Komplexitätsgrade und macht fortgeschrittene Optimierungen der Crashsicherheit zugänglicher. 
Der Höhepunkt dieser Forschung ist die Entwicklung von CS-Opt (Car Structure Optimizer), 
einem neuartigen Optimierungsframework. Ausgestattet mit einem hohen Grad an 
Entscheidungsautonomie führt CS-Opt Anwender mit unterschiedlichem Expertenwissen 
gekonnt durch den sensiblen Prozess der Crash-Sicherheitsoptimierung und vereinfacht und 
beschleunigt so den Prozess der Fahrzeugstrukturauslegung. 



Crashworthiness design optimization, surrogate model optimization, mixed integer optimization, 
passive safety, gaussian process, CS-Opt. 
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Surrogate model-driven structural optimization for improved vehicle crashworthiness 
University of Stuttgart 
 
Despite new safety regulations, concerns about vehicle safety still persist, with high fatality rates. 
Concurrently, the automotive industry is facing the dual challenge of improving energy efficiency 
and reducing CO2 emissions, leading to a shift toward lighter yet safer vehicle structures. 
Unfortunately, these goals are conflicting, as reducing vehicle mass may negatively impact 
overall vehicle safety. The inherent complexity of vehicle safety analysis, which requires 
extensive numerical simulations, precludes the use of traditional optimization methods due to 
their time consuming nature and the complexity of the crash problem functions. The existing 
literature provides limited, often inefficient optimization solutions, usually tailored to specific cases 
and lacking broad applicability. 
Recognizing the impracticality of a one-size-fits-all solution in vehicle structure de- sign 
optimization, this research focuses on achieving major improvements in both the efficiency and 
quality of crashworthiness design. In this work, a surrogate-based optimization methodology, 
based largely on Gaussian processes, is presented to efficiently model real crashworthiness 
functions and their complex non-linear relation- ships. The proposed approach involves a 
thorough evaluation of existing literature methods, enhancing and further developing them, and 
introducing new optimization techniques to close existing knowledge gaps. 
A central contribution of this work is the successful implementation of material selection through 
discrete variable encoding. An active learning logic that uses sequential and active sampling to 
maximize the information gain from each numerical simulation is also implemented. The 
methodology effectively learns from complex data structures using additive and product kernels 
and rejuvenates outdated successive metamodeling techniques, proving their effectiveness even 
in challenging scenarios such as frontal crash collision. Additionally, the integration of diverse 
data sources to improve crashworthiness predictions is explored. 
The optimization methodology presented in this work not only demonstrates remark- able 
adaptability and efficiency across a spectrum of crashworthiness applications, but also highlights 
the potential for achieving improved design solutions with significantly less computational effort. 
Depending on the computational power and parallel strategies employed for a given task, the 
proposed approach often returns improved-or at least comparable-vehicle safety designs in about 
half the number of iterations typically required by existing state-of-the-art methods. 
The optimization methodology introduced in this study is tailored for computational engineers and 
mechanical designers in the automotive industry, streamlining the development process by 
reducing iterative loops between design and engineering teams. The method requires numerical 
simulation software, together with a basic understanding of crashworthiness and design 
optimization principles. The proposed approach accommodates varying levels of complexity and 
makes advanced crashworthiness optimization more accessible. 
The culmination of this research is the development of the Car Structure Optimizer (CS-Opt), a 
novel optimization framework. Equipped with a high degree of decision autonomy, CS-Opt 
cleverly guides users of varying expertise through the delicate process of crashworthiness 
optimization, thereby simplifying and accelerating the vehicle structure design process. 
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Abstract

Despite new safety regulations, concerns about vehicle safety still persist, with high
fatality rates. Concurrently, the automotive industry is facing the dual challenge of
improving energy efficiency and reducing CO2 emissions, leading to a shift toward
lighter yet safer vehicle structures. Unfortunately, these goals are conflicting, as
reducing vehicle mass may negatively impact overall vehicle safety. The inherent
complexity of vehicle safety analysis, which requires extensive numerical simulations,
precludes the use of traditional optimization methods due to their time consuming
nature and the complexity of the crash problem functions. The existing literature
provides limited, often inefficient optimization solutions, usually tailored to specific
cases and lacking broad applicability.

Recognizing the impracticality of a one-size-fits-all solution in vehicle structure de-
sign optimization, this research focuses on achieving major improvements in both
the efficiency and quality of crashworthiness design. In this work, a surrogate-based
optimization methodology, based largely on Gaussian processes, is presented to effi-
ciently model real crashworthiness functions and their complex non-linear relation-
ships. The proposed approach involves a thorough evaluation of existing literature
methods, enhancing and further developing them, and introducing new optimization
techniques to close existing knowledge gaps.

A central contribution of this work is the successful implementation of material selec-
tion through discrete variable encoding. An active learning logic that uses sequential
and active sampling to maximize the information gain from each numerical simu-
lation is also implemented. The methodology effectively learns from complex data
structures using additive and product kernels and rejuvenates outdated successive
metamodeling techniques, proving their effectiveness even in challenging scenarios
such as frontal crash collision. Additionally, the integration of diverse data sources
to improve crashworthiness predictions is explored.

The optimization methodology presented in this work not only demonstrates remark-
able adaptability and efficiency across a spectrum of crashworthiness applications,
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but also highlights the potential for achieving improved design solutions with sig-
nificantly less computational effort. Depending on the computational power and
parallel strategies employed for a given task, the proposed approach often returns
improved-or at least comparable-vehicle safety designs in about half the number of
iterations typically required by existing state-of-the-art methods.
The optimization methodology introduced in this study is tailored for computa-
tional engineers and mechanical designers in the automotive industry, streamlining
the development process by reducing iterative loops between design and engineering
teams. The method requires numerical simulation software, together with a basic
understanding of crashworthiness and design optimization principles. The proposed
approach accommodates varying levels of complexity and makes advanced crashwor-
thiness optimization more accessible.
The culmination of this research is the development of the Car Structure Optimizer
(CS-Opt), a novel optimization framework. Equipped with a high degree of decision
autonomy, CS-Opt cleverly guides users of varying expertise through the delicate
process of crashworthiness optimization, thereby simplifying and accelerating the
vehicle structure design process.



Zusammenfassung

Trotz neuer Sicherheitsvorschriften bestehen nach wie vor Bedenken hinsichtlich der
Fahrzeugsicherheit, was sich in hohen Unfallraten niederschlägt. Gleichzeitig steht
die Automobilindustrie vor der doppelten Herausforderung, die Kraftstoffeffizienz
zu verbessern und die CO2-Emissionen zu reduzieren, was zu einem Wandel hin zu
leichteren, aber sichereren Fahrzeugstrukturen führt. Leider stehen diese Ziele im
Konflikt zueinander, da die Reduzierung der Fahrzeugmasse negative Auswirkun-
gen auf die allgemeine Fahrzeugsicherheit haben kann. Die inhärente Komplex-
ität der Fahrzeugsicherheitsanalyse, die umfangreiche numerische Simulationen er-
fordert, schließt den Einsatz traditioneller Optimierungsmethoden aufgrund ihrer
zeitaufwendigen Natur und der Komplexität der Crashproblemfunktionen aus. Die
bestehende Literatur bietet begrenzte, oft ineffiziente Optimierungslösungen, die in
der Regel auf spezifische Fälle zugeschnitten sind und denen es an einer breiten
Anwendbarkeit mangelt.

In Anerkennung der Tatsache, dass eine universelle Lösung für die Optimierung
der Fahrzeugstruktur nicht realisierbar ist, konzentriert sich diese Forschung auf
die Erzielung signifikanter Verbesserungen sowohl in der Effizienz als auch in der
Qualität der Crashworthiness-Auslegung. In dieser Arbeit wird eine auf Ersatzmod-
ellen basierende Optimierungsmethode vorgestellt, die hauptsächlich auf Gaußschen
Prozessen basiert, um reale Crashworthiness-Funktionen und ihre komplexen nicht-
linearen Beziehungen effizient zu modellieren. Der vorgeschlagene Ansatz bein-
haltet eine gründliche Evaluierung bestehender Methoden in der Literatur, deren
Verbesserung und Weiterentwicklung sowie die Einführung neuer Optimierungstech-
niken, um bestehende Wissenslücken zu schließen.

Ein zentraler Beitrag dieser Arbeit ist die erfolgreiche Implementierung der Mate-
rialauswahl durch diskrete Variablenkodierung. Ebenfalls implementiert wird eine
aktive Lernlogik, die sequenzielles und aktives Sampling nutzt, um den Information-
sgewinn aus jeder numerischen Simulation zu maximieren. Die Methodik lernt effek-
tiv aus komplexen Datenstrukturen unter Verwendung von additiven Kernen und
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produktiven Kernen und belebt veraltete aufeinanderfolgende Metamodellierung-
stechniken wieder, indem sie deren Wirksamkeit auch in herausfordernden Szenar-
ien wie Frontalkollisionen nachweist. Zusätzlich wird die Integration von diversen
Datenquellen zur Verbesserung der Crashworthiness-Vorhersagen erforscht.
Die in dieser Arbeit vorgestellte Optimierungsmethode zeigt nicht nur eine be-
merkenswerte Anpassungsfähigkeit und Effizienz in einem breiten Spektrum von
Crashsicherheitsanwendungen, sondern unterstreicht auch das Potenzial, verbesserte
Designlösungen mit deutlich geringerem Rechenaufwand zu erzielen. Abhängig von
der Rechenleistung und den parallelen Strategien, die für eine bestimmte Aufgabe
verwendet werden, liefert der vorgeschlagene Ansatz oft verbesserte - oder zumin-
dest vergleichbare - Fahrzeugsicherheits designs in etwa der Hälfte der Iterationen,
die üblicherweise von aktuellen Spitzenmethoden benötigt werden.
Die in dieser Studie eingeführte Optimierungsmethodik ist speziell auf die Bedürfnisse
von Berechnungsingenieuren und Konstrukteuren in der Automobilindustrie zugeschnit-
ten und vereinfacht den Entwicklungsprozess, indem sie iterative Abstimmungss-
chleifen zwischen Design- und Engineering-Teams reduziert. Die Methode setzt
Software für numerische Simulationen voraus, sowie ein grundlegendes Verständnis
der Prinzipien von Crashworthiness und Designoptimierung. Der vorgeschlagene
Ansatz berücksichtigt unterschiedliche Komplexitätsgrade und macht fortgeschrit-
tene Optimierungen der Crashsicherheit zugänglicher.
Der Höhepunkt dieser Forschung ist die Entwicklung von CS-Opt (Car Structure Op-
timizer), einem neuartigen Optimierungsframework. Ausgestattet mit einem hohen
Grad an Entscheidungsautonomie führt CS-Opt Anwender mit unterschiedlichem
Expertenwissen gekonnt durch den sensiblen Prozess der Crash-Sicherheitsoptimierung
und vereinfacht und beschleunigt so den Prozess der Fahrzeugstrukturauslegung.
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Chapter 1

Introduction

"All models are wrong, but some are useful."
— George E. P. Box

In the annals of statistical modeling, George Box’s aforementioned quote stands
as a testament to the pragmatic approach to problem solving. As readers journey
through this dissertation, it will become more than clear that this statement is not
just a footnote, but a fundamental pillar guiding our research efforts. While the fas-
cination of artificial intelligence (AI) and its countless statistical approaches holds
the promise of breakthrough solutions, we must maintain a balanced perspective.
This dissertation aims to leverage the invaluable assets that AI offers for crash-
worthiness optimization, recognizing its immense potential. At the same time, it
acknowledges their inherent limitations and dispels any notion of a silver bullet.
Rather than seeking a one-size-fits-all solution, this thesis seeks to pragmatically
leverage the strengths of mathematical methods and carve out a niche where they
prove most effective in the field of crashworthiness optimization.

1.1 Background and Motivation

The rapid growth of motorization in modern society has raised a number of chal-
lenges, most notably the critical need for improved vehicle and road safety. This
urgency is driven by staggering global statistics. According to the Insurance Insti-
tute for Highway Safety (IIHS) approximately 1.2 million deaths annually can be
attributed to vehicle crashes, not to mention the countless injuries and significant
socioeconomic impacts [3]. In the U.S. alone, as reported by the National High-
way Traffic Safety Administration (NHTSA), the economic burden of crash-related
deaths is nearly 277 $ billion per year. This scenario is exacerbated by projections
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that by 2030, motor vehicle collisions (MVCs) will be the fifth leading cause of death
worldwide, with current estimates of approximately 80,000 MVCs per day resulting
in 3,000 fatalities. This alarming outlook is not without foundation; factors such as
speeding, drug-impaired and distracted driving, and lax enforcement, particularly
of seat belt laws, have all contributed to a sharp increase in traffic fatalities, the
largest increase in more than fifty years [4, 5].

These circumstances have necessitated the escalation of regulatory mandates for
the integration of advanced safety systems into vehicles. Historical data underscores
the effectiveness of crashworthiness design, with research suggesting that improved
crashworthiness could prevent up to 43 % of potential fatalities [3]. At the same
time, environmental pressures are increasing, necessitating a shift toward vehicle
lightweighting, a strategy that is critical to reducing fuel consumption given the
direct correlation between fuel efficiency and vehicle mass. In fact, a 10 % reduction
in vehicle weight can result in fuel savings of 6-8 % for internal combustion engine
(ICE) vehicles [6, 7]. Simultaneously, battery electric vehicles (BEVs) require a
lightweighting strategy to compensate for the heavy weight of the battery, which is
estimated to be 70 % of their overall mass [8], and to extend the vehicle range.

The quest for vehicle safety and sustainability, however, is not without its com-
plications. As the automotive industry struggles with shorter and shorter product
cycles, the urgency to reduce CO2 emissions has made the use of lightweight mate-
rials an even more pressing matter. The automotive industry, which accounts for
more than 90 % of the materials used by the aerospace, wind energy and automo-
tive sectors combined, is experiencing a significant shift toward these materials. As
depicted in Figure 1.1, lightweight materials like high-strength steel and aluminum
are expected to double their share in automotive use from 30 % to 70 % by 2030, be-
coming pivotal in the drive for efficiency and emissions reduction. Although costly,
investing in lightweight materials is justified by the significant weight savings they
offer - up to 50 % lighter than steel - and their potential to reduce costs through
industrialization, which could cut costs by up to 70 % in the years to come [1].

In terms of CO2 emissions per kilometer traveled, the targets set for average fuel
efficiency of passenger cars represent a significant challenge in different countries (see
Figure 1.2) [2]. The United States, for example, aims to achieve an average of 89
grams of CO2 per kilometer by 2025, a reduction of about 40 % from 2015 levels. To
achieve this goal, there is a growing focus not only on better fuel efficiency and more
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Figure 1.1: Use of lightweight materials across industries. The automotive industry
is about to catch up with the aviation industry [1].

stringent emissions controls, but also on improving the performance and recyclability
of vehicles. This momentum is pushing the automotive industry to design vehicles
that are lighter, more durable, and more environmentally friendly. As a result, the
need to explore new material options and design more efficient vehicle structures for
the next generation of automobiles is becoming increasingly important [9].

To date, global original equipment manufacturers (OEMs) have been actively
addressing these challenges with several effective approaches. These include the ag-
gressive development of hybrid and electric vehicles, the enhancement of drivetrain
efficiency, and the investigation into lightweight materials for car manufacturing
[10, 11], with the ultimate goal of reducing vehicle weight taking precedence [12].
Therefore, the trade-off between the imperative of reducing vehicle mass and the
need of ensuring safety is a delicate balance that the automotive industry must
navigate with precision. While the body-in-white (BIW) represents approximately
27 % of the weight of a vehicle [13] and offers significant opportunities for mass
reduction, it is essential to mitigate safety concerns inherent in vehicle design. A
lighter frame requires an advanced crash energy management system designed to
effectively absorb impact without compromising safety. In addition, the challenge
of force mismatch in collisions between vehicles of different masses could dispropor-
tionately endanger the occupants of lighter vehicles, requiring a judicious balance
between weight reduction and safety to ensure that fuel efficiency improvements do
not compromise protection [14].

As vehicle mass decreases, the complexity of managing crash energy increases.
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Figure 1.2: Fuel economy targets for passenger vehicles in various countries rein-
force the urgent need for lightweight automotive materials. Data retrieved from [2].

Redesigning energy absorption zones, or crumple zones, becomes critical to main-
taining safety standards. This task is complicated by the different impact forces
experienced by lighter and heavier vehicles during collisions, which could jeopardize
the safety of occupants in lighter vehicles. Maintaining structural integrity is also
critical to vehicle safety. In the past, strength was often synonymous with greater
mass, but today structural rigidity depends on the innovative use of advanced ma-
terials and modern manufacturing techniques [15, 16].

1.2 Challenges in crashworthiness optimization

The integration of numerical simulation using finite element anlysis (FEA) has be-
come a cornerstone of the automotive product development process (PDP) over the
last few decades. As the complexity of vehicle design has increased, so has the
reliance on these sophisticated simulation techniques. Non-linear problems, such
as those encountered in crashworthiness, are now regularly solved within the PDP,
allowing for a reduction in the number of physical prototypes and an increase in the
variety of safety scenarios tested, ranging from different impact situations (such as
frontal, side and rear impacts, rollover testing, low-speed impacts, etc.) to airbag
and sensor evaluations. Advances in software and hardware have greatly improved
the stability, reliability, and effectiveness of numerical simulation in automotive body
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design. Improved material models, fracture mechanics and contact algorithms have
been implemented, enabling detailed simulations that can represent the full struc-
ture of a vehicle. For example, it is reported that a complete car crash model at
Porsche can include approximately 15 million elements and require approximately
32 hours of computation on 256 processors [17]. Similarly, numerical simulations at
BMW’s crash department use clusters of about 1,000 CPUs, with single crash simu-
lations taking between 12 and 20 hours on 8 CPUs [18]. These advances have paved
the way for numerical optimization to accelerate the design process and optimize
the use of resources.

Once the baseline design has been defined based primarily on engineering ex-
pertise, crashworthiness optimization typically takes place in the later stages of the
PDP. At this stage, targeted and effective changes can be made without affecting
the main topology and shape of the vehicle structure, allowing refinement of a pre-
optimized design [19]. Recent research trends, as illustrated by the work of Volz
and Duddeck [20, 21], advocate the use of crashworthiness topology optimization
to achieve a pre-optimized design. However, this practice is not yet widespread
in the industry, mainly due to the complexity associated with manufacturing such
optimized structures and the challenges of integrating them with other design con-
straints [22].

Figure 1.3: Requirements of crashworthiness optimization.

It is worth noting, however, that crashworthiness optimization presents its own
set of challenges. First, crash simulations belong to the category of expensive-to-
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evaluate functions as they are extremely time-consuming. Therefore, any extra
not-essential simulation should be avoided to keep the optimization process feasi-
ble. Additionally, a variety of crash scenarios, each dominated by different complex
physical phenomena, must be analyzed. Also, the number of design variables can be
medium to high and of different types: continuous, discrete-by-value, and discrete-
by-index (categorical) variables must all be taken into account. Another challenge
in the optimization process is the handling of potential numerical noise, which can
lead to non-repeatable results (e.g., bifurcations in high-speed frontal impacts). An
overview of these challenges is shown in Figure 1.3.

Here we present a detailed list of the dominant characteristics of crashworthiness
optimization and outline the exigencies that must be met [18]:

• The physics underlying crash cases is highly non-linear.

• Gradient information is typically unattainable in crash scenarios.

• The computational time for a single crash simulation can extend to 10-20 hours
on an 8 CPU configuration using distributed memory parallelization (DMP).

• Simulations are vulnerable to outages due to network, memory, and license
issues.

• Multiple constraints must be considered for each optimization problem.

• The starting point of optimization may be in an infeasible region.

• A moderate to high number of design variables, in the most demanding cases
up to 30, may be involved.

• Design variables may be continuous, discrete-by-value, or discrete-by-index
(categorical).

• Identification of variables that are crash relevant is challenging.

• The optimization should allow for size and material optimization across the
entire structure, while shape optimization may be applied locally to specific
components.

• Objective and constraint responses may be disturbed by numerical noise (rang-
ing from 1 to 10 %) and are typically highly non-regular and non-convex.

• Crash simulation results are not always identical upon repetition.
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• Preprocessing and postprocessing phases should be user-friendly, requiring
minimal time and expertise, with a limited number of strategy parameters.

• Monitoring should be possible.

• Finite element models must be consistent and reliable.

• The optimization method should be versatile and should adapt itself to various
aspects of the problem such as the number of design variables, regression
models, maximum number of computations, and the specific configurations of
the network and hardware.

• The optimization process should progress rapidly during initial stages, prior-
itizing efficient improvement over the immediate identification of an optimal
design.

These requirements emphasize the complexity of integrating optimization algo-
rithms into the crashworthiness domain, requiring a sophisticated, adaptable, and
efficient approach to address the intricate and demanding nature of vehicle safety
simulations.

1.3 Aim of the thesis and scientific added value

The work is intended to continue and further deepen the intensive research aimed to
propose effective but most importantly efficient strategies for optimizing the crash-
worthiness of lightweight vehicle structures. The primary goal of this thesis is to
develop an automated, efficient, and adaptive optimization framework for address-
ing the trade-offs inherent in crashworthiness optimization. This will be achieved by
leveraging the potential of AI methods. A key focus will be to critically analyze the
current shortcomings and limitations of existing crashworthiness optimization meth-
ods. The goal is to improve these methods and to tailor successful strategies from
other disciplines that deal with complex, expensive-to-evaluate functions to make
them suitable for crashworthiness problems. Special emphasis will be placed on the
use of mathematical models, commonly referred to as surrogate models, which allow
for efficient response function evaluation. This approach is intended to streamline
the decision-making process, thereby reducing development time while improving
the structural design.

Diving into the details, the first aim is to engineer a comprehensive simulation
process chain intended to manage crashworthiness applications as black-box sys-
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tems. This chain is expected to cover a variety of crash scenarios and a wide range
of structures that are critical to vehicle safety during collisions. Such structures may
range from individual components, such as crash absorbers, bumper beams and front
rails, to their integration into larger systems, such as the front-end assembly or side
impact protection structures, to the overall vehicle structure. An important fea-
ture will be the integration of a pre- and post-processor that reads, converts, and
processes information from the raw data. Ensuring seamless and reliable commu-
nication between the numerical solver and the optimizer is a central aspect of this
system. This integration also aims to provide a flexible implementation of mathe-
matical methods within the optimization process, which is a significant advantage
over commercial off-the-shelf software packages. The system will be designed to
accommodate parallel job submissions. To enhance user interaction, a user-friendly
script will be provided that allows users to clearly define optimization tasks and,
if desired, input valuable prior crash knowledge about the specific problem being
addressed.

The second aim is to develop optimization strategies and tailor them to meet
the needs of crashworthiness applications. These strategies will emerge from a syn-
thesis of well-established methods in the field of crashworthiness optimization, the
further development of existing techniques (driven by current limitations and gaps
in the literature), and successful data-driven methods from the broader domain of
expensive-to-evaluate functions, such as design optimization based on computational
fluid dynamics (CFD) simulations. The approaches will focus on variable domain
exploration, regression model construction, and the application of sophisticated op-
timization algorithms, all carefully tailored to the requirements of the crash problem.
The focus will be on relying on robust mathematical surrogate models to minimize
the number of function evaluations required. Among surrogate models, emphasis
will be placed on Gaussian processes (GPs) due to their ability to accurately recon-
struct a wide range of complex, non-linear functions from a relatively scarce set of
observations. Their ability to estimate uncertainty and handle a medium to large
number of variables with great accuracy is highly valued. The optimization pro-
cess will prioritize fast progress in the early stages, not strictly targeting the global
optimum, but aiming to achieve major improvements over the baseline model.

The scientific added value of this work is to provide a framework that extensively
automates the selection of the optimal approach to crashworthiness optimization.
This utility tool is designed to make informed decisions autonomously, while provid-
ing the user with valuable suggestions to facilitate their choices wherever necessary.
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It is important to recognize that each crash load case presents a unique challenge;
therefore, as mentioned at the beginning, this work aims to dispel the myth of a "sil-
ver bullet" solution that outperforms all others regardless of the problem at hand. By
providing less experienced users with this problem-solving assistance, the framework
seeks to democratize access to advanced optimization techniques without diminish-
ing the ability of more experienced users to fine-tune advanced parameters as they
deem appropriate. To determine the effectiveness and efficiency of the implemented
methods, these methods are continuously benchmarked against the state-of-the-art
in the literature and, where relevant, against leading commercial software. This
rigorous evaluation ensures that the tool remains at the forefront of innovation,
combining ease of use with the sophistication required to tackle the complexities of
crashworthiness optimization.

1.4 Outline of the thesis

The structure of this cumulative thesis is centered around the three journal papers
that constitute the main body of the research and are presented in detail in the
fourth chapter. In the same chapter, further findings are presented in two additional
conference papers.

Beginning with a thorough examination of the prevailing methods of crashwor-
thiness optimization in chapter two, the research evaluates their effectiveness and
identifies critical gaps. This investigation lays the groundwork for the introduction
of new methodologies tailored to address these shortcomings. As the thesis unfolds,
it becomes clear that these novel approaches are not just theoretical propositions,
but practical solutions shaped by the demands of real-world applications.

The third chapter builds on this foundation by presenting a number of innova-
tive methodologies that have been developed and implemented. The narrative here
is structured to provide clarity and insight into how these new methods enhance
the current landscape of crashworthiness optimization. By organizing the discus-
sion around sampling strategies, surrogate models, and optimization algorithms,
the thesis delineates its contributions to each of these important aspects of the field.

At the heart of the dissertation, the central journal papers encapsulate the
essence of the research. Reflecting the tripartite thematic structure that under-
pins this thesis, each paper delves into one of the three macro-categories: the first
paper explores the intricacies of adaptive sampling strategies for exploration, the sec-
ond paper navigates the challenges of hyperparameter tuning in GPs, and the third
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paper completes the circle with a focus on a successive optimization algorithm.
Moving towards the concluding sections, in chapter five the thesis consolidates

the research results, weaving together the insights from the publications into a co-
herent narrative of achievements.

In its final chapter, the thesis takes a step back to critically assess its scope
and implications. Here, the research is put into perspective, acknowledging the
limitations of the current work while suggesting avenues for future exploration. This
reflective chapter is not just an endpoint, but a springboard into the future, charting
a course for ongoing research in the dynamic field of crashworthiness optimization.

Through this carefully constructed narrative, the thesis takes the reader on a
journey from a critical assessment of the status quo, through the development of in-
novative methodologies, and culminating in a vision for the future of crashworthiness
optimization research.



Chapter 2

State of the art

In this chapter, we provide a thorough survey of the state-of-the-art optimization
methods that have been applied to the field of crashworthiness. Problems in this field
can be classified in several ways, e.g., by crash scenarios, by target safety criteria,
or by optimization methods. This work focuses on the latter, more specifically on
the methodologies that underpin crashworthiness optimization, recognizing that the
processes behind problem solving are as critical as the solutions themselves. Special
emphasis is placed on the applicability and effectiveness of these methods with
respect to the specific crashworthiness problems at hand, while carefully keeping the
computational effort in mind. This perspective ensures that the reviewed approaches
are not only theoretically sound, but also practically feasible in real applications,
where resources and time are often limited.

We will first examine the underlying design criteria that guide crashworthiness
optimization, highlighting relevant metrics, formulations of crashworthiness prob-
lems, and the role of benchmark functions therein. Next, we explore the spectrum
of optimization strategies applied to vehicle bodies, ranging from local to global
methods. This includes a discussion of the effectiveness of surrogate response sur-
faces and efficient global optimization methods. We then provide an overview of the
most commonly used surrogate models, which are essential for streamlining complex
simulations and making the optimization process more efficient. Finally, we briefly
review stochastic search methods that employ probabilistic strategies to navigate
the intricate design landscapes of crashworthiness.

11
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2.1 Crashworthiness design criteria

The formulation of design criteria to guide the development of safe vehicle structures
is of primary importance in the field of crashworthiness design. These criteria are
the measures against which the effectiveness of a design is evaluated, ultimately
determining how well a vehicle can protect its occupants in a collision. According
to Fang et al. [23], these metrics, which are often referred to in the literature as
key performance indicators (KPIs), can be broadly categorized into two main types:
energy-based and injury-based metrics. Each set of metrics provides insight into
different aspects of vehicle and occupant safety during collisions, and they are often
used in conjunction to provide a comprehensive view of vehicle crashworthiness.

Key performance indicators

Energy-based metrics focus on the ability of the vehicle structure to absorb impact
energy during a crash, thereby reducing the amount of kinetic energy transferred
to the occupants without overlooking severe deceleration peaks. The primary goal
is to maximize energy absorption (EA), with the focus of research being to under-
stand how structures can optimally dissipate crash forces. Specific energy absorption
(SEA) measures EA relative to the mass of the structure, while crash force efficiency
(CFE) and load uniformity (LU) evaluate the distribution and uniformity of forces
during a crash. Utilization ratio (UR) evaluates how efficiently an energy absorber
utilizes material during a crash. In addition, the undulation of load carrying-capacity
(ULC) metric assesses the stability of the crush response, with lower ULC values
indicating more stable and predictable deformation during impact. Based on the re-
search of Xing et al., Moghaddam et al., and Shakeri et al. [24, 25, 26], an overview
of the formulas for commonly used energy-based metrics is presented in Table 2.1.
Note that Fmax denotes the peak resistance force, L and Lc represent the total length
and crush length of the structure, respectively, while m represents its mass.

Injury-based metrics provide a biomechanical perspective on how occupants re-
spond to a crash using indices such as head injury criteria (HIC), thoracic acceler-
ation, thoracic deflection, and femur loads. These metrics are influenced by factors
such as vehicle crash pulse (i.e the acceleration curve measured during a collision),
cabin intrusion, and restraint effectiveness. Structural crashworthiness is directly
related to crash pulse and cabin intrusion, with intrusion velocity also considered
a critical design criterion. High occupant acceleration during a crash, indicative of
large impact forces, is associated with increased injury risk, making peak acceler-



Chapter 2. State of the art 13

Energy-based metric Formula

Energy absorption EA =
∫ Lc

0
F (x) dx

Specific energy absorption SEA = EA
m

Mean crushing force Fm = EA
Lc

Undulation of load carrying-capacity ULC =
∫ Lc
0 |F (x)−Fm| dx

EA

Crushing force efficiency CFE = Fm

Fmax

Load uniformity LU = Fmax

Fm

Usage Ratio UR = Lc

L

Table 2.1: Summary of energy-based metrics.

ation and peak resistance force important optimization criteria [27, 15]. Because
these injury-based metrics often require the modeling of dummy or human mod-
els and focus heavily on biomechanics, they will not be the primary focus of this
work. Instead, ensuring vehicle safety will be pursued through energy-based met-
rics that aim to achieve a safe structure by maximizing energy absorption, limiting
acceleration peaks and vehicle intrusion.

Analytical models, benchmark functions and FEM coupling

Optimizing vehicle crashworthiness performance requires quantitative analysis to
inform and drive mathematical algorithms. Historically, researchers have made ef-
forts to establish analytical crash models to express these performance metrics as
functions of design variables. The early literature from the early 2000s is quite
representative of such efforts: Hanssen et al. [28] used formulas incorporating var-
ious structural and material parameters to optimize a square foam-filled column;
Kim [29] derived an analytical function for specific energy absorption to optimize a
multi-cellular tube; of particular interest is the work of Chen [30], who developed
closed-form expressions for energy absorption in different deformation modes of a
thin-walled beam;

Such analytical crash formulations, however, have their own limitations. In
particular, they have primarily been applied to simple structural systems - often
single components such as tubes with simple geometries - and often depend on
strong mechanical assumptions. In addition, their prevalence stems in part from a
time when computational resources were not as readily accessible and powerful as
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they are today, making full-scale FEA simulations a less viable option for design
optimization.

As a result, while analytical models can speed up the optimization process and
provide initial insights, they fall short of capturing the complexities inherent in crash
scenarios dominated by complicated physics. In most cases, it is not even possible
to derive analytical models that are accurate enough to describe the problem under
investigation. Therefore, integrating FEA results into the optimization process is
not only beneficial, but necessary to achieve accurate and reliable results in the
pursuit of improved crashworthiness performance.

Over the past two decades, there has been a growing shift from attempting to
derive crashworthiness analytical models to favoring the use of benchmark func-
tions, often referred to as test functions, or synthetic functions [31, 32, 33]. These
are mathematical functions that are commonly used to test and compare the perfor-
mance of new optimization strategies. Classified by various mathematical properties
such as modality, separability, noisiness, steepness, discontinuity, and the presence
of basins [34], these benchmark functions do not aim to model or approximate a
specific crash load case. Instead, their goal is to represent a problem that is "cheap
to evaluate" and has similar or even more complex characteristics. As shown in
the work of Xu et al. [35] and Redhe et al. [36], this practice has become a more
and more common preliminary step before coupling mathematical methods with
FEA simulations, which greatly accelerates the development of new optimization
strategies. By using these benchmarks, researchers can refine their algorithms in a
controlled and computationally inexpensive environment before applying them to
the more demanding and resource-intensive FEA simulations required for accurate
crashworthiness evaluation.

2.2 Optimization strategies for car bodies

Recognizing the need for FEA, a significant concern among researchers in this area
is how effectively couple simulation results with optimization algorithms for crash-
worthiness applications. The iterative process by which the optimizer relies on FEA
evaluations raises critical questions about the efficiency of the process.

Local search strategies, often based on gradient information, guide the search
towards an optimal solution. The work of Yang et al. [37] has shown the theoretical
feasibility of such gradient-based optimizations, although at a high computational
cost. The challenge with these methods, besides the high non-linearity of problems
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such as crash simulations, is that numerical noise can interfere with the accurate
computation of gradients [38]. Furthermore, in the crashworthiness domain, where
the objective functions are highly multimodal, these local methods may not be
appropriate, especially in the initial stages of optimization.

Global search strategies offer an alternative by using gradient-free stochastic
search methods such as Simulated Annealing (SA), Genetic Algorithms (GAs), Evo-
lutionary Algorithms (EAs) and Monte Carlo (MC). These population-based algo-
rithms are less likely to get stuck in local optima. Their main drawback is the often
prohibitive computational cost, requiring numerous function evaluations to converge.
To mitigate this, limits on population size and generations can be imposed, although
this may reduce the likelihood of reaching an optimum in a reasonable time [39]. We
remind readers that in industrial applications, efficient improvement may be more
important than finding the exact mathematical optimum.

In this regard, Redhe et al. suggested that stochastic optimization would be
overly inefficient for problems with less than 10-15 design variables. He also argues
that the higher the number of design variables the problem has, the more suitable the
scenario is for stochastic methods [36]. Rzesnitzek et al. proposed a two-step method
where the initial stochastic optimization narrows down the most relevant design
variables [40]. Duddeck focused his study on the evaluation of stochastic algorithms
in the context of multidisciplinary design optimization (MDO), which simultaneously
addresses crashworthiness and noise, vibration, and harshness (NVH). His work
involved testing SA, GAs, and EAs on four different industrial load cases. His
findings underscored that coupling FEA results directly with stochastic methods
is often essential and may be the only viable approach to managing complex crash
scenarios [18]. These findings were supported by Xu et al. who also found that direct
coupling-based optimization could be promising, especially when parallel computing
resources are available, suggesting a larger population and fewer generations to take
advantage of these resources [35].

While global optimization methods increase the probability of identifying a
global optimum, they are still limited by significant computational requirements.
The need for a method that can make substantial progress quickly, especially in the
early stages of the optimization process, is compounded by the computational bur-
den of numerical simulations. Within the landscape of global optimization, methods
that use surrogate models have attracted considerable interest in the last decades. In
fact, surrogate-based optimization (SBO) strategies have demonstrated the potential
for highly efficient optimization that reduces the need for redundant computations.
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When these surrogate models accurately encapsulate the behavior of the physical
phenomena - including all objectives and constraints - they have proven to be more
efficient than other available methods [18]. To provide a comprehensive overview of
the capabilities and applications of these methods in crashworthiness optimization,
the following section is intended to outline the current state of the art surrounding
these methods.

2.3 Surrogate-based optimization

Especially when direct coupling methods prove inefficient due to high computational
complexity, surrogate-based optimization has come to the forefront as a promising
alternative to stochastic search methods. Surrogate models, or metamodels, provide
a viable alternative for formulating complex non-linear functions that depend on
design variables [41]. These models are constructed from a dataset of observations
(or samples) that are typically distributed across the variable domain using ad hoc
sampling strategies. Among the most commonly used surrogate models, polynomial
response surface (PRS) models have proven effective in several expensive-to-evaluate
applications, including crashworthiness. These models use polynomial equations to
approximate crashworthiness response functions [42, 43]. However, the accuracy of
PRS can vary depending on the number of design variables. In fact, to fit PRS
models, coefficients need to be determined and overfitting problems may arise. To
avoid such complications, a larger dataset, typically more than twice the number of
coefficients, is recommended [44]. In comparison, Kriging combines a global model
with local variations and excels not only in scenarios with spatial but also with
temporal correlations [45, 46]. Kriging is extremely flexible due to the wide range of
correlation functions that can be chosen [47]. In the literature on crashworthiness
optimization, artificial neural networks (ANNs) have also been employed as surro-
gate models. They are generalizations of regression methods and can be thought
of as models consisting of numerical units (neurons) whose inputs and outputs are
connected according to specific topologies. Free parameters - the weights and biases
- define the connections between neurons [48, 49].

Selecting the appropriate surrogate model for a given problem is a topic of
ongoing research, with some recommendations provided by experts. Simpson et
al found that PRSs are effective for problems with fewer than 10 variables and
are robust to random errors. They also pointed out that ANNs are better suited
for large-scale design problems, especially those with thousands of variables (up to
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10,000), while Kriging is ideal for problems with fewer than 50 variables. Note,
however, that ANNs require a much larger data set for training to ensure accurate
results. In contrast, kriging can often construct reliable models with fewer data
points, a valuable feature when data is scarce or expensive to gather [47].

Comparisons of surrogate models based on various criteria were conducted by
Jin et al., who found that RBF models are relatively unaffected by the size of the
initial dataset in terms of accuracy and robustness [50]. Meanwhile, the accuracy of
Kriging is affected by noise due to its data interpolation method. Surrogate models
have also been compared specifically for crashworthiness issues, as in the studies by
Fang et al., Zhu et al., and Forsberg and Nilsson. Fang et al. found that PRS was
suitable for approximating energy absorption in crash scenarios, while RBF models
provided better estimates of peak acceleration and more accurate optimization re-
sults. Forsberg and Nilsson observed that Kriging could improve the optimization
process in the early stages, but could encounter difficulties when constraints were
violated after several iterations, while linear PRS was more consistently successful
in finding viable solutions [51, 52, 53]. A few other surrogate models such as sup-
port vector regression (SVR) [52, 54] and multivariate adaptive regression splines
(MARS) [50, 55] have been investigated, but, as of today, appear to be less effective
compared to the ones mentioned above.

These findings emphasize that the applicability of a surrogate model is highly
dependent on the specifics of the case at hand, supporting the statement that there
is no "one-size-fits-all" surrogate model. Furthermore, some authors argue that
the most accurate model does not always lead to the best optimization results.
Considering that the time invested in training these models is negligible compared
to the time required to collect new FEA data, they recommend evaluating different
surrogate models or using a combination of them to achieve a superior optimum
[56, 57].

Global metamodel-based methods assume that the surrogate model used for op-
timization is an accurate representation of the entire design space. The fundamental
goal is to find the optimal design directly on the established surrogate model [58].
However, the initial surrogate model, typically built from a set of initial samples,
may not accurately capture the local nuances of the final optimum. To refine the
model, efficient global optimization (EGO) exploits this local region by inserting ad-
ditional infill samples in a process known as sequential sampling [59]. These samples
are strategically placed to iteratively update the surrogate model, both to improve
potentially interesting local regions (exploitation) and to improve regions associated
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with high uncertainty (exploration). The EGO algorithm often uses Kriging models
because they provide not only prediction, but also uncertainty estimates that are
key to the expected improvement (EI) calculations used to determine the sequential
sampling points. Despite the theoretical appeal of EGO, its application in crashwor-
thiness studies has been very limited with a lack of a consistent strategy and very
few works in literature [60]. A critical factor in the success of the methodology is the
accuracy of the metamodel. Some researchers claim that EGO may be more suitable
for applications dominated by bending, where the physical phenomena behave more
regularly and thus can be modeled with greater certainty [18]. However, in prac-
tice, especially for highly non-linear problems such as frontal crash load cases, the
actual behavior of the physical phenomena may be difficult to model with sufficient
accuracy using EGO alone [61].

The successive response surface method (SRSM), often referred to as successive
surrogate modeling (SSM), provides a viable alternative to EGO methods. Its ba-
sic approach is grounded in the iterative construction and refinement of surrogate
models. In the literature, PRS models, among other metamodels, have been pre-
dominantly used in SSM [23]. The initial surrogate model is constructed from a
finite dataset As the optimization advances, the original design space is systemati-
cally shrunk to a reduced subdomain called the region of interest (RoI). At a given
iteration k+1, the RoI is centered around the optimum determined at the previous
iteration k and is adjusted by using panning and zooming techniques. In order to
explore the RoI at each iteration, informative infill strategies such as D-optimal de-
sign are often employed , [36, 62, 44]. Such sequential methods have proven effective
in finding optimal regions for a variety of crashworthiness challenges, with several
works [63, 64, 65]. Nevertheless, the iterative resampling required by SSM can be
prohibitive due to the high computational cost associated with crashworthiness sim-
ulations. Techniques such as inherited Latin hypercube design can alleviate this by
carrying forward sample points from previous iterations, potentially reducing the
number of new simulations required [66]. Another challenge with SSM is ensuring
consistency across successive model approximations, with the risk that valuable data
from earlier iterations may not be fully exploited [67].

The key findings of Duddeck highlight a critical point: metamodel-based meth-
ods may not always achieve the needed accuracy, especially in complex scenarios
such as front impacts [18]. From an industrial perspective, the use of successive
response surface methods has led to remarkable improvements. However, there are
still situations where these surrogate models do not adequately capture the true
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behavior of the system, especially when dealing with designs that have already un-
dergone significant optimization and are located in highly non-linear regions of the
design space. Therefore, it is of utmost importance to have alternative strategies in
place, such as global search strategies, which can be advantageous when surrogate
models are not sufficient [61].

Consequently, although there is no universal consensus, what emerges from the
state of the art in the literature suggests that it is necessary to have diversified
optimization strategies in order to tailor the resolutive optimization approach to the
problem under consideration and to take into account potential alternative methods.
Based on the considerations above, the state-of-the-art optimization methods in the
literature could be summarized with the scheme shown in Figure 2.1.

Optimization
of non-linear

problems

Local optimiza-
tion methods

Global optimiza-
tion methods

Metamodel-based
optimization

Successive sur-
rogate modeling

Efficient global
optimization

Stochastic
search methods

Not accurate enough?

Figure 2.1: Decision flowchart for selecting optimization methods for crashworthi-
ness applications.

2.4 Case studies in the automotive industry

This section wraps up the state-of-the-art section with an overview of industrial
applications in automotive crashworthiness, highlighting successful studies, prevail-
ing skepticism, preferred methodologies, and future challenges. The landscape of
crashworthiness optimization is characterized by key developments and persistent
challenges that shape the direction of future research.
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Real-world crashworthiness loading conditions primarily include frontal, side,
and rollover crashes. Frontal impacts require structures with crumple zones that are
both deformable and stiff, optimizing energy absorption to protect occupants and
minimize compartment intrusion [64, 68]. In side impacts, the focus is on limiting
intrusion due to the limited space for deformation, with emphasis on structural
optimization of side components [69, 70, 71]. For rollovers, the goal is to maximize
the resistance force and minimize the intrusion of the roof structure, which serve as
the main design criteria [65, 72].

Current limitations in industrial applications of crashworthiness optimization in-
clude a reliance on extensive one-shot sampling strategies rather than active learning
strategies, raising concerns about efficiency [73, 56, 74]. There is also widespread re-
luctance toward surrogate-based optimization, with a preference for applying population-
based algorithms despite their cost, often requiring thousands of FEA simulations
per load case [75, 18]. PRS models, despite their limitations to capture the com-
plex, non-linear responses associated with crashworthiness scenarios, still represent
the most common surrogate model [68, 36, 76, 77].

The curse of dimensionality remains a daunting challenge. The industry is lean-
ing toward hybrid approaches that couple surrogate models with FEA and variable
screening techniques to overcome the problem [64]. Looking ahead, multi-fidelity
(or multi-level) optimization is emerging as a critical focus to improve efficiency
by integrating optimizations across different system levels [78]. This comprehensive
view of optimization reflects a mature understanding of the complexities of the field
and a recognition of the need for innovative solutions to move the industry forward.
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Methodology

The approaches underlying crashworthiness optimization are part of a much broader
group of optimization methodologies that can be more generally categorized under
the terminology of design optimization. In engineering, design optimization refers
to the process of refining engineering systems using numerical methods [79]. This
involves finding the best possible solution by varying controllable variables, often
within certain constraints.

In this introduction to the chapter, we will establish essential terminology and
underlying concepts of design optimization that also apply to crashworthiness ot-
pimization. This foundational work is necessary to lay the groundwork for the fur-
ther development of the methods discussed in the following sections. Keep in mind
that our focus is on how surrogate-based optimization is specifically applied to the
field of crashworthiness to improve the safety and performance of vehicle structures.

Design optimization workflow

Design optimization serves as a tool to streamline the engineering design process,
accelerate the design cycle, and improve results. In a typical engineering design
process, which typically involves an iterative loop, engineers make decisions based on
their knowledge and experience. This traditional process, while involving numerous
human-driven decisions, begins with the definition of product specifications and an
initial design. The initial design, often based on engineering experience, is evaluated
through numerical modeling (FEA) or physical testing. Engineers then evaluate
whether the design meets the desired standards and, if not, modify it based mainly
upon engineering practice and experience until satisfactory results are achieved.

By contrast, the design optimization process, while following a similar initial
path, differs significantly in its approach. It requires a formal problem formulation,
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including the definition of design variables, objectives, and constraints. Referring to
the simplified flowchart shown in Figure 3.1, the optimizer can be conceptualized as
the "brain" of the design optimization process. Contrary to the conventional flow,
the optimizer has the ability to dynamically adjust design variables in response to
evaluations received from the solver, which operates as a black-box, eliminating the
need for manual intervention in the iterative process. However, this does not equate
to a fully automated solution; human expertise and intervention are still required.
Engineers must skillfully define the problem, set objectives, select design variables,
and specify constraints. These critical decisions strongly influence the success of
the optimization, underlining the importance of skilled problem formulation in the
design optimization process.

Optimization
problem

formulation
Initial design

Response
function

evaluation

Solver
(black box)

Optimal
design? Final design

Design
variables
update

Yes

No

OutputInput

Optimizer

Figure 3.1: Standard design optimization flowchart.

Optimization problem formulation

A generic crashworthiness design optimization problem can be stated in mathemat-
ical notation. We can formulate the problem as follows:
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min
x

f(x) (3.1)

s.t. gm(x) ≤ 0, m = 1, . . . , ng (3.2)

hl(x) = 0, l = 1, . . . , nh (3.3)

w.r.t. xil ≤ xi ≤ xiu, i = 1, . . . , d (3.4)

In this formulation, x ∈ Rd represents the vector of d design variables, xil and
xiu denote the lower and upper bounds on these variables. The letters f , g and h

denote the objective, inequality constraint and equality constraint functions, respec-
tively. We care to point out that since the analytic form of these functions is not
known beforehand, the optimization problem is handled as a non-linear problem.
Note that optimization problems are conventionally defined with a minimization
objective, as shown here. In real-world applications, however, it is common to
encounter objectives that require maximization. To deal with this, a mathemati-
cal trick is commonly used: the maximization problem can be reformulated as a
minimization problem by simply minimizing the negative of the objective function
(i.e., max f(x) = min−f(x)). This transformation keeps the problem in its ordi-
nary form. Note that both the objective and constraint functions map from the
d-dimensional real space to the real numbers, so that f : Rd → R and gm : Rd → R,
respectively. We use the term response functions to refer generically to both ob-
jective and constraint functions. Keep in mind that the goal is to find the optimal
xopt ∈ Rd, the vector that minimizes the objective function f .

In crashworthiness optimization, equality constraints are rare and are often
omitted from the general formulation. When inclusion is necessary, any equality
constraint h(x) = 0 can be replaced, without loss of generality, by a pair of inequal-
ity constraints h(x) ≥ 0 and h(x) ≤ 0. As defined in Eq. (3.1), the problem is a
single-objective optimization problem. While most of the literature focuses on single-
objective problems, multi-objective considerations are not uncommon in crashwor-
thiness research. There are two main approaches to tackling a multi-objective prob-
lem. The first is to convert the multi-objective problem into a single-objective prob-
lem by transforming the additional objectives into appropriate constraint functions.
There is a tendency, as highlighted by Marler et al. and Martins et al. [80, 81], to
define as an objective function what is essentially a constraint or can be formulated
as such. Furthermore, objective functions can often be transformed into constraint
functions by selecting ideal ranges within which the value becomes acceptable. For
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example, the intrusion into the cabin of a vehicle or the peak acceleration experi-
enced by passengers is only relevant if it exceeds certain safety thresholds, so these
functions could be formulated as constraint functions with an inequality constraint.
On the other hand, even a small reduction in vehicle mass has significant bene-
fits for overall efficiency, making mass reduction an appropriate objective function.
The second way to approach a multi-objective optimization problem is to use the
weighted sum method to represent multiple objectives indirectly through a combined
cost function, U(x), as shown in Eq. (3.5):

U(x) =

nf∑

k=1

wkfk(x), where
nf∑

k=1

wk = 1, wk > 0 (3.5)

where nf denotes the number of objective functions and wk the weight associated
with the function fk.

When the problem inevitably involves multiple objectives, common approaches
in the literature include multi-objective particle swarm optimization (MOPSO) and
multi-objective genetic algorithm (MOGA), where commonly used non-dominated
sorting genetic algorithm II (NSGA-II) is a specialized version of it [82, 83]. These
algorithms are used to find non-dominated solutions. A solution is considered non-
dominated if no other solution is better in all the defined objectives.

Although the weighted sum approach is limited as a multi-objective method
due to difficulties in determining weights, adequately comparing objective func-
tions, and the impossibility of obtaining optimal solutions in non-convex parts of
the Pareto frontier [80], it has been used in over 40 % of the publications until
2017 [23]. This prevalence is attributed to its simplicity of implementation and the
flexibility it offers in optimization strategy, as more methods are compatible with
single-objective optimization. For these reasons, this thesis will focus on single-
objective, multi-constrained problems, resorting to multi-objective literature only
when strictly required by the problem at hand.

Classification of optimization problems

Classifying the optimization problem at hand is very helpful in choosing the most ap-
propriate optimization strategy. As mentioned in the introduction, no single method
excels at all problem types, so this classification is critical for efficient problem solv-
ing.

Problems can be categorized according to their formulation. This is easily done



Chapter 3. Methodology 25

by looking at the formulations described from Eq. (3.1) to Eq. (3.4). The classifi-
cation can be distinguished by the number of objectives (single vs. multi-objective)
and the presence of constraints (unconstrained vs. constrained). In addition, the
nature of the design variables - whether discrete, continuous, or a mixture of both
- further categorizes the problem. The literature focuses primarily on problems
with continuous variables, but mixed problems should also be considered. A visual
summary of this classification is shown in Figure 3.2.

Problem
formulation

Design
variables

Objectives

Constraints

Discrete

Continuous

Mixed

Single-objective

Multi-objective

Unconstrained

Constrained

Figure 3.2: Optimization problems classified by mathematical formulation.

The characteristics of the response functions - such as linearity, modality, con-
vexity, stochasticity, and discontinuity - also define the optimization problem. While
some features (e.g. non-linearity), are often evident in crashworthiness problems,
others may arise from the computing methods used (e.g. stochasticity). However,
dealing with "black-box" functions that are expensive-to-evaluate means that these
features are not always known in advance and may be costly to be retrieved. As
a result, some characteristics can be only assumed, leaving room for different opti-
mization strategies to be considered.

Pillars of surrogate-based optimization

As mentioned in Chapter 2, surrogate-based optimization [84] is an appealing tech-
nique in the field of crashworthiness optimization to address the challenge of com-
putationally expensive simulations. Conventional optimization algorithms become
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impractical for such problems due to the extensive time required for simulations
and the analytical intractability of the objective functions, which are often highly
non-linear, non-differentiable, and noisy. SBO emerges as a necessity to circumvent
these problems by using surrogate models as approximations of the actual simulation
models.

Based on the main elements outlined by Yang [85] and Keane et al. [86], SBO
can be organized around three basic pillars (see Figure 3.3): Dataset & sampling,
surrogate models, and optimization strategies.

Figure 3.3: Core pillars in surrogate-based optimization: Datasets & sampling,
metamodels, and optimization methods.

The dataset & sampling pillar includes techniques for preprocessing data, in-
cluding normalization, standardization, coding, variable screening, and outlier de-
tection methods. Additionally, sampling strategies play an important role within
this category to effectively explore the variable domain. The surrogate models pillar
covers a variety of different metamodels used to approximate the complex black-box
functions, the methods for automatic composition of surrogate models, fitting proce-
dures, and surrogate model evaluation methods. The optimization strategies pillar
includes both global and local methods tailored for surrogate model optimization,
stochastic search strategies, convergence criteria, and domain shrinking approaches.

This chapter will progress through these major pillars, setting the stage for
dedicated publications in Chapter 4, each of which will focus on a specific aspect of
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the SBO framework.

3.1 Data handling and sampling strategies

The primary scope of sampling is closely related to that of global surrogate mod-
elling, whose goal is to construct surrogate models that are as accurate as possible
by covering the entire range of the given variable domain [87]. Considering the re-
quirements of crashworthiness applications, in this section we analyse and identify
suitable state-of-the-art strategies for selecting the best design of experiment (DoE)
X = {x1,x2, ...,xn} for global surrogate modelling. In addition, we propose four
novel sampling strategies, three of which are presented in detail as part of Publica-
tion I. Note that the best design of experiments means the dataset that should be
used to be the most informative with respect to the quality of the surrogate model
f̃ when replacing f over the entire variable domain T [88]. By reducing the number
of observations, the computational cost and time required could be greatly reduced
even at this early stage.

3.1.1 One-stage and sequential sampling

Depending on the criteria used to achieve optimal design and their iterative refine-
ment, there are several ways to classify sampling strategies. As shown in Figure 3.4,
one of the most widely accepted versions in the literature [88, 87] is to divide them
into two broad categories: one-stage sampling and sequential sampling.

One-stage (or one-shot) sampling strategies are still the most common ap-
proaches in simulation-based engineering design [46, 50]. They can be based on
several criteria such as granularity and non-collapsing properties (also called projec-
tive properties), but the majority of them are based on "space-filling" criteria. This
means that observations are spread uniformly over the entire variable domain in or-
der to capture as much information as possible about the underlying function. These
methods are response-free since the DoE is defined independently of the values of the
reponse evaluations. Classical factorial designs such as the full factorial [89], latin
hypercube design (LHD) [90], Sobol and Halton sequences [91, 92] are commonly
as one-shot designs. Among these, LHD has become increasingly popular due to
its ability to effectively fill space while maintaining good non-collapsing properties,
ensuring robustness even when some inputs are irrelevant [93]. To further improve
the space-filling property of LHD, the so-called optimal LHD has been developed by
simultaneously considering different space-filling and non-collapsing criteria [94, 95].
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Sampling

Sequential One-stage

Space-filling Adaptive

Figure 3.4: Classification of sampling strategies based on their adaptive nature.

Given the computational burden of deriving these designs, an efficient extension ap-
plicable to any dimensionality of the domain has been proposed by Diana et al. via
the translational propagation algorithm (TPLHD) [96].

However, determining an optimal sample size without prior knowledge of the tar-
get function can be challenging. This difficulty has led to the development of flexible
sequential sampling strategies that rely on information from previous samples. Se-
quential sampling can be further divided into space-filling and adaptive sampling.
Sequential space-filling approaches are still exploration-oriented and response-free
methods, but they can add samples in an iterative manner. Therefore, the number
of observations is not required in advance anymore. Adaptive sequential sampling,
also called active learning [97], prioritizes informative points based on their response
values and is interested in regions with large prediction errors, focusing on regions
characterized as "continuous and multimodal" [98]. While sequential space-filling
strategies are exploration-oriented, adaptive sampling strategies have to deal with
the trade-off between exploration and exploitation. Exploration refers to the strat-
egy of sampling broadly across the entire variable domain. This approach is useful
for gaining a general understanding of the landscape, identifying different potentially
interesting regions, and ensuring that such areas are not overlooked. In contrast,
exploitation focuses on delving deeper into areas that have already proven to be po-
tentially interesting based on the information gathered so far. Exploitation-oriented
sampling is more targeted and concentrated, focusing on regions where the model
predicts optimal values or where previous sampling has provided valuable insights
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(e.g., steep gradients, discontinuities, local minima, etc.). The goal is to refine and
improve the understanding of these promising areas, which typically require a larger
number of samples compared to flat regions.
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Figure 3.5: Sampling strategies based on exploration (a) and exploitation (b)
approaches.

As reported by Liu at al. [87], the challenge with adaptive sampling strate-
gies is to balance these two aspects. Consider the example shown in Figure 3.5.
Too much exploration can result in wasting resources on less promising regions
(Figure 3.5b), while too much exploitation can result in missing other potentially
high-performing areas (Figure 3.5b). Effective adaptive sampling strategies require
dynamic adjustment of the focus between exploration and exploitation, often based
on real-time analysis of the collected data. This adaptability, which allows accurate
global metamodels to be constructed with fewer points, is particularly valuable in
simulation-based optimization problems.

3.1.2 Contributions to sampling strategies

All three categories of sampling strategies described in the previous section are valid
for our surrogate-based crashworthiness optimization methodology. The choice of a
particular sampling strategy depends on the specific problem at hand. Guidelines
for the selection of sampling strategies are discussed in Chapter 5 after presenting
the results of the publications. Recognizing that the literature is already rich with
prominent one-stage static methods, our research efforts have focused on sequential
strategies. These strategies have the distinct advantage of not requiring a priori
knowledge about the required number of observations. In the following, we introduce
three sequential space-filling strategies and one sequential adaptive strategy.
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Sequential space-filling methods

Among sequential space-filling strategies, we propose three novel approaches in Pub-
lication I: the Monte Carlo intersite projective threshold alpha (MIPT- α), the flut-
tering perfect progressive latin hypercube sampling (FpPLHS), and the Monte Carlo
quasi-latin hypercube sampling (MqPLHS). The MIPT-α method is based on an ef-
ficient Monte Carlo approach that seeks an ideal trade-off between space-filling and
projective property optimality criteria through a threshold function. It is an ex-
tension of the method presented by Crombeq et al. [99]. The FpPLHS method,
on the other hand, provides a fine-grained alternative to perfect-PLHS [100]. With
FpPLHS, we ensure a method that cyclically returns to a perfect LHD. Finally, Mq-
PLHS is a quasi-PLHS method that starts with an initial LHD and adds samples
with unit granularity, with the goal of keeping the dataset as close as possible to the
requirements of an LHD. It is important to note that the FpPLHS and MqPLHS
methods were developed following a recommendation from a reviewer to consider
adaptive LHDs due to their advantageous characteristics in terms of projective prop-
erties. For further details on these methods, please refer to Publication I.

Sequential adaptive methods

Publication V introduces the Multi-Query Cross-Validation Voronoi (MQCVVor).
This method is a novel adaptive sampling strategy developed as an extension of the
CVVor method to address crashworthiness needs. The original method combines the
exploration of Voronoi tessellation with a cross-validation exploitation approach. We
extended this method to make it suitable for multi-response systems and to enable a
multi-query approach, which allows parallel processing. This method is the only one
we have developed that is response-based and is particularly suitable for identifying
specific function characteristics of multi-response systems. For a more thorough
understanding and detailed insight into the MQCVVor method, readers are referred
to Publication V.

3.1.3 Non-linear problems with mixed variables

The mathematical formulation presented in Eqs.(3.2)-(3.4) assumes that all vari-
ables are continuous, which means that they encompass all solutions within a given
range defined by the lower and upper bounds. This approach is primarily due to
two reasons: first, the vast majority of crashworthiness optimization applications
in the literature rely solely on continuous variables; and second, the majority of
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optimization algorithms are designed to operate within a continuous variable do-
main. However, discrete variables are of great practical relevance in the automotive
industry. For example, selecting a material for a component such as a B-pillar from
various metal alloys (such as high-strength 6-series aluminum alloys, high-strength
steel (HSS), etc.) is an example of a categorical discrete variable. In addition, the
thickness of the B-pillar, which is often treated as a continuous variable, effectively
turns into a numerical discrete variable due to manufacturing tolerances.

Discrete optimization variables can be divided into three types: binary, integer,
and categorical. When considering the crash absorber of a front structure, the pres-
ence of geometric features such as a trigger, which can be either present (1) or absent
(0), represents a binary variable. Similarly, the number of triggers is an integer vari-
able, since partial counts are not feasible in this design. As mentioned earlier, the
selection of material, which can be restricted to options such as steel, aluminum,
or carbon-fiber-reinforced plastics (CFRP), is a categorical variable. These three
cases can all be mapped to integer values. As a result, non-linear problems involv-
ing both continuous and discrete variables are typically referred to as mixed-integer
non-linear problems (MINLP) or, in more generic terms, mixed-integer program-
ming (MIP) [101]. A dedicated approach to deal with this type of problem will be
presented in Section 3.3.3.

While it may seem that a discrete optimization problem, with its restricted pos-
sibilities, would be easier to solve, in reality these problems are often much more
challenging than continuous ones. In addition, discrete problems typically fall into
the category of NP-complete, meaning that while verifying a solution is straightfor-
ward, finding an efficient solution remains difficult [81]. Consequently, it is often
preferable to find methods to circumvent the use of discrete design variables when-
ever possible. A feasible approach for small discrete domains is exhaustive search:
it involves fixing all combinations with discrete variables and then optimizing the
continuous variables. However, this approach is rarely applicable to crashworthiness
problems. Rounding can be a reasonable approach to treating thickness as a con-
tinuous variable. This is particularly reasonable since thickness values are relatively
large compared to the granularity of the discrete values. The effect of rounding to
the nearest discrete value is relatively small compared to the overall scale of the
variable. By initially treating thickness as a continuous variable, the optimization
algorithm can more freely and efficiently explore the design space without being con-
strained by the discrete nature of the actual thickness options. After optimization,
the resulting thickness values can be rounded to the nearest acceptable thickness
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value, providing a practical solution that respects manufacturing constraints.

Given these considerations, it appears that among discrete variables, categorical
variables are the most common and relevant for crashworthiness optimization prob-
lems. Therefore, along with the insights gained from the introduction of Chapter 3,
we extend the mathematical formulation to the domain of discrete variables:

min
x

f(x)

s.t. gm(x) ≤ 0, m = 1, . . . , ng

w.r.t. xi ∈ Ci, i = 1, . . . , dc

xj ∈ Dj, j = 1, . . . , dd

(3.6)

In the new problem defined by from Eq.(3.6), we have streamlined the formu-
lation by removing the equality constraints and by considering the problem as a
single-objective problem. Furthermore, the domain of the input variables has been
divided into dc continuous intervals (representing continuous variables) and dd sets
(representing categorical variables).

3.1.4 Scaling and encoding

Normalization and encoding are essential preprocessing steps in the optimization of
MINLP. The variable domain originally defined must be adapted to ensure meaning-
ful and tractable solutions. New ranges and sets are introduced for both continuous
and categorical domains to reflect these adaptations. The task at this stage is to
transform the information between the solver domain Ci, Dj and the optimization
domain Ĉi, D̂j. Note that a continuous variable can assume any real value within
two bounds (inclusive), while a categorical variable can assume any non-numeric
value from a set where the order is irrelevant. Therefore, an appropriate preprocess-
ing step for each variable type is required before training the metamodels. Once the
optimization results are retrieved from the metamodels, it is necessary to decode
the results back into the domain of the original variables to ensure that the results
can be understood within the FEA solver environment. In the following, we discuss
the preprocessing of continuous variables, categorical variables (label, one-hot, and
logarithmic encoding), and target values of the response functions.
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Normalization of continuous variables

Continuous variables require normalization to ensure that each contributes equally
to the optimization process, regardless of their original scales or units. This is
a fairly frequent scenario; for example, material properties such as yield strength
may be measured in megapascals, while geometric dimensions may be measured
in millimeters. Surrogate models such as GPs are sensitive to the scale of the
input domain because they assume a smooth underlying function, where the notion
of smoothness is strongly influenced by the relative distances between points. If
one variable is on a scale of 1:10 and another is on a scale of 1:106, the GP will
likely infer that the function varies more rapidly with the former, simply due to the
scale discrepancy [102]. This can lead to poor performance in modeling the true
underlying function. Normalization mitigates this by bringing all variables into a
comparable range, typically [0, 1], as shown in Eq. 3.7:

x̂i =
xi − xil

xiu − xil

(3.7)

Label encoding

Label encoding assigns a unique integer to each category within a categorical set
Dj, effectively mapping Dj to a numerical set D̂j with elements {0, 1, ..., |Dj|}. This
process relaxes D̂j as a continuous variable in the optimization domain, with the
condition that the resulting values must be integers.

Category Label
AZ31B 0
AA6014 1

CR210LA 2

Table 3.1: Example of label encoding

To force variables to take only integer values, extra constraint functions must
be defined. Once a categorical features xj has been mapped to integers, a new
constraint function has to be defined as follows:

conint(xj) := xj mod 1. (3.8)
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Setting Eq. (3.8) equal to zero and then adding it to Eq. (3.6), xj can only
attain values in Z. A similar strategy can be applied to binary variables:

conbin(xj) := xj(xj − 1). (3.9)

One significant advantage of label encoding is that the number of discrete vari-
ables dd remains consistent in the optimization domain, such that dd = d̂d. This
relationship is a desirable outcome that is not guaranteed all the encoding tech-
niques. However, the imposed ordinality can lead to a distortion of the metamodel
accuracy, which in practice may lead to the search for alternative encoding methods.

One-hot encoding

To address issues related to the ordinality inherent in label encoding, we introduce a
technique commonly used in machine learning, particularly for tackling multi-class
classification tasks: one-hot encoding [103, 104]. By using this technique, categorical
variables can be represented as unique binary vectors in the numerical domain,
ensuring that each category is equally distant from the others. Unlike label encoding,
which assigns a single number to each category and can inadvertently introduce
ranking, one-hot encoding represents each category with a distinct vector, where the
position of a 1-digit indicates the presence of a category. In fact, when using label
encoding, given a generic set of categories D = {a1, a2, . . . , as} and their numerical
representations {x̂1, x̂2, . . . , x̂s}, it is easy to identify at least three pairwise categories
in which the euclidean distance is not constant, so that: d (x̂i, x̂j) ̸= d (x̂i, x̂k). In
the example of Table 3.1, the euclidean distance is either 1 or 2, depending on the
pairs we consider. Let us now consider the same example analyzed earlier, but
transformed using one-hot encoding (see Table 3.2):

Category x̂1 x̂2 x̂3 Label
AZ31B 1 0 0 0
AA6014 0 1 0 1

CR210LA 0 0 1 2

Table 3.2: Example of one-hot encoding.

Unlike label encoding, we can observe that the pairwise Euclidean distance be-
tween two categories is always equal to

√
2. This eliminates any ordinal relationship

and is suitable for models that take numerical input literally, such as many machine
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learning algorithms, ensuring that the categorical nature of the data is preserved
without any implied hierarchy.

Nevertheless,assigning a unique unit vector to each category in a binary space
presents unique challenges. One-hot encoding inflates the dimensionality of an opti-
mization problem by transforming each categorical variable into a binary vector of
length equal to the number of categories in the set Dj. This leads to a new space
that is proportional to |Dj|. In fact, it should be noticed that for a set with three cat-
egories, exactely three new variables x̂p (where p ∈ {1, 2, 3}) are defined (see Table
3.2.) This one-to-one correspondence between categories and binary variables can
drastically expand the parameter space, especially for datasets with a large number
of categories, potentially invoking the curse of dimensionality. This expansion can
degrade the performance of surrogate models due to increased sparsity. Further-
more, the integrity of the one-hot encoded vector as a unit vector also requires the
introduction of additional constraints. These constraints ensure that there is exactly
one ’1’ in each vector, thus maintaining categorical integrity.

Logarithmic encoding

Logarithmic encoding emerges as an alternative to one-hot encoding to address the
dimensionality challenges it presents. Inspired by the work of Vielma and Nemhauser
[105], we present here a method that tries to keep the advantages of one-hot encoding
while mitigating its dimensionality drawbacks: logarithmic encoding.

When a particular category needs to be encoded, it is first transformed by label
encoding. Then the label is converted to a bit-code representation. This results in a
sequence containing 0s and 1s only. Each binary digit thus obtained is then consid-
ered as a single component of the vector x̂. To ensure that all vectors representing
categories within a given Dj are of the same size, they are treated as elements of
{0, 1}⌈log2(|Dj |)⌉. Empty entries in the representation vector x̂ are simply replaced
by zeros. Consequently, considering the same trio of categories used in the previous
examples, only two variables, x̂1 and x̂2, are needed to represent their binary encod-
ing, thus yielding a more efficient categorical representation. This example is shown
in Table 3.3:

This encoding approach, however, introduces an implicit ranking due to the bi-
nary nature of the representation. As we can see in the example in Table 3.3, while
some pairs of categories may have a consistent euclidean distance (e.g. d (x̂1, x̂2) =

d (x̂1, x̂3) = 1), others may differ (e.g. d (x̂2, x̂3)). This unintended ordering could
lead to less accurate metamodels, as the distances between categories are not uni-
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Category x̂1 x̂2 Binary Label
AZ31B 0 0 0 0
AA6014 0 1 1 1

CR210LA 1 0 10 2

Table 3.3: Example of logarithmic encoding.

form.
Nonetheless, the ratio of distances in logarithmic encoding is smaller than in

label encoding, which would result in a maximum ratio of distances of 2, as opposed
to

√
2 in logarithmic encoding. for logarithmic encoding, thus mitigating the ranking

effect to some extent. The trade-off offered by logarithmic encoding is between
dimensionality and accuracy. While it reduces the impact of ranking, it does not
completely eliminate it. Therefore, logarithmic encoding is chosen over one-hot
encoding when runtime is critical, but if this is not a constraint, one-hot encoding
may still be preferable due to its non-ranking nature and simplicity.

Transformation of target values

Scaling target values is an essential practice due to the disparity in the size of the
units of different measurements. For example, the mass of a vehicle structure may
be in the range of thousands of kilograms, while the deformation in the passenger
compartment under impact may be only a few millimeters. MinMax scaling is a
technique often used in this preliminary step, where target values are transformed
based on the range within the design of the simulation data.

ŷ =
y − ymin

ymax − ymin

(3.10)

The formula presented in Eq (3.10) is reminiscent of normalization, but instead
of using fixed bounds, it utilizes the empirical range from the observed maximum
and minimum (respectively ymax and ymin), adjusting the data into a [0, 1] scale.
Note that, unlike the previous scenario, the progression of optimization can yield
new simulation data exceeding the original maximum and minimum identified in
the DoE, potentially causing the scaled data to marginally exceed the unit domain.
This is typically not a significant issue. Since a well-designed DoE is expected to
capture the main trend of the response functions, any deviations in scaled values are
likely to be marginal and not materially affect the predictive quality of the model.



Chapter 3. Methodology 37

Standardization, which adjusts data to zero mean and unit variance, is also
widely used in the literature. However, it assumes a Gaussian distribution of the
data. This assumption does not always hold in applied sciences, making MinMax
scaling a more robust alternative since it does not rely on such distributional as-
sumptions. Scaling is also critical in multi-objective optimization problems, where
the objectives can vary drastically in magnitude. If a sum-weighting approach is
used without proper scaling, there is a risk that one objective function will domi-
nate the others due to its relative size, skewing the optimization process. Scaling
ensures that each objective contributes equally to the final solution, maintaining the
integrity of the multi-objective optimization objective.

3.1.5 Pre-fitting best practices for surrogate models

Depending on the crashworthiness problem at hand, pre-fitting best practices might
include steps such as sensitivity analysis and outlier detection.

Global sensitivity analysis

While in relative small crashworthiness optimization problems all variables are typ-
ically relevant, making this step optional, its significance grows in more complex
scenarios. To this end, we suggest the use of global sensitivity analysis (GSA) as
a strategic tool for model simplification and refinement in complex crashworthiness
scenarios, especially when dealing with a large number of design variables (e.g., 15
or more). The ability of GSA to quantify the influence of each design parameter on
the response functions provides a useful perspective for improving the efficiency and
accuracy of the model. To effectively account for non-linear effects and the influence
of parameter combinations, we compute first-, second-, and total-order Sobol indices
based on the variance of the response. The total Sobol index quantifies the effect of a
single design parameter on this variance, both individually and in combination with
other parameters. These indices, discussed in detail by Saltelli et al. [106], provide a
comprehensive measure of variable sensitivities. To provide a reasonable amount of
data, all Sobol indices can be computed on the responses of the considered surrogate
model, using 10, 000 · (d+ 2) samples according to Saltelli’s sampling scheme [106].
The insights gained from GSA can optionally be integrated with forward selection
and backward reduction techniques based on cross-validation [107]. This combined
approach allows the identification and elimination of parameters that have little in-
fluence on the model response functions, thereby streamlining the model without
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compromising its predictive power.

Outlier detection

When dealing with FEA analysis, outlier detection is a key aspect of ensuring model
accuracy and reliability. Outliers can arise from a variety of sources, including nu-
merical instabilities in simulation models that can lead to exaggerated or unreal-
istic deformations under certain input design variables. These outliers are often
the result of factors such as inappropriate material properties, geometric design is-
sues, incorrect boundary conditions, or inadequate meshing in finite element models.
Therefore, before fitting a surrogate model, it is recommended to perform an outlier
detection analysis on the DoE [108]. This step ensures that any data points that
are inconsistent with the rest of the dataset are identified and excluded, thereby
improving the robustness and accuracy of the surrogate model. Outliers can bias
the model, leading to poor predictions and potentially misleading the optimization
process. Outlier detection involves identifying observations within a dataset that do
not fit an expected pattern. Typically, the data is assumed to follow a multivariate
normal distribution. Multivariate outliers are not detected by examining each vari-
able individually; instead, they are detected by calculating the Mahalanobis distance
for each data point. This distance metric effectively decouples correlated variables
through an inverse Cholesky transformation. Since classical mean and covariance
estimators are highly sensitive to outliers, the minimum covariance determinant
(MCD) estimator provides a robust estimation alternative [109]. Outliers are de-
tected by comparing the Mahalanobis distance of each sample point to a critical
threshold from the chi-squared distribution χ2, which is the expected distribution
for the sum of squares of d independent normal random variables with d degrees
of freedom. Identified outliers are then removed from the dataset before training
surrogate models.

To illustrate a practical application of this method, we refer to the dynamically
compressed crash-box analyzed in Publication III. In this case, the model takes
only a few minutes to simulate, which can vary depending on the computing power
used, allowing for a more statistically significant study. Looking at the energy
absorption values from the 400 FEA simulations of the DoE, we obtain the plot
shown in Figure 3.6 where red dots indicate outliers. It is interesting to note that
the cause of being an outlier can depend on different reasons. In fact, the point
farthest from the threshold is due to the premature termination of simulations,
likely caused by synchronization errors between the HPC and local machines. These
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Figure 3.6: Mahalanobis distances for energy absorption values from 400 FEA
simulations of a crash-box crush test.

errors cause simulations to terminate early, reporting lower energy absorption values
that do not represent the true deformation process. Another type of outlier can be
attributed to abnormal distortion of elements within the finite element model. In
this scenario, excessive stretching of shell elements, possibly due to hourglassing, can
result in abnormally high energy absorption values that are significantly different
from the expected values. Although the MCD method with Mahalanobis distance
provides a robust statistical approach for outlier detection, we strongly recommend a
cross-check analysis with various indicators. For example, energy absorption values
could be investigated in connection with hourglass energy values and relative node
displacements. This comprehensive approach ensures that excluding data points as
outliers does not inadvertently remove legitimate cases that may exhibit unusual
behavior due to complex physical phenomena.

3.2 Surrogate models

We have already touched on the term "surrogate models" in the previous sections,
but what exactly does this term mean? Surrogate modeling is a mathematical
approach to mimic complex system behavior. Its primary function is to replace costly
evaluations of real systems with more efficient surrogate evaluations using a finite
collection of observed system data - the training set. In scenarios characterized by
black-box systems, meaning that only the training set is known without additional
insight, surrogate models are based on specific assumptions. These assumptions,
which are inherently variable, can yield different predictions from the same dataset.
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Typically, if the behavior of a system f is denoted by an output y related to variables
x by a function y = f(x), surrogate modeling attempts to find an approximate
function f̃ such that:

f ≈ f̃ = f̃(x,X,y,M) (3.11)

Here, f̃ is the surrogate that approximates the true relationship between design
variables and the output of the system given the training set {X,y} of n observations
yi = f(xi) and a set of model assumptions M . Note that x denote the vector of
design variables.

Surrogate model development typically involves four key steps: generating a
training data set, formulating assumptions about an appropriate model, fitting pa-
rameters, and validating the model [86]. The second step in particular requires an
informed choice of model structure, often guided by engineering experience. Para-
metric modeling, in one possible approach, assumes a fixed structural form - such as
a quadratic polynomial - whose coefficients are to be determined. However, if this
chosen structure does not match the true nature of the system, the model accuracy
will not benefit from an enlarged training set. In contrast, non-parametric models,
which include techniques such as radial basis functions, support vector regression,
and Gaussian processes, dynamically adjust their complexity as more data points
are introduced [110], making them adept at capturing the intricate input-output
dynamics common in crashworthiness engineering tasks. These methods rely on
statistical learning to autonomously identify the most appropriate model structure
based on the given data.

3.2.1 Gaussian process regression

Gaussian process regression (GPR) is a powerful non-parametric approach employed
in surrogate-based optimization to infer the relationship between a set of indepen-
dent variables x and a dependent variable f . A GP provides a probabilistic frame-
work to model and predict outcomes, which is particularly effective when dealing
with expensive-to-evaluate functions. In formal terms, a GP is defined by its mean
function and covariance function, as shown in Eq. (3.12) and Eq. (3.13), respec-
tively:
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µ(x) = E[f(x)] (3.12)

k(x,x′) = Cov(f(x), f(x′)) (3.13)

Thus, a GP can be expressed as:

f(x) ∼ GP(µ(x), k(x,x′)) (3.14)

When applying GP to a set of data points X with function values y, the pre-
dictive distribution of the GP is conditioned on these observations. The predictive
mean and variance at a generic new point x are given by the equations:

f̂(x) = k(x,X,θ)(K+ σ2
nI)

−1y (3.15)

σ2(x) = k(x,x,θ)− k(x,X,θ)(K+ σ2
nI)

−1k(X,x,θ) (3.16)

Where K is the covariance matrix evaluated at all pairs of training points in X,
θ represents the vector of the hyperparameters and σ2

n is the noise term added to the
diagonal of K to encapsulate the potential error which may occur while measuring
the response values y. The choice of the kernel function k is critical as it encodes
our assumptions about the function f . Different kernel functions can model different
types of function behaviors, such as smoothness and periodicity. For further details
regarding Gaussian processes, the reader is referred to the work of Rasmussen &
Williams [102].

Advantages of Gaussian processes

GP regression is favored in crashworthiness optimization due distinct benefits over
traditional surrogate models like PRS, RBF, ANN, and SVR:

• Non-parametric nature: GPs do not require a predetermined number of pa-
rameters, which allows for more flexibility and adaptability to the underlying
data structure compared to parametric methods like PRS.

• Flexibility: The kernel function adaptability allows GPs to capture complex
data patterns, which can be too rigid for PRS and RBF to model accurately.
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• Bayesian Integration: Through Bayesian inference, GPs naturally mitigate
overfitting by considering all plausible models, a contrast to the overfitting
tendencies of ANNs without regularization.

• Predictive confidence: Unlike PRS, RBF and SVR, GPs provide a probabilistic
output, offering not only predictions but also the associated uncertainties.

• Transparency: The clear structure of GPs makes them easier to scrutinize and
understand compared to the black-box nature of ANNs or the sensitive tuning
required for SVR.

These advantages position Gaussian processes as our preferred choice among
surrogate modeling techniques for crashworthiness optimization, given their pro-
ficiency in accurately predicting complex behaviors and quantifying uncertainties.
Therefore, the methodology of this work will be grounded on the use of Gaussian
processes.

3.2.2 Common kernels

Gaussian process kernels provide a way to define similarity between data points in
function space.

Kernel name Label Expression k(x,x′)

Constant kC σ2
f

Dot-Product kDP σ2
0 + x · x′

Squared-Exponential kSE exp
(
−∥x−x′∥2

2l2

)

Rational Quadratic kRQ

(
1 + ∥x−x′∥2

2αl2

)−α

Matern 1/2 kM12 exp
(
−∥x−x′∥

l

)

Matern 3/2 kM32

(
1 +

√
3∥x−x′∥

l

)
exp

(
−

√
3∥x−x′∥

l

)

Matern 5/2 kM52

(
1 +

√
5∥x−x′∥

l
+ 5∥x−x′∥2

3l2

)
exp

(
−

√
5∥x−x′∥

l

)

Exp-Sine-Squared kPer exp
(
−2 sin2(π∥x−x′∥/p)

l2

)

Table 3.4: Common GP kernels.

The constant kernel, defined by its variance parameter σ2
f , is often used as part

of a product-kernel to scale the magnitude or as part of a sum-kernel, to modify
the mean of the GP. The dot-product kernel, which inhomogeneity is controlled
by the σ2

0 parameter, reflects linear relationships. In fact, if σ2
0 is set to 0, the
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kernel becomes a homogeneous linear kernel. The exponential kernel (or Matern
1/2), which also depends on the length scale parameter l, capture variations that
are not differentiable at the origin. The squared exponential kernel, smooth and
differentiable, is characterized by the same length scale l and is widely used for
its flexibility. The Matern class of kernels introduces additional nuance: Matern
3/2 and Matern 5/2, with the same length scale l, allow for intermediate degrees of
smoothness, with Matern 5/2 being smoother than Matern 3/2 due to an extra term
in its expression. Finally, the Periodic kernel, which includes a period parameter
p in addition to the length scale, is tailored for functions with regular, repeating
structures. Each kernel captures different aspects of the structure of the data, with
its parameters reflecting specific properties of the underlying function.

3.2.3 Combining kernels

Combining kernels through operations such as addition, multiplication, and expo-
nentiation allows complex covariance structures to be created from simpler ones.
These operations can be formulated as follows:

ksum(x,x
′) = k1(x,x

′) + k2(x,x
′) (3.17)

kprod(x,x
′) = k1(x,x

′) · k2(x,x′) (3.18)

kexp(x,x
′) = k(x,x′)p (3.19)

The sum of kernels allows the representation of functions that exhibit behaviors
characteristic of each individual kernel, effectively layering their properties. The
product of kernels combines properties in a multiplicative manner, resulting in a
new kernel that can model functions where one property modulates another (e.g.,
a periodic modulation of a linear trend). Exponentiating a kernel by a scalar pa-
rameter p raises the kernel function to a power, thereby adjusting the smoothness
or complexity of the functions it represents [111].

In crashworthiness applications, these "composite" kernels can be particularly
useful. For instance, the sum of a dot-product and a squared-exponential kernel
allows the modeling of functions that can represent linear trends with superimposed
smooth variations, such as the mass distribution of components in crashworthiness.
The product of a squared-exponential kernel with a periodic kernel can be used
to capture locally cyclic trends that could represent the folding behavior of a crash
absorber under impact. These kernel combinations give GP models greater flexibility
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to represent complex relationships in the data, making them particularly well suited
to the sophisticated patterns often encountered in crashworthiness analysis.

3.2.4 Composite kernels

The selection of a diverse set of composite GP kernels in the context of crashworthi-
ness is based on the need to capture a comprehensive range of responses. In Table
3.5 we present a list of combined kernels that we provide in the automatic selection
of covariance functions. This listing has been constructed following the key findings
of Duvenaud [111], Rasmussen [102], and empirical considerations driven by our
findings.

Kernel label Expression k(x,x′)

kmulti,Lin kC · kDP + kC · kSE
kmulti,LinGrow kC · kDP · kC · kSE
kmulti,HybGrow kC · kSE · kRQ + kC · kSE · kPer

kmulti,DP kC · kDP + kC · k2
DP + kC

kmulti,SE kC · kSE + kC · k2
SE + kC

kmulti,RQ kC · kRQ + kC · k2
RQ + kC

kmulti,M kC · kM + kC · k2
M + kC

kmulti,M−RQ kC · kSE + kC · kRQ + kC

kmulti,add kC · kDP + kC · kSE + kC · kRQ + kC

Table 3.5: Composite GP kernels.

First, we add to our kernel set kmulti,Lin, kmulti,LinGrow, and kmulti,HybGrow. The
first is expected to capture local trends and deviations, the second is designed to
model phenomena where the response amplitude grows linearly, while the third en-
capsulates a hybrid trend that is capable at representing patterns with both periodic
and irregular growth variations [112]. The kmulti,DP kernel, as a product of input
features, is well suited at encapsulating linear responses within the system, reflecting
the proportionality between certain crash responses and impact forces. This could
be the case for predicting linear responses such as the mass of a component. On
the other hand, the kmulti,SE kernel is essential for modeling non-linear, smooth pro-
cesses that embody the localized effects of impact, where the response decays with
distance from the point of impact (useful for modeling force peaks over displace-
ment, for example). The kmulti,RQ extends this capability by allowing for varying
degrees of smoothness within the data, which is essential to reflect the hierarchical
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nature of material behavior under stress. In addition, the Matern class of kernels,
specifically kmulti,M and kmulti,M−RQ, introduces an additional parameter to control
the smoothness of the function, allowing for nuanced modeling of physical phenom-
ena that exhibit varying degrees of differentiability - a common feature in crash
dynamics. In particular, the inclusion of the kmulti,M−RQ provides composite kernel
with the rational quadratic form, creating a new kernel that might be able to cap-
ture complex interactions and dependencies between different material properties
and deformation behaviors. Finally, the kmulti,add kernel allows the combination of
properties from different kernels. It can be interpreted as capturing the superposi-
tion of the effects of different physical phenomena, each represented by an individual
component kernel.

3.2.5 Composite product kernel

Extending the previous discussion of composite kernels, we explore the integration
of a particular type of multiple kernels, which allows for a more nuanced model
without requiring the user to manually select the covariance function for their specific
problem. Our approach builds on the key findings of Chug et al. [113]. It involves
the use of a composite kernel, which is structured as a weighted product of L kernels,
as shown in Eq. (3.20):

kmulti,prod(x, x
′) =

L∏

l=1

ωlkl(x, x
′) (3.20)

In this configuration, each kernel is weighted so that the sum of the weights
equals one. The composite hyperparameter vector is an aggregation of the in-
dividual kernel hyperparameters Θ = {θ1, θ2, ..., θL} and the weight vector ω =

{ω1, ω2, ..., ωL}. With this comprehensive hyperparameter vector, we search the en-
tire hyperparameter space to find the optimal solution. In this work, following the
key findings of Chug et al. [113], we consider the multiplication of five basic kernels:
kSE, kM12, kM32, kM52 and kPer.

By adding this composite product kernel to our existing arsenal, we enhance our
Gaussian process models with a tool of significant adaptability, ideal for black-box
crashworthiness applications. Its flexibility simplifies the selection of the covari-
ance function, streamlining model development while accommodating the complex
variability inherent in crash response data.



46 3.2. Surrogate models

3.2.6 Anisotropic kernel: SE-ARD and additive structures

A very flexible way to model multi-dimensional functions is to specify a composite
kernel, which is the result of the product of kernels defined for each input variable.
This type of kernel is part of the anisotropic kernel family. They are particularly
useful for functions that vary more rapidly with respect to one design variable (e.g.,
x1) than another (e.g., x2). Such scenarios are common in crashworthiness opti-
mization, for example, when analyzing variables with different impacts on response
functions, or when comparing several diverse variables simultaneously.

In Eq. (3.21) we present here the squared exponential automatic relevance
determination (SE-ARD) kernel, a product of SE kernels over different dimensions,
each with a different lengthscale parameter:

kSE−ARD(x, x
′) =

d∏

i=1

σ2
i exp

(
−1

2

(xi − x′
i)
2

l2i

)
= σ2

f exp

(
−1

2

d∑

i=1

(xi − x′
i)
2

l2i

)

(3.21)

In addition to the SE-ARD kernel, we consider the additive kernel, which can be
expressed as a sum of SE kernels, each acting independently on a single dimension
of the input space:

kadd(x, x
′) =

d∑

i=1

σ2
i exp

(
−1

2

(xi − x′
i)
2

l2i

)
(3.22)

The additive kernel shown in Eq. (3.22) allows for a non-product interaction
model that captures the individual contributions of each input dimension to the total
variance, which can be beneficial for problems where the multiplicative interaction
assumption is too strong. It is particularly relevant in cases where the influence of
each input dimension on the target function is assumed to be additive, or where
different scales of variation are expected across dimensions [114].

The main reason for including SE-ARD structures in our kernel list is that they
are universal kernels, capable of learning any continuous function given enough data
under certain conditions [115]. The additive kernel is also a powerful tool in this
arsenal, providing a more interpretable model for the independent effects of differ-
ent dimensions. Since this may be less practical for high-dimensional data due to
increased computational requirements and sensitivity to the curse of dimensionality,
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it is still relevant to keep the previously defined isotropic kernels available in the
candidate pool.

3.2.7 Modeling noise: White kernel

Accounting for the uncertainties arising from the stochasticity of the FEA solver is
an important consideration that could play a major role in the effectiveness of GP
predictions. To address this issue, the white noise kernel kWN can be integrated as
an additive component to improve the existing models described in Table 3.5. This
kernel can be described as follows:

kWN(x, x
′) = δ(x− x′) (3.23)

where δ is the Kronecker delta, which equals 1 if x = x′ and 0 otherwise. This
addition adjusts the covariance matrix by a diagonal term representing the inde-
pendent noise associated with each observation, separating it from other sources of
error. The white noise kernel should not be confused with the "nugget," a small
value added to the diagonal of the covariance matrix to ensure numerical stability by
avoiding ill-conditioned matrices. While the nugget addresses computational issues,
the white noise kernel models the actual noise in the FEA results [110].

3.2.8 Training of Gaussian processes

Training GP models involves finding the optimal set of hyperparameters that define
the kernel function, which in turn specifies the covariance structure of the data. The
common approach to train GP models is to maximize the log marginal likelihood, a
function that reflects a trade-off between data fit and model complexity. Given the
dataset D = {X, y} , the log marginal likelihood is given by:

log p(D|θ) = − 1

2
yTK−1y
︸ ︷︷ ︸

data-fit

− 1

2
log |K|

︸ ︷︷ ︸
complexity penalty

− n

2
log 2π

︸ ︷︷ ︸
constant

(3.24)

where θ denotes the hyperparameter vector, K is the covariance matrix con-
structed from the kernel function, and n is the number of observations used to train
the GP.
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The first term, 1
2
yTK−1y, represent the data-fit: how well the GP model ex-

plains the observed data. The second term, 1
2
log |K|, acts as a complexity penalty,

discouraging overly complex models that do not generalize well. The third term,
n
2
log 2π, serves as a normalization constant.

While this maximization is widely used in the literature, it does not come with-
out its pitfalls. In particular, there is a risk of getting trapped in local optima
during optimization, leading to suboptimal model configurations. Also, despite the
complexity penalty, there is still a chance of overfitting, especially when the number
of hyperparameters is large relative to the amount of data. These issues can sig-
nificantly affect the success of the fitting process and the predictive performance of
the GP model. This is critical in crashworthiness, where the cost of querying points
in uninteresting regions of the domain is not just inefficient but also extremely ex-
pensive due to the computational and material resources required for numerical
simulations. Our efforts to address these shortcomings have lead to the develop-
ment of a novel loss function, the hybrid loss (HL), which is discussed in detail in
Publication II.

3.2.9 Model performance assessment

In crashworthiness optimization, where each numerical simulation can be prohibitively
expensive, the evaluation of surrogate models must attempt to balance efficiency and
effectiveness. Training and testing a models predictive performance on the same data
is a methodological mistake that can lead to overfitting. This occurs when a model
learns the training data too well, compromising its ability to generalize to new, un-
seen data. A common solution to this problem is to reserve a portion of the data
as a test set. However, in the context of crashworthiness, generating test data for
validation is often too expensive.

To circumvent this problem, we use k-fold cross-validation (CV) [116], a tech-
nique that evaluates the predictive performance of a model by partitioning the orig-
inal sample into a set of k equally sized folds. The model is trained on k − 1 folds
and validated on the remaining fold, repeating this process k times, as shown in
Figure 3.7.

The cross-validation error is calculated as the average of the errors over all k
iterations, expressed in Eq.(3.25)
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
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Figure 3.7: K-fold cross-validation scheme.

CVk-fold =
1

k

k∑

i=1

L(ŷi, yi) (3.25)

where L is a generic loss function, which measures the difference between the pre-
dicted values ŷi and the actual values yi. Leave-One-Out Cross-Validation (LOOCV)
is a specialized iteration of k-fold CV with k equal to the number of data points n,
ensuring each point is used once as a test case. LOOCV may not always be com-
putationally viable however. LOOCV provides an ideal but sometimes impractical
method due to its computational intensity. This method is typically set aside for
smaller datasets where computational resources are less of a concern. Acknowledging
the extensive duration of each crash simulation, a pragmatic approach is required
for model training and assessment. To this end, a time budget is strategically set
to 15 minutes, covering both the training of surrogate models and the CV process.
If the LOOCV is expected to exceed this allotted time, the strategy is changed to
a 10-fold CV. This CV approach serves as an effective compromise, maintaining
a delicate balance between computational demand and the thoroughness of model
validation [117].

For error quantification during CV, a suitable loss function (or error metric) is
selected that best reflects the performance needs of crashworthiness applications.
One such metric could be the root mean squared error (RMSE), which penalizes
larger errors more severely, thus aligning with the precision requirements of crash-
worthiness models. The LRMSE is defined mathematically for a set of predictions ŷi
and yi observations as depicted in Eq. (3.26):
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LRMSE =

√√√√ 1

n

n∑

i=1

(ŷi − yi)2 (3.26)

3.2.10 Comparison with other surrogate models

As we mentioned in section 3.2.1, GPs have numerous advantages over other re-
gression models, such as nonparametricity, analytic inference property, flexibility in
modeling, probabilistic nature, etc. etc. These qualities make GPs our preferred
choice over common metamodels used in the literature, such as polynomial response
surfaces, radial basis functions and support vector regression. Nevertheless, the pri-
mary limitation of GPs lies in their computational intensity. The computational
complexity of GPs scales cubically with the number of data points (O(n3)), making
exact inference prohibitively slow for data sets with a few thousand observations,
as noted by Duvenaud. Although this computational scenario is relatively rare in
crashworthiness optimization applications (such large numbers of FEA simulations
are hardly manageable), a more computationally efficient yet robust alternative is
desirable in such cases.

Support vector regression emerges as a viable candidate. Although SVR pri-
marily provides point estimates without uncertainty measures, SVR has better scal-
ability than GPs, scaling quadratically with sample size. In fact, similar to GPs,
SVR works by mapping input features into a higher-dimensional space using kernel
functions, effectively capturing non-linear relationships. The core idea of SVR is to
find a hyperplane in this feature space that best fits the data, using a ϵ-insensitive
loss function that makes it less sensitive to outliers. Optimization in SVR involves
a trade-off between the complexity of the model and the extent to which deviations
larger than e certain threshold ϵ are tolerated. A comprehensive overview about
SVR is presented by Smola et al. [118].

Therefore, while we regard GPs as the first choice in surrogate modeling for
crashworthiness applications, we consider SVR as a reliable backup in our method-
ology. This is particularly useful when GPs become intractable due to their compu-
tational requirements.

3.2.11 Multi-fidelity modeling

Multi-fidelity (MF) modeling is based on the concept of integrating multiple data
sources at different levels of accuracy (or fidelity) and computational cost. This
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approach is particularly useful in engineering applications where high-fidelity sim-
ulations are accurate but expensive, and low-fidelity simulations are less accurate
but cheap to evaluate. The idea is to combine these heterogeneous data sources to
make efficient and reliable predictions.

Multi-fidelity is a very active area of research, mainly based on GP models, whose
roots can be traced back to the linear model proposed by Kennedy & O’Hagan [119].
Their model can be expressed mathematically as in Eq. (3.27):

fhigh(x) = ρflow(x) + ferr(x) (3.27)

where flow is assumed to be a Gaussian process modelling the output of the lower
fidelity, ferr is another Gaussian process that models the bias term for the high-
fidelity data and ρ is a scaling factor that indicated the magnitude of the correlation
between the data of the two fidelities. This model is still the most commonly used
in engineering applications and serves as the reference point for all subsequent MF
models. It operates on the principle that the high-fidelity function is a scaled sum
of the low-fidelity function plus an error term that captures the linear correlations
between data of different fidelities. However, the Kennedy & O’Hagan model has
major limitations, especially for crashworthiness applications, due to its assumption
of linear correlations between fidelities. Crashworthiness phenomena often involve
highly non-linear behaviors that may not be adequately captured by this model.
To address this issue, our methodology integrates a more sophisticated MF model
developed by Perdikaris et al. [120], the non-linear autoregressive multi-fidelity GP
regression (NARGP), which to the best of our knowledge has not been yet applied
in crashworthiness optimization. The NARGP model is able to cope with more
complex and non-linear correlations by replacing the linear scaling factor ρ with a
non-deterministic function ρ(·), formulated as:

fhigh(x) = ρ(flow(x)) (3.28)

The multi-fidelity architecture of the NARGP model is hierarchical. The predic-
tions from lower fidelity models serve as inputs to inform and refine the predictions
of subsequent higher fidelity models, sequentially improving accuracy at each level
while efficiently utilizing computational resources. A graphical example of the hier-
archical architecture of the NARGP model can be observed in Figure 3.8.
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Figure 3.8: Hierarchical architecture of the NARGP model for predicting a multi-
constrained problem (one objective function f and two non-linear constraint func-
tions g1 and g2) based on three design variables.

In our methodology, we correlate FEA models of different fidelities, which vary
based on mesh coarseness and material information, such as the element erosion
criterion. The NARPG model is designed to leverage the strengths of both high-
fidelity and low-fidelity models, using the detailed mesh to capture precise physical
behavior and the coarse mesh to allow efficient exploration of design spaces. A
comprehensive examination of the operation of this multi-fidelity model and its
application to crashworthiness optimization is provided in Publication III.

3.3 Optimization methods

Selecting the appropriate optimization strategy in the field of crashworthiness op-
timization is a non-trivial task. Reminding the reader of the initial aphorism by
George E. P. Box, we emphasize once again that no single optimization algorithm
is universally effective or suitable for all optimization problems. The effectiveness
of an algorithm is defined by its ability to solve the problem reliably and efficiently,
and this depends greatly on the characteristics of the problem at hand.

Gradient-based algorithms require gradient information to guide the search pro-
cess. However, for crashworthiness problems involving black-box functions, gradient
information is generally not available. These methods can only be applied to surro-



Chapter 3. Methodology 53

gate models that estimate the gradient based on available data. The choice between
local and global search strategies is another critical consideration. As discussed in
Chapter 2, local search methods are generally more appropriate for convex prob-
lems where the goal is to find a local optimum in a well-behaved design space. In
contrast, global search methods are more appropriate for multi-modal problems,
where the goal is to navigate a complex design space with multiple optima. We also
recall that crashworthiness problems can be very different in nature. For example,
bending-dominated problems, such as those in side impacts, present a different op-
timization landscape compared to frontal crash problems, which may be dominated
by numerical noise and bifurcations. While surrogate-based methods may provide
efficient approximations in certain contexts, global search methods such as evolu-
tionary algorithms without metamodels may be more effective in exploring complex,
non-convex design spaces.

Ultimately, the effectiveness of a crashworthiness optimization strategy is deter-
mined by how well the chosen method fits the specific characteristics and complexity
of the problem. The integration of both local and global search strategies, possibly
in a hybrid or sequential manner, can often lead to more robust and effective solu-
tions, especially in the face of the diverse and challenging optimization landscapes
inherent in crashworthiness problems.

3.3.1 Surrogate-based optimization

A central goal of this work is to exploit the use of surrogate-based optimization
methods as effectively as possible. We seek to optimize highly dynamic impacts,
which, according to the crashworthiness optimization literature, are typically con-
sidered challenging or less accessible to such optimization techniques. Regardless of
the problem being analyzed, it should be noted that all surrogate-based methods
discussed in this section rely on a crucial iterative verification step. In this step,
the predictions of one or more optimal points according to the surrogate model are
compared with the real values obtained by the FEA analysis. This comparison is a
key step in ensuring that the surrogate model accurately reflects the actual system
behavior. These points are then recycled back into the metamodels to provide new,
accurate guidance in the search for a superior optimum, following an active learning
approach.

In this section, we discuss three strategies of surrogate-based optimization meth-
ods: two-stage metamodel optimization (TSMO), efficient global optimization (EGO),
and successive surrogate modeling (SSM). While the first and third methods focus



54 3.3. Optimization methods

more on exploitation, hence focusing efforts on improving a local minimum (often
considered enough in an industrial context), the EGO method employs a hybrid
strategy aimed at achieving a better prediction of responses across the overall vari-
able domain.

Two-stage metamodel optimization

The two-stage metamodel optimization approach skillfully integrates the strengths
of evolutionary algorithms and gradient-based methods to navigate complex opti-
mization landscapes. Differential evolution (DE) [121], a cornerstone of the family
of EAs, serves as the global search strategy in the first stage of TSMO. DE is chosen
for its robustness and ability to effectively explore large and complex search spaces,
which is critical for identifying promising regions that may contain global optima.

The population-based mechanism of DE and its evolutionary operators (mu-
tation, crossover, and selection) make it adept at escaping local minima, a com-
mon challenge in non-convex and multi-modal problems, which are very likely in
crashworthiness optimization. After DE identifies a promising solution domain, the
L-BFGS-B (limited-memory Broyden-Fletcher-Goldfarb-Shanno with bounds) algo-
rithm [122], known for its efficiency in local search, refines the solution based on
the last population of DE. L-BFGS-B is chosen over other local search methods be-
cause of its effectiveness in fine-tuning solutions within a localized region, especially
when gradient information is unavailable or expensive to compute. In the presence
of constraint responses, however, L-BFGS-B is replaced by the trust-region method
[123]. This replacement is necessary due to its capability to navigate the intrica-
cies of non-linear constraints and maintain feasibility throughout the optimization
process. In both gradient-based methods, we approximate the gradient using the
forward differences method with the formula:

∇f(x)i ≈
f(x+ hei)− f(x)

h
, for i = 1, . . . , d (3.29)

Here, h represents a small step size and ei is the unit vector in the i-th dimension.
This combination of the global search power of DE with the local gradient-based
refinement allows TSMO to quickly approach an optimum. This objective-oriented
strategy is particularly useful in scenarios where limited information about the crash-
worthiness problem is available in advance, allowing for fast and effective progress
in the optimization process.
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Figure 3.9: Optimization of the 2D Ackley Function: L-BFGS-B (left) converges
to a local solution, while DE (right) finds a better minimum.

Efficient global optimization

When preliminary information about the crash scenario is available, such as the
type of load case, alternative strategies may prove more effective than the two-step
approach. For example, for load cases dominated by bending (e.g., side impact sce-
narios), the response function tends to be more predictable with fewer bifurcations,
allowing for a more effective global search strategy. The EGO method, based on
Bayesian optimization (BO) theory, is well suited to such contexts. It employs a
Gaussian process model to minimize the expected deviation from the optimum of
the function [124]. This approach is advantageous because it systematically balances
the exploration of the design space with the exploitation of known high-performing
regions, thereby optimizing with a reasonable number of expensive function evalua-
tions.

Within the context of expensive-to-evaluate functions, EGO is a commonly suc-
cessful choice. This method employs the posterior distribution of GPs to construct
an acquisition function that determines what the next query point should be. In
crashworthiness optimization, the preference for the expected improvement (EI) cri-
terion over other acquisition functions such as probability of improvement (PoI) and
lower confidence bound (LCB) is motivated by its inherent balance between explo-
ration and exploitation. The EI criterion is often preferred because it is designed
to be larger in regions of the design space that are under-sampled, yet close to the
global optimum, thus providing a robust mechanism for navigating the surrogate
model landscape [125, 126]. According to Eq. (3.30), the expected improvement
can be evaluated analytically:
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EI(x) =




(f(xopt)− µ− ξ)Φ

(
f(xopt)−µ(x)−ξ

σ(x)

)
+ σ(x)ϕ

(
f(xopt)−µ(x)−ξ

σ(x)

)
if σ(x) > 0

0 if σ(x) = 0

(3.30)

where f(xopt) is the value of the best feasible solution so far and xopt is the
location of that sample, Φ and ϕ are the probability distribution and probability
density functions, respectively. As usual, µ and σ denote the mean and the standard
deviation of the GP model. The parameter ξ determines the amount of exploration
during optimization, i.e. higher values of ξ lead to increased exploration. The
experiments of Lizotte suggest that setting ξ = 0.01, scaled by the signal variance
when necessary, provides satisfactory performance in a wide range of scenarios [127].

However, crashworthiness applications often involve complex, non-linear con-
straints. To account for such constraints, Parr et al. [126] proposed a simple exten-
sion that is based on a penalty approach. The penalized EI criterion can be used
to account for constraint violations with the formulation EIP (x) = EI(x) − P (x),
where P is the penalty term for constraint violations, which turns out to be a large
constant in the simplest case. One concern with this approach is that the edges
of the feasible regions are again defined by a sheer cliff, which is fallacious if the
constraints are poorly modeled. In fact, in constrained problems, we are not only
interested in improving the objective function, but also in ensuring that the con-
straints are satisfied. Therefore, in our approach, we integrate the probability of
feasibility (PoF), based on the work of Schonlau [59]:

PoF (x) =

ng∏

i=1

P (gi(x) ≥ 0) =

ng∏

i=1

Φ

(
µgi(x)

σgi(x)

)
(3.31)

in order to extend the acquisition function to constrained problems with ng

constraints by using the EIPoF criterion:

EIPoF(x) = EI(x) · PoF (x) (3.32)

This product ensures that the optimization algorithm prefers points that are
likely to improve the objective function while also being likely to satisfy the con-
straints.This approach allows the optimization to navigate both the objective func-
tion and the constraint space effectively.
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Successive surrogate modeling

Scenarios dominated by more complex physics are, for example, high-speed frontal or
rear impacts, which can be characterized by buckling behavior and numerical noise.
In this case, successive surrogate modeling (SSM) proves to be a more suitable
approach than global methods such as EGO [18]. The SSM process successively
generates and refines surrogate models within a specified region of interest (RoI),
focusing computational resources on areas of the design space where improvements
are most needed. The main idea of SSM approaches is shown in Figure 3.10:

Figure 3.10: Stages of successive surrogate modeling: From left to right, initial
variable domain sampling, metamodel fitting and optimization, and focused resam-
pling within the refined region of interest.

Unlike global approximations, which may lack precision in such scenarios dom-
inated by computational physics, SSM locally captures the complex behaviors ex-
hibited during high-speed impacts. By focusing on a RoI, SSM ensures that the sur-
rogate models are finely tuned to the localized features of the optimization domain,
allowing for a more targeted and successive improvement of the objective function.
Enhancements to the Successive Response Surface Method (SRSM) are documented
in Publication III, showcasing the evolution of the methodology through our research
advancements. Improvements in its efficiency and effectiveness have been reported,
along with the integration of multi-fidelity strategies to further extend the bene-
fits of SSM. For an in-depth discussion of these developments, readers are referred
to Publication III, where the multi-fidelity successive response surface (MF-SRS)
approach is described.

3.3.2 Handling parallel simulations

The ability to run q-simulations in parallel is another part of tailoring the op-
timization methods just proposed to crashworthiness optimization. Modern high
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performance computing (HPC) resources provide the ability to run multiple com-
putationally intensive simulations simultaneously. This parallelism is essential in
crashworthiness studies where, due to the distributive nature of HPC architectures,
the cost of running multiple simulations in parallel can be comparable to that of
a single simulation. Using this approach, optimization methods can significantly
reduce the time to solution, a critical factor in iterative design cycles where rapid
convergence to optimal solutions is desired. Consequently, optimization algorithms
must be able to generate multiple candidate points simultaneously.

We propose a straightforward approach suitable for all methods based on GPs.
Our strategy involves sequentially identifying q points: the first point is determined
by the optimization criteria, e.g., simply locating the optimum in the TSMO method.
Subsequently, the GP is re-fitted assuming that the predicted value at this point is
the ground-truth value, which mainly affects the prediction variance of the GP
since it is solely influenced by the proximity between training points. Using this
revised estimate of the GP variance, the next point is determined using EIPoF. This
process is iterated q − 1 times to yield q infill points, allowing for the simultaneous
identification of multiple points without compromising computational efficiency.

For the EGO method, a similar but more refined approach was introduced by
Ginsbourger, known as the multipoints expected improvement or q-EI criterion [128].
This advanced approach extends conventional EI to select a batch of q points si-
multaneously, optimizing the expected improvement over the current best solution
across the batch. It effectively incorporates the correlation between the points in
the batch, considering their collective impact on the search for an improved solution,
and is inherently designed for parallel execution environments.

3.3.3 Branch and bound

As discussed in Section 3.1.4, the approach to handle mixed-variable problems based
on Eqs. (3.8) and (3.9) has some drawbacks. To circumvent problems when dealing
with categorical variables, one could use an optimizer that handles integer variables
in a different way than defining additional constraints. To achieve this goal, we
need to redefine the optimization problem with a different notation. Once the sets
Ci and Dj are brought into their numerical representation, the optimization problem
based on Eqs.(3.2)-(3.4) can be reformulated as a mixed integer non-linear problem
(MINLP) as follows:
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min
x

f(x) (3.33)

s.t. gm(x) ≤ 0, m = 1, . . . , ng, (3.34)

w.r.t. li ≤ xi, i = 1, . . . , dc, (3.35)

xi ≤ ui, i = 1, . . . , dc, (3.36)

xj ∈ Z, j = 1, . . . , dd (3.37)

The branch and bound (B&B) algorithm [129] provides a structured framework
for solving MINLP problems by decomposing the parent problem into a series of
smaller subproblems, each characterized by continuous variables only. This parti-
tion is based on different permutations of the possible values of the discrete variables.
Given the finite nature of these discrete variables and their bounded values, the total
number of these subproblems remains limited. Such subproblems are called NLP
relaxations because the discrete variables are fixed. Addressing each subproblem
individually and selecting the optimal outcome among them effectively solves the
broader MINLP. These NLP relaxations, which have no discrete variables and only
continuous variables, are less complex and can be solved more easily using well-
known algorithms. However, evaluating each NLP relaxation independently would
be a very time-consuming process. To increase efficiency, the B&B algorithm adopts
a more elaborate strategy based on a search tree that navigates through these sub-
problems in a selective manner.

S

S1

S1,1

x2 = 0

S1,2

x2 = 1

x1 = 0

S2

suboptimal
branch

x1 = 1

Figure 3.11: Branch and bound search tree.
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An example of the branch and bound is shown in Figure 3.11. The algorithm
starts with the original problem space, denoted S. This is the beginning of the search
tree and contains all possible solutions. The algorithm then chooses a variable to fix
at different values to create subproblems. In this example, the selected variable is
x1, which can take two values: 0 or 1. This action creates two new subproblems: S1

(where x1 = 0) and S2 (where x1 = 1). For each of these subproblems, a lower bound
is computed using NLP relaxations. The search tree is further developed by selecting
a subproblem and fixing another variable, x2. For example, within subproblem S1,
the variable x2 is branched to create further subproblems S1,1 (where x2 = 0) and
S1,2 (where x2 = 1). Each time a new branch is created, the algorithm computes a
bound for the NLP relaxations within that branch. If a bound shows that the optimal
solution to the MINLP problem cannot be found within that branch, it is pruned to
save computational time. In this example, the bound for the subproblem S2 indicates
that an optimum with x1 = 1 is not achievable, so this branch is discarded from
further consideration. Another possibile reason for pruning branches is infeasibility.
In fact, if one of the relaxed problems is infeasible, we know that everything from
that node down is also infeasible. There are several solvers available for MINLP,
each with its own strengths and areas of application. In our methodology, we have
chosen to use the SCIP (Solving Constraint Integer Programs) solver. SCIP is
known for its power in handling branch and bound algorithms, and it is highly
customizable and extensible, which can be advantageous for tackling specialized
or non-standard MINLPs [130, 131]. One remark in using SCIP is the attention
to be paid in transforming the approximated non-linear response functions into an
analytical form that is linear with respect to the design variables. This step is
necessary to make the problem readable by SCIP, since the linear formulation is the
one expected by the B&B algorithm. For a more thorough reading of the topic, we
refer the reader to work of Achterberg [132].

3.3.4 Convergence criteria

In crashworthiness optimization, the choice of an appropriate convergence crite-
rion must take into account the multimodal and complex nature of the convergence
curves, which are typically non-convex and noisy. A robust convergence criterion
must be sensitive to the nuances of such landscapes and be able to detect stagnation
or slow progress. A threshold criterion based solely on a comparison of the last two
observations is often insufficient; more sophisticated measures are required. Further-
more, to avoid excessive simulator overhead, especially in cases of slow optimization
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progress or convergence criterion failure, it is important to combine such a criterion
with a hard limit on the maximum number of iterations, nlimit.

In Publication III, we introduced the average relative function tolerance (ARFT),
a robust criterion that meets the previously mentioned challenges. The ARFT as-
sesses convergence by considering the average relative change in the objective func-
tion over a given number of iteration pairs, providing a sensitive view of progress
that is less susceptible to the random fluctuations of individual iterations. Conver-
gence is indicated when the ARFT falls below a certain threshold, indicating that
relative improvements are consistently negligible. When using parallel simulation
strategies, please note that each iteration may produce a batch of solutions. In such
cases, the criterion we proposed evaluates the best solution within the batch, en-
suring that the convergence evaluation considers the most promising results at each
stage. This methodical approach to convergence ensures that optimization efforts
are terminated in a timely and scientifically justified manner.

3.3.5 Global search methods

As mentioned in Chapter 2, Duddeck’s key findings suggest the need for a robust
alternative strategy when metamodel optimization fails. Here, genetic algorithms,
a subset of evolutionary algorithms, emerge as a particularly robust fallback op-
tion. Genetic algorithms are characterized by their adaptability and their ability
to incorporate previously collected observations. This feature is critical in crash-
worthiness optimization. In fact, instead of wasting time-consuming observations
from previous simulations, we can significantly inform and guide the search process.
When metamodel-based methods do not perform optimally, GAs can step in and
continue the optimization, using the collected data to effectively navigate the search
space. Based on Mitchell’s findings [133], a practical strategy is to select a two-point
crossover to facilitate the exchange of genetic material, thereby aiding in compre-
hensive exploration. In addition, using Gaussian mutation with a probability of 0.2
and a standard deviation of one is likely to provide sufficient variability to escape
local optima while maintaining a focus on global search.

A pragmatic approach to the transition from surrogate-based methods to GAs
is based on the detection of stagnation in the performance of the surrogate model.
We propose to monitor the rate of improvement in the surrogate model, focusing
in particular on the evolution of the objective function. A practical strategy to
ensure this transition can be empirically defined as follows: the optimization process
switches to a GA when the improvement in the objective function, relative to the best
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solution obtained by the DoE, is less than a threshold ϵswitch over nswitch consecutive
iterations (or if the problem has already reached convergence in fewer iterations).
Formally, this can be expressed as |f(xopt, DoE)−f(xk)|

|f(xopt, DoE)| ≤ ϵswitch for k representing the
current iteration, and this condition holds true for nswitch consecutive iterations. A
reasonable threshold for the ϵswitch could be set between 1 % and 3 %, while the
nswitch might range between 5 and 10. This criterion, when met, suggests a state of
stagnation and indicates the inadequacy of the surrogate model in further optimizing
the solution. By switching the strategy to GAs, we can still take advantage of the
observations already evaluated, ensuring an efficient continuation of the optimization
process. This approach does not represent a one-size-fits-all solution, but rather
a guideline derived from practical experience that can be adapted to the specific
dynamics and requirements of different crashworthiness problems.

3.4 Optimization workflow
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Optimal
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Figure 3.12: Simplified workflow of CS-Opt.

In this subsection we introduce the Car Structure Optimizer (CS-Opt). This is
a powerful optimization tool we developed to optimize vehicle structures in order to
improve their crashworthiness performance. We show a simplified illustration of its
optimization process in Figure 3.12. A detailed explanation of the decision process
is given in the next section.

• First, CS-Opt requires a unique definition of the optimization problem, which
mainly includes setting design variables and determining the response func-
tions. The user can provide additional details such as the type of crash sce-
nario, parallelization settings, preferences for sampling strategies, GP covari-
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ance functions, cross-validation approaches, optimization methods and conver-
gence criteria. If these details are not specified, CS-Opt makes assumptions
based on default settings.

• In the initial phase, sampling strategies are used to navigate the domain of the
variables. This requires multiple calls to the solver to generate the necessary
output required by the DoE. The explicit FEA solver LS-DYNA was used in
all our analyses.

• Subsequently, surrogate models are fitted using a variety of composite kernels
(discussed in Section 3.2) to approximate the response functions.

• These metamodels are then compared using a cross-validation approach. For
each response function, the best performing model is selected. If a target accu-
racy criterion has been set by the user, additional infill samples are sequentially
generated until the target is met.

• With the surrogate models in place, the surrogate-based optimization phase
begins. This involves identifying optimal points on the surrogate models, which
are then validated by equivalent FEA simulations. These new data points
are integrated into the existing dataset, enriching the metamodels with new
insights and guiding the optimization toward a higher-quality solution.

• This iterative process continues until one of the convergence criteria is met,
indicating that an optimal or satisfactory solution has been achieved.
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Chapter 4

Publications

This chapter covers the core of the dissertation, consisting of a total of five publica-
tions. The first three publications are peer-reviewed journal papers, intended as the
three main publications on which the cumulative thesis is built. They are linked by
a chronological and logical narrative that considers the sequence of the optimiza-
tion process steps. Indeed, the first three publications, while keeping the ultimate
focus on crashworthiness applications, analyze the gaps and further develop existing
methods in the three macro areas outlined at the beginning of Chapter 3: Dataset
& sampling, surrogate models, and optimization strategies. Specifically, Publica-
tion I) focuses on the potential of sequential sampling strategies. Publication II
focuses on improving hyperparameter selection in Gaussian processes. Publication
III, which closes the circle as it is based on key findings from the first two, proposes
an innovative sequential optimization strategy based on metamodels.

In addition to these three publications, we also include two conference papers
resulting from two presentations at international events well recognized for their
relevance in the field. Publication IV analyzes a full vehicle frontal collision scenario
where the front structure is optimized through the choice of materials and thicknesses
used in the structural components. In Publication V, we present additional material
on adaptive response-based sampling strategies that complement the main results
of Publication I). Since only the presentation was published online for Publications
IV and V, we report the content in a neutral format.

To enhance understanding, each publication described in this chapter is prefaced
with a concise summary. These summaries highlight the primary goals and results
of the publications, helping to situate their relevance and role within the context of
the dissertation. The publications are listed as follows:

• Publication I: Pietro Lualdi, Ralf Sturm, Tjark Siefkes. "Exploration-oriented
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sampling strategies for global surrogate modeling: A comparison between one-
stage and adaptive methods", Journal of Computational Science, 2022.

• Publication II: Pietro Lualdi, Ralf Sturm, Andrés Camero, Tjark Siefkes.
"An Uncertainty-Based Objective Function for Hyperparameter Optimization
in Gaussian Processes Applied to Expensive Black-Box Problems", Applied
Soft Computing, 2023 (under review).

• Publication III: Pietro Lualdi, Ralf Sturm, Tjark Siefkes. "A Multi-Fidelity
Successive Response Surface Method for Crashworthiness Optimization Prob-
lems", Applied Sciences, 2023.

• Publication IV: Pietro Lualdi, Michael Schäffer, Ralf Sturm. "Application of
physical and mathematical surrogate models to optimize the crashworthiness
of vehicle front structures", NAFEMS World Congress, 2021.

• Publication V: Pietro Lualdi, Ralf Sturm. "Adaptive Sampling Strategies
for Crashworthiness Applications", ASC Simpulse Day - AI-assisted Crash
Simulation & Optimization, 2023.
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4.1 Publication I

Exploration-oriented sampling strategies for global surrogate

modeling: A comparison between one-stage and adaptive meth-

ods

This journal paper was submitted to the Journal of Computational Sciences on
August 5, 2021. After a successful double-blind peer review process with three
reviewers, our paper was accepted and published in Volume 60 on February 19,
2022.

Research contribution

Our work investigates exploration sampling strategies, focusing on the potential in-
tegration of sequential exploration methods with existing datasets, such as those
generated by one-stage sampling schemes. We analyze state-of-the-art methods and
propose novel methodologies to avoid under- and oversampling issues in crashwor-
thiness applications.

Methods

We propose three novel sequential exploration-oriented strategies: Two novel sam-
pling algorithms to obtain fine-grained quasi latin hypercube designs and an im-
provement to a well-known sequential sampling algorithm. These strategies are
based on Monte Carlo approaches and aim to optimize specific optimality criteria,
including granularity, space-filling properties, and projective properties.

Results

We conducted tests on optimality criteria, followed by tests on 15 analytical problems
and an engineering crash application. The results provide valuable guidelines for
choosing the ideal sampling strategy based on the problem at hand. All proposed
methods provide valid and powerful alternatives to conventional static methods,
such as latin hypercube designs.



Journal of Computational Science 60 (2022) 101603

Available online 19 February 2022
1877-7503/© 2022 Elsevier B.V. All rights reserved.

Exploration-oriented sampling strategies for global surrogate modeling: A 
comparison between one-stage and adaptive methods 

Pietro Lualdi *, Ralf Sturm , Tjark Siefkes 
Institute of Vehicle Concepts (FK) - German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany   

A R T I C L E  I N F O   
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A B S T R A C T   

Studying complex phenomena in detail by performing real experiments is often an unfeasible task. Virtual ex
periments using simulations are usually used to support the development process. However, numerical simula
tions are limited by their computational cost. Metamodeling techniques are commonly used to mimic the 
behavior of unknown solver functions, especially for expensive black box optimizations. If a good correlation 
between the surrogate model and the black box function is obtained, expensive numerical simulations can be 
significantly reduced. The sampling strategy, which selects a subset of samples that can adequately predict the 
behavior of expensive black box functions, plays an important role in the fidelity of the surrogate model. 
Achieving the desired metamodel accuracy with as few solver calls as possible is the main goal of global sur
rogate modeling. In this paper, exploration-oriented adaptive sampling strategies are compared with commonly 
used one-stage sampling approaches, such as Latin Hypercube Design (LHD). The difference in the quality of 
approximation is tested on benchmark functions from 2 up to 30 variables. Two novel sampling algorithms to get 
fine-grained quasi-LHDs will be proposed and an improvement to a well-known, pre-existing sequential input 
algorithm will be discussed. Finally, these methods are applied to a crash box design to investigate the perfor
mance when approximating highly non-linear crashworthiness problems. It is found that adaptive sampling 
approaches outperform one-stage methods both in terms of mathematical properties and in terms of metamodel 
accuracy in the majority of the tests. A proper stopping algorithm should also be employed with adaptive 
methods to avoid oversampling.   

1. Introduction 

The application of numerical simulations is prevalent in many en
gineering disciplines. Even if simulations cannot completely replace 
real-life experiments, they can considerably reduce development costs. 
Thus, simulations are used by engineers to gain a better understanding 
of problems and to identify designs with improved performance. 

In the field of Design Optimization, the best possible values of the 
design variables under consideration (also called “features”) are iden
tified so that the investigated objective function(s) can be either maxi
mized or minimized, while still satisfying all specified constraints typical 
of engineering problems [2]. This can be achieved by an iterative 
approach using global optimization algorithms. This approach requires 
a high number of evaluations of the objective and constraint functions. 
However, complex engineering systems such as Finite Element Analysis 
(FEA) and Computational Fluid Dynamics (CFD) can be computationally 
expensive, which makes an industrial application difficult. For instance, 

in [27] it is reported that full car crash models in current projects at 
Porsche consist of about 15 million elements, leading to a simulation 
time of about 32 h, using 256 processors of the latest generation. These 
computational costs clearly limit the application of classic optimization 
approaches. 

In order to overcome this issue, surrogate modeling techniques are 
often used. Metamodels, often known as surrogate models, are mathe
matical approximations that can be used efficiently to deal with complex 
and computational expensive black box functions. Surrogate models are 
capable of efficiently capturing the behavior of linear and non-linear 
problems, by mapping the output responses of a system to the input 
variables. 

A distinction must be drawn between global and local surrogate 
modelling. Local models are used to guide the optimization algorithm 
towards a global or local optimum. By contrast, the aim of global sur
rogate modeling is the creation of a model that mimics the behavior of 
the black box system on the entire domain. Consequently, the surrogate 
model can be used as an approximated replacement for the original 

* Corresponding author. 
E-mail addresses: pietro.lualdi@dlr.de (P. Lualdi), ralf.sturm@dlr.de (R. Sturm), tjark.siefkes@dlr.de (T. Siefkes).  

Contents lists available at ScienceDirect 

Journal of Computational Science 

journal homepage: www.elsevier.com/locate/jocs 

https://doi.org/10.1016/j.jocs.2022.101603 
Received 5 August 2021; Received in revised form 13 January 2022; Accepted 7 February 2022   

68 4.1. Publication I



Journal of Computational Science 60 (2022) 101603

2

function. This paper focuses on global surrogate modelling, and there
fore the issue of local surrogate modelling is not further addressed. 

Assuming that no information about the problem is known a priori (i. 
e., there is no knowledge about the function that correlates the input 
parameters with the output responses), initial designs must be selected 
within the design space in an effective way, to allow an efficient start of 
the optimization process. These initial designs are called “samples”, and 
together they build up the Design of Experiment (DoE). The main task of 
the DoE is to obtain the maximum amount of information about the 
unknown function under investigation. Since solver calls can be 
expensive, it is important to find an optimal sample distribution in the 
design space, in order to understand the global behavior of the model 
with the smallest possible number of solver calls. 

This paper is structured as follows. In Section 2 state-of-the-art input- 
oriented sampling methods are presented. Three mathematical criteria 
to evaluate the performance of the algorithms are introduced and 
sampling methods are then classified according to their adaptive nature. 
The potential benefits and drawbacks of such methods are described, 
with a particular focus on expensive black box functions such as crash 
simulations. An empirical approach to tune the initial parameter of a 
well-known adaptive strategy is then shown. Furthermore, two novel 
adaptive sampling strategies inspired by existing methods are presented. 
In Section 3, the most promising methods are tested both on a pool of 
benchmark functions and on a specific real crash application. Two 
regression models are investigated for these tests: Kriging and Support 
Vector Regression (SVR). Finally, Section 4 completes the paper with 
conclusions and an outlook for future research. 

2. Design of Experiment 

A DoE is a structured method for determining the relationships be
tween input factors (independent variables) and one or more output 
responses (dependent variables), through the application of mathe
matical models. In the DoE, the input factors are systematically varied to 
determine their effects on the output responses, which allows the 
determination of the most important input factors: the identification of 
input factors with optimized output responses, and the interactions be
tween input factors [15]. Formally, a DoE can be defined as a set of n 
combinations of d factor values. These combinations are usually boun
ded by upper and lower boundaries, so that for each independent vari
able xk it holds that ak ≤ xk

i ≤ bk with ak, bk ∈ R, k = 1, 2,…, d and i 
= 1,2,…, n [26]. With no loss of generality, in this paper a design space 
T = [0, 1]d is considered without exception, which implies that the range 

of each function argument has been scaled to the unit interval and that 
the joint region of interest is the k-dimensional unit cube [23]. There
fore, a DoE of size n turns out to be a design composed of a set of scat
tered points P = {p1, p2,…, pn}⊂[0,1]d with pi =

(
p1

i , p2
i ,…, pd

i
)
, where 

the function values Y = {f(p1), f(p2),…, f(pn)} are known. These scat
tered points P are commonly known as “samples”, while the function 
values Y are called “response values”. Finally, the data points P together 
with their function values Y are used to find the best suitable surrogate 
function f̃ : Rd→R of the unknown function f : Rd→R which describes 
the mapping between inputs and outputs of the black box function. From 
now on, a generic d-dimensional dataset P of n sample points will be 
represented as a matrix of n rows and d columns. This matrix will be 
denoted by P(n,d). 

2.1. One-stage and sequential sampling methods 

The most common sampling strategy is the one-stage approach (also 
called “one-shot” approach). These design methods consider the design 
space only to generate samples, and, most importantly, to spread them 
out uniformly over the entire domain. It should be noted that these 
approaches do not consider the function values Y, since the set of data- 
points P is generated upfront in one stage when the response values of 
these samples are not yet known. It is clear that the main disadvantage of 
this approach is the risk of running into over- or undersampling. In 
oversampling, too many samples have been evaluated to achieve the 
desired accuracy, which can result in high computational costs. In 
undersampling, too few sample points may have been evaluated, which 
requires a new DoE to reach the expected accuracy [25]. The reason why 
these methods are still widely used is their ease of implementation and 
their optimal coverage of the domain [8]. 

An alternative sampling approach is given by sequential sampling. In 
literature, sequential sampling is also known as adaptive sampling [28] 
or active learning [37]. For the sake of clarity, from now on these terms 
will be used interchangeably. In sequential sampling, a dedicated al
gorithm selects a few samples (or even a single sample) and adds them 
progressively into the design space until the desired accuracy is reached, 
or the maximum number of points allowed is exceeded. The sequential 
sampling approach is thus an iterative process. Unlike traditional sam
pling strategies, response values and samples from previous iterations 
can be analyzed and used to generate new samples in areas that are 
assumed to be the most advantageous for exploration. The ability to stop 
the sequential algorithm, once the desired level of accuracy has been 
reached, is the most significant advantage of this type of algorithm. 

Nomenclature 

DoE Design of Experiment 
d Dimensionality of the problem 
n Size of the dataset (DoE) 
P,X Dataset (generic set of points) 
p,x Sample (or generic point of the dataset) 
P(n,d) d-dimensional dataset of size n 
T d-dimensional design space [0,1]d 

Y Function values (response values) 
f Real function 
f̃ Surrogate function (metamodel) 
L 2 l2-norm operator 
ϕp phi-pi criterion 
CDM Crowding Distance Metric 
LHS Latin Hypercube Sampling 
LHD Latin Hypercube Design 
LHS(n,d) d-dimensional LHSof size n 

pre-opti LHS Pre-optimized LHS 
sf-LHS Space-Filling LHS 
q Index of Latin Hypercube intervals 
y LHS binary variable 
V̂ i Voronoi Region 
Ω Closed set in Rn 

Ω Open set in Rn 

MIP mc-inter-proj method 
MIPT mc-inter-proj-th method 
dmin Threshold of MIPT 
α Tolerance parameter α of MIPT 
αmax Maximum attainable α of MIPT 
FpPLHS Fluttering perfect-Progressive LHS 
MqPLHS Monte Carlo quasi-Progressive LHS 
flhs Objective function of MqPLHS 
RMSE Root Mean Squared Error (test points) 
RMSECV Root Mean Squared Error (Cross-Validation)  
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2.2. Exploration and exploitation 

Due to the different goals of exploration and exploitation-oriented 
methods, it is necessary to clarify the difference at the outset. Explora
tion means gaining the crucial information of the unexplored design. 
Peaks, valleys, sharp changes of response values, and discontinuities are 
just a few examples of this type of information. Since the main focus of 
exploration is the scanning of the design space, the response values are 
not considered. 

Exploitation means the investigation of a portion of the domain that 
has already been identified to be of interest. Refining a potential local 
optimum or selecting new samples in steep regions are possible 
exploitation-oriented sampling approaches [7]. The main difference 
compared to exploration is that exploitation takes advantage of the 
response values of the previous iterations to select new samples. Thus, 
exploration and exploitation refer to input and output-based sampling, 
respectively. 

While it is evident that one-stage sampling approaches are 
exploration-oriented (also known as input-oriented), the focus of 
adaptive methods is rather less obvious. Adaptive methods can be 
exploration-oriented, exploitation-oriented, or have a hybrid focus, 
requiring an optimal trade-off between the goals of exploration and 
exploitation. 

As outlined above, the main advantage of adaptive strategies is that 
undersampling and oversampling phenomena can be avoided by halting 
the sampling process as soon as the desired accuracy is reached. 
Although hybrid strategies have greater potential (since they have ac
cess to more information), exploration-oriented strategies are certainly 
no less useful. In fact, they are particularly useful in multi-response 
systems where a metamodel is needed to model each response. This is 
a typical scenario of multi-objective or multi-constraint problems (e.g. 
crashworthiness optimization) where various objective and constraint 
functions are built on a single DoE. 

The main focus of this paper is to analyze the benefits of adaptive, 
exploration-based strategies compared to state-of-the-art one-stage 
approaches. 

2.3. Properties of sampling strategies 

The quality of the sample distribution over the design space can be 
assessed by several mathematical criteria. As proposed by [23] and [30] 
for computer experiments, at least two criteria, the space-filling, and the 
non-collapsing criteria must be satisfied. Another ideal property 
described by [8] is the granularity of the design. Granularity is often the 
main difference between sequential and one-stage approaches. In this 

section, these three properties are introduced and discussed. 

2.3.1. Space-filling criterion 
The space-filling criterion describes the uniformity of the sampling 

distribution in the domain. Since no details about the functional 
behavior of the design parameters are available, it is crucial to gain 
information from the entire design space. In that sense, the design has to 
be “space-filling”, which implies that its samples have to be evenly 
spread over the whole domain. To describe mathematically the even 
distribution of a design set P, it is necessary to define a mathematical 
criterion to be optimized. The most widely used are the L 2 norm (or 
maxmin) and the ϕp criterion: 

L 2 norm : min
pi ,pj∈P

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑d

k=1

(
pk

i − pk
j
)2

√

(1)  

ϕp :

(
∑

pi ,pj∈P

[
∑d

k=1

(
pk

i − pk
j

)2
]− p )1/p

(2) 

Regardless of the choice of criterion, the higher the value, the better 
the space-filling properties. Because of numerical instability issues 
(especially for large values of the power p) of the ϕp criterion, the 
maxmin criterion (L 2 norm) is used in this work to compare different 
designs based on their space-filling properties. 

In order to measure the relative isolation of a point p from the 
existing dataset P, the Crowding Distance Metric (CDM) can be used. 
This distance metric deployed first by [42] and resumed by [16] can be 
used to place new points in relatively unexplored regions and as far 
away from the existing points as possible. Its mathematical formulation, 
based on Euclidean norm, is given in Eq. (3): 

CDM(P, p) =
∑n

i=1
(‖p − pi‖ )

2 (3) 

Again here, the greater the CDM measure, the better the isolation. 

2.3.2. Non-collapsing criterion 
For an optimal design, non-collapsing properties are beneficial too. 

This feature, also called the projective property, is guaranteed when each 
coordinate pk

i of every sample pi ∈ P is strictly unique. To understand 
this concept, it is useful to consider a problem where one input variable 
has almost no influence on the response function values. If two samples 
differ only in this variable, they will “collapse”, i.e., they can be 
considered as the same point evaluated twice [21]. In the context of 
expensive black box simulations, this is not desirable since it leads to 
unnecessary computational costs. Mathematically, to describe the 

Fig. 1. Classification of exploration-based sampling methods.  
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quality of a design in terms of non-collapsing property, the minus in
finity norm is used to define the minimum projected distance: 

min
pi ,pj∈P

‖ pi − pj‖− ∞ = min
pi ,pj∈P

min
1≤k≤d

⃒
⃒
⃒pk

i − pk
j

⃒
⃒
⃒ (4) 

Similar to the maxmin criterion, the higher the 
minimum projected distance, the better the non-collapsing property of a 
specific design. 

2.3.3. Granularity 
The granularity of the strategy plays a major role in the quality of the 

sampling design. Two main aspects of granularity should be highlighted. 
To begin with, an optimal granularity belongs to a sampling strategy for 
which it is not necessary to know the total number of samples in 
advance. Hence, classic one-stage sampling approaches have the worst 
possible granularity. Moreover, an ideal design should be fine-grained. 
This means that, considering a sequential sampling strategy, the best 
possible scenario is if one point is selected and added to the design at the 
end of each iteration. By contrast, a coarse-grained sequential sampling 
strategy selects large batches of design points after every iteration, 
which can lead to under- and oversampling. 

2.4. Overview of existing methods 

In Fig. 1, common DoE types and some recently published input- 
based sampling algorithms are classified according to their adaptive 
nature (one-shot or sequential approach). The goal is to distinguish 
methods that can be employed as sequential sampling strategies, i.e. to 
add new points to the initial dataset from “static” one-shot approaches. 
After a brief description, the most promising methods are tested and 
compared for different non-linear optimization problems. 

2.4.1. Factorial designs 
Factorial designs represent a category of space-filling-oriented sam

pling strategies. Full-factorial designs are d-dimensional grids of points 
evenly distributed over the domain. Having d factors (i.e., the dimension 
of the problem) and an integer m, which defines the number of levels the 
d-th level is divided into (i.e., the resolution of each input variable), a 
full-factorial design is given by md samples, where each sample is a 
specific combination of the d factors [10]. This type of DoE results in the 
best space-filling performance achievable, owing to the even distribu
tion of samples in the design space. Under the assumption that the input 
variables are equally important, a space-filling design would be an ideal 
sampling strategy in terms of design quality. However, full-factorial 
designs are extremely expensive in terms of the function evaluations 
required. The number of samples grows exponentially with the number 
of dimensions, which can be unacceptable in the field of FEM and CFD 
simulations. Additionally, a full-factorial strategy turns out to be a 
coarse-grained strategy. The total number of samples must be known in 
advance, which makes this strategy unfeasible for the sampling refine
ment typical of adaptive strategies. Furthermore, such designs are prone 
to the danger of aliasing, as discussed by [40]. Moreover, A full factorial 
design has the worst possible non-collapsing properties. By definition, 
the samples are not strictly unique, since they share their coordinates 
over the d-dimensional grid. A partial solution to handle this drawback 
is given by fractional designs. Starting from a full-factorial grid, the 
fractional designs solution brings improvements in terms of total run
time and projective properties by removing points. Nevertheless, given 
their previously highlighted disadvantages, factorial designs will not be 
considered in this study. 

2.4.2. Latin Hypercube Sampling 
Latin Hypercube Sampling (LHS), also called Latin Hypercube De

signs (LHD), are extremely useful designs of experiment in the field of 
black box optimization [9]. Their well-understood mathematical prop
erties, ease of implementation, and speed make them widely used 

sampling methods [8]. 
For a unit cube T in a d-dimensional space T = [0, 1]d divided into n 

intervals (where n is the sample size) with an equal length of 1n along 
each axis, LHS creates n equally probable intervals indexed by q = 1, ...
, n corresponding to [0,1/n),[1/n,2/n),…[(n-1)/n,1] for each dimen
sion. LHS can be represented as an n-by-d sample matrix [xi,j](i = 1, ...,
n; j = 1, ...,d), where xi,j ∈ [0, 1] such that xi,j in the j-th column belongs 
to only one interval. Therefore, q is a random permutation of {1,2, ..., n}
for each column and each row of the matrix. Given a new set of binary 
variables yq,j such that 

yq,j =

{
1
0

if there exist any i for which xi,j lies in the interval q
Otherwise (5) 

From this follows that a dataset P(n,d) is called a Latin Hypercube (i. 
e. LHS(n, d)) if the following condition is met: 
∑d

j=1
∑n

q=1yq,j

n⋅d
= 1 (6) 

The left-hand side of Eq. (6) yields a measure of how close a dataset is 
to an LHS. This value can range between 1/n (this happens when all the 
samples lie in the same interval at every dimension) and 1 (when the 
dataset is an LHD). 

According to the given mathematical definition and assuming a 
uniform distribution of the samples along every dimension, a sample is 
only “Latin Hypercube” if it possesses one-dimensional projection 
properties. Such a sample, however, is only guaranteed to maximize its 
non-collapsing properties, while the space-filling properties are not 
necessarily accounted for [35]. 

LHS with better space-filling properties can be obtained with maxmin 
LHS, which means a Latin Hypercube Design where the minimum dis
tance between two samples has been maximized. Several distance 
measures such as l∞, l1, l2 could be considered in the maxmin criterion. 
This paper focuses on the Euclidean distance since its definition is 
consistent with the formula of the space-filling criterion. A valuable 
database of pre-optimized LHSs has been published by [17,21], and [9] 
and it is available at https://spacefillingdesigns.nl. It has to be noted 
that these final designs achieved an optimal or semi-optimal solution by 
placing the samples in the middle of their intervals. In this way, the 
projected distance results are uniform along each direction. However, 
given n and d, (n!)d− 1 different LHDs can be generated. Therefore, since 
these LHDs cannot be generated in real-time (each design requires hours 
of optimization) this database is directly used within this study. Since 
the number of samples has to be known a priori, these designs are not 
applicable for adaptive approaches. 

2.4.3. Quasi-random sequences 
Quasi-random sequences, also called “low-discrepancy sequences”, 

are placed between one-stage and sequential methods in the proposed 
classification. Due to their adaptive nature, some correspond to 
sequential approaches (e.g., [19,36]), while others do not (e.g. [20]). All 
of them, however, are deterministic strategies, which means that they 
utilize deterministic routines designed for space-filling goals. To achieve 
such mathematical properties, a low discrepancy criterion is adopted, 
depending on the strategy. The discrepancy metric, defined by Ilya M. 
Sobol, is the maximum deviation between the theoretical density dt =
1
n and the point density di in an arbitrary hyper-parallelepiped (Ti) 
within the parameter space (hypercube) [5,33]. A low discrepancy of 
the design is therefore guaranteed when the two densities are close to 
proportional. 

The projective properties of quasi-random sequences are the subject 
of debate; some authors assess them as average quality [8], while others 
say that they are generally poor [35]. One point on which these authors 
agree is that unwanted correlation between the input variables might 
arise, especially in high dimensional spaces. Furthermore, their 
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space-filling properties are poor for a relatively small number of sam
ples. This can be easily shown by comparing those methods using 
maxmin radius of a (hyper) sphere with a space-filling pre-optimized 
LHS design. The maxmin radii for the three methods for a 2-dimen
sional space with 20 samples are depicted in Fig. 2. 

A further helpful visualization tool (which can also be used for space- 
filling sampling algorithms) is the description of sampling density using 
the Voronoi tessellation. Given a set of points X ⊂ Rd, for any point xi ∈

X (denoted as "generators”), the Voronoi region (or Voronoi cell) V̂ i ∈

Rd contains all the points belonging to the domain which lie closer to xi 
than to any other generator in X. The Voronoi tessellation is given by the 
complete set of Voronoi regions {V̂1, V̂2,…, V̂n} which tessellate the 
whole domain. Formally, a Voronoi and a generic tessellation are 
defined as follows. Given a set of points {xi}

n
i=1= {x1, x2,…, xn}

belonging to the closed set Ω ∈ Rn, the Voronoi region V̂ i corresponding 
to the point xi is defined by: 

V̂ i = {x ∈ Ω
⃒
⃒ |x − xi| < |x − xj|for j = 1,…, n, j ∕= i} (7) 

Given an open set Ω ∈ Rd, the set {V1,V2,…,Vn} is called a tessel
lation of Ω if Vi ⊂ Ω for i = 1,…, n,Vi ∩ Vj = ∅ for i ∕= j, and Un

i=1Vi = Ω 
[6,11]. 

In Fig. 3 the Voronoi tessellation is shown for the same sampling 
distribution depicted in Fig. 2 to emphasize its subpar space-filling 
properties. The darkness of the cells refers to their area. The darker 
the cell, the less optimal its sampling position. The colors in Fig. 3 are 
normalized between the largest and the smallest Voronoi region in each 
diagram. The diagrams show that Sobol and Halton designs do not 

guarantee an ideal uniform space distribution such as a pre-optimized 
LHS. 

Nevertheless, Sobol and Halton sequences, due to their adaptive 
nature and fine-grained refinement, will be considered in this study. 
Their implementation is already available in the numerical tool ChaosPy 
[13], which is used to assess the performance of these methods. 

2.4.4. Adaptive Latin Hypercube Sampling 
To make the approach suitable for a sequential strategy, several at

tempts to modify the original one-stage algorithm of the LHS have been 
made. Husslage presented a method to sequentially generate LHDs [21]. 
Crombecq modified it to a less coarse-grained version: Nested Latin 
Hypercubes [8]. Sheikholeslami also presented the Perfect Progressive 
Latin Hypercube Sampling (perfect-PLHS) and the Quasi Progressive 
Latin Hypercube Sampling (quasi-PLHS) [35]. The main idea behind 
these methods is the sequential LHS generation (i.e., without re-building 
a new design) by adding new slices (or layers) to an already generated 
LHS. To ensure that the sampling algorithm remains an LHS, a refine
ment of the starting grid is done at each iteration. According to the 
chosen method, at the i-th iteration ki new points (ki = ni− 1 − 1 for 
Nested Latin Hypercubes and ki = 2⋅ni− 1 for perfect-PLHS) are selected 
and added to the starting design set. Despite the above-average projec
tive properties, there are two main issues related to sequential LHS. The 
first one is related to granularity: one-grained and fine-grained strategies 
are inoperable to ensure the designs remain complete LHSs. As 
explained above, this is not ideal for time-consuming simulations, since 
it can lead to oversampling. Secondly, sequential LHSs are more likely to 
get stuck in local optima. Even if a point is optimally chosen in terms of 
space-filling and non-collapsing properties at the i-th iteration, it is not 
guaranteed that the applied sampling can provide better designs (in 
terms of the mathematically defined criteria) at the next iterative step. In 
this case, the sampling is trapped in a local optimum. Due to this limi
tation, and the expected high number of required sampling points, the 
mentioned sequential LHS are not suitable for expensive black box 
functions and will not be further investigated in this study. 

2.4.5. Global Monte Carlo methods 
Monte Carlo algorithms use the process of repeated random simu

lations to estimate unknown parameters necessary to improve response 
values. Regarding adaptive sampling, these methods are often used to 
discretize the domain (or portions of it) by means of many candidate 
points. Thus, given a design space containing infinite points, the prob
lem is simplified by considering a finite set. These points are then 
compared based on a given criterion, and a selection is used for defining 
the next sample location(s). These random points might be very useful 
for making predictions or gathering information about the design space. 
Below, two state-of-the-art sequential Monte Carlo methods published 
by [8] are investigated. 

The first algorithm is the mc-inter-proj (MIP), which aims at maxi
mizing the objective function in Eq. (8): 

Fig. 2. Comparison of low-discrepancy sequence (Halton and Sobol) with a pre- 
optimized LHS (20 samples). The minimum distance for each design is high
lighted as a circumference with radius equal to the Euclidean distance between 
the two closest samples. 

Fig. 3. Voronoi tessellation for a pre-optimized LHS, a Halton, and a Sobol design respectively.  
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MIP (P, p) =
̅̅̅̅̅̅̅̅̅̅̅
n + 1d

√
− 1

2
min
pi∈P

‖pi − p‖2 +
n + 1

2
min
pi∈P

‖pi − p‖− ∞ (8)  

where P is the set of the previously evaluated samples, p is a new 
candidate point, d is the dimension of the problem, and n is the size of 
the design, respectively. At each iteration, depending on the current 
number of samples n,100n random candidate points are generated. 
Among them, the point which maximizes the objective function is 
selected as the new sample to be included in the sample set P. Note that 
both the definition of the space-filling criterion Eq. (1) and the definition 
of the non-collapsing criterion Eq. (4) affect the outcome of this formula 
and are scaled according to n and d. 

A more efficient and improved version of this function is obtained by 
replacing the projected distance function with a threshold function. 
Since such an objective function is challenging to maximize, the main 
idea behind the mc-inter-proj-th (MIPT) method is the simplification of 
this complex function by discarding candidates which lie too close to 
each other. The remaining points are then ranked on their intersite 
distance. Therefore, the threshold version of this Monte Carlo method 
changes as follows: 

MIPT(P, p) =

⎧
⎨

⎩

0 if min
pi∈P

‖ pi − p‖− ∞ < dmin

min
pi∈P

‖ pi − p‖2 if min
pi∈P

‖ pi − p‖− ∞ ≥ dmin
(9)  

where the threshold dmin is defined by a tolerance parameter α in which 
has a domain of [0, 1]: 

dmin =
2α
n

(10) 

The tolerance parameter α defines the balance between the space- 
filling and non-collapsing properties. Low values of α lead to a reduc
tion of the projected distance constraint. Therefore, fewer candidates are 
discarded. On the other hand, high values of α result in a strict constraint 
to be satisfied. This reduces the chance of finding a valid candidate. 

As shown in Fig. 4, the choice of an optimal α is considerably affected 
by the dimensionality of the problem. Therefore, it should be adjusted to 
fit the problem being investigated to achieve optimal performance. A 
simple approach to handle this issue will be proposed in Section 2.5.1. 

2.5. Proposed approaches 

In this section, a simple empirical method to mitigate the issue 
related to the tuning of α in MIPT is presented. Scaling this parameter 
accordingly to the dimensionality of the problem is necessary to ensure 
the best trade-off between space-filling and projective properties. 

Furthermore, two new adaptive sampling methods will be proposed 
in this section. As explained in the dedicated section, LHDs have well- 
known mathematical properties. The goal of these two proposed 
methods is to provide two adaptive algorithms that can resemble an LHS 
as much as possible, but with optimal granularity. Additionally, unlike 
MIPT, it is intended to provide methods that are completely independent 

of parameter choice. The proposed approaches are called Fluttering 
perfect-Progressive Latin Hypercube Sampling (FpPLHS) and Monte 
Carlo quasi-Latin Hypercube Sampling (MqPLHS). These methods are 
inspired by the perfect-PLHS and quasi-PLHS respectively, presented by 
[35]. 

It is worth pointing out from the beginning that both of these 
methods cannot be classified as LHS because they do not guarantee the 
dataset at each iterative step to be an LHS. However, they tend to 
approach the properties of an LHD as closely as possible and both 
guarantee the granularity of one. 

2.5.1. Tuning of parameter α for MIPT 
In this section, the choice of the parameter α is further investigated 

and an empirical method for its selection is proposed. Although this 
issue has not been discussed in detail by its authors, the choice of the 
α-parameter is directly influenced by the dimensionality of the problem. 
There are two main reasons for why alpha needs to be tuned. 

Firstly, according to Eqs. (9) and (10), a careless choice of α could 
lead to all points being rejected. Excessively high values of α aim to find 
candidates with optimal projective properties. However, keeping in 
mind that points are randomly generated, there is no guarantee that 
there is at least one point that will satisfy this condition. 

The second reason why proper tuning of α is important is given in 
Fig. 4. As discussed in the previous section, the ideal trade-off between 
projective and space-filling properties varies depending on the dimen
sionality of the problem. The intuition of why α depends on the 
dimensionality is that the potential for intersite- and projected distance 
increases with the dimension. The threshold intersite distance depends 
on α, therefore α has to depend on the dimensionality to ensure that 
intersite- and projected distance have consistent influence on the point 
selected as the dimension changes. 

The intuition behind adjusting the alpha parameter is self-evident in 
Fig. 4. Despite the differences found when varying the dimensionality, 
the trend of both the projective- and intersite distance looks consistent. 
In particular, in each of the three cases shown, the ideal trade-off be
tween the non-collapsing and space-filling properties is roughly in the 
middle of the x-axis (i.e. α). More precisely, the optimal value of α seems 
to be halfway between 0 and the maximum alpha value (hereafter called 
αmax for simplicity) such that at least one candidate point satisfies the 
threshold of Eq. (9). This suggests that αmax should first be calculated 
and then α should be set equal to αmax/2. To calculate αmax, it is neces
sary to find the candidate point that guarantees the maximum projective 
distance first. By reversing Eq. (10) and replacing dmin with the 
maximum projective distance calculated from the candidate points, αmax 
is obtained. 

Fig. 5 illustrates the improvements brought by the proposed empir
ical approach. The conventional MIPT approach with α fixed (values 0.1, 
0.125, and 0.15 are considered) is compared to the modified approach 
where α is automatically adjusted (“alpha tuned” in Fig. 5). The value of 
the intersite- and projective distance is shown as the dimensionality of 
the problem changes. In both graphs, starting from an optimal dataset of 

Fig. 4. Influence of the tolerance parameter α on intersite – and projected distance for a two, five, and ten-dimensional problem with 20 samples.  
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size 10⋅d, a maximum estimate of the two values is represented by the 
path with a ticked style in black. This line was estimated using the 
maximum value among 1000⋅d random points in the domain. In other 
words, this line marks the boundary between the feasible (below the 
line) and unfeasible region (above the line) given by purely geometrical 
constraints. In both graphs, the solid red line looks like an optimal so
lution as dimensionality varies. This line stays relatively close to the 
maximum estimate, while maintaining a certain safety margin. On the 
contrary, observing the graph of the projective distance, it is clear that 
the black curve decreases faster than the three curves with alpha fixed. 
This will unavoidably lead these three curves to cross the unfeasible 

region as dimensionality increases. As for the intersite distance, better or 
comparable performance is achieved on average by the automatic 
adjustment of α. For the above reasons, the approach proposed here 
seems to optimally balance projective- and space-filling properties and 
will therefore be used for further testing. 

2.5.2. Fluttering perfect-Progressive Latin Hypercube Sampling (FpPLHS) 
The first algorithm presented here stems from the main idea of the 

perfect-PLHS. This approach guarantees an LHS at each iteration ac
cording to a doubling procedure. This means that, starting from an 
initial sample size with P0 with n0 samples, the first iteration will add a 

Fig. 5. Comparison of the MIPT strategy with automatically adjusted alpha and fixed alpha: Intersite- (left) and projective distance (right).  

Fig. 6. Iteration steps of the FpPLHS method for a dataset with n0 = 4 and d = 2.  

P. Lualdi et al.                                                                                                                                                                                                                                   

74 4.1. Publication I



Journal of Computational Science 60 (2022) 101603

8

new LHS with n0 samples to the existing dataset. Similarly, in the next 
iteration 2n0 new samples will be added, bringing the dataset P2 to have 
n2 = 4n0 total samples. This implies that the size of the dataset Pj grows 
geometrically as n0⋅2j. Due to the coarse granularity, this approach is not 
suitable for investigating expensive black box functions such as FEM or 
CFD simulation. Therefore, with the help of the example shown in Fig. 6, 
the steps of the FpPLHS approach are illustrated below.  

• Step 1: Divide the domain into equal intervals according to the 
number of samples n0 = 4.  

• Step 2: Split each interval equally to get 2n0 = 8 intervals along each 
variable.  

• Step 3: Prune the intervals that are already covered by existing 
samples along each variable.  

• Step 4: Generate at least 10⋅nj independent space-filling LHS (or 
slices) in the residual domain gaps.  

• Step 5: Take the slice that, when added to the existing dataset, 
maximizes the space-filling properties according to the formula Eq. 
(1).  

• Step 6: Sort the points of the added slice according to the Crowding 
Distance Metric Eq. (3). Each point of the slice will be added to the 
dataset according to this final order. 

To ensure a one-grained strategy, the dataset “flutters” between one 
LHS and the next one, with intermediate steps not guaranteed to be an 
LHS. Compared to perfect-PLHS, in this approach, the good projective 
properties of LHS are balanced by the improvement of space-filling 
properties ensured by steps 4–5. Step 6 helps to avoid populating 
already densely populated regions and avoid undesired correlations 
with existing samples. Finally, by considering 10∙nj Latin Hypercube 
slices at each new iteration, a fairly efficient approach even for large 
datasets in high dimensional problems is ensured. Namely, once the slice 
that maximizes the space-filling properties is identified, sorting the 
points according to CDM is a computationally inexpensive operation. 

2.5.3. Monte Carlo quasi-Latin Hypercube Sampling (MqPLHS) 
A Monte Carlo approach to the quasi-PLHS is presented in the 

following. The main idea of this algorithm is based on the left side of Eq. 
(6). Indeed, the generation of sequential Latin Hypercube can be seen as 

the following optimization problem: 

flhs : max

(∑d
j=1
∑n

q=1yq,j

n⋅d

)

(11) 

Starting from an initial Latin Hypercube LHS(n, d), n * 100 random 
points are generated. When possible, it would be recommended to start 
with an optimized LHS if one is available. For each of the generated 
candidate points, the objective function of Eq. (11) is evaluated 
assuming this candidate is added to the initial dataset. Multiple candi
date points can produce the same result for the objective function. 
Therefore, a list containing all points that maximize the objective 
function is returned. Among the remaining candidates, the one that, 
combined with the initial dataset, guarantees the best space-filling 
properties according to Eq. (1) is finally chosen. The pseudo-code of 
MqPLHS is described in detail below. 

It is reasonable to expect that there will be several duplicates that 
maximize the objective function at each step. As a matter of fact, there 
may be more than one ideal interval to add a point to so that the design 
approaches the properties of a Latin Hypercube Design as closely as 
possible. This step is key in reducing the candidate pool and ensuring 
that the one that maximizes space-filling properties is chosen efficiently. 

It is worth mentioning that this method is essentially a greedy heu
ristic algorithm. This means that the choice of the ideal candidate 
maximizes the objective function only locally at a given iteration step. 
Unlike method MqPLHS, the global maximum, i.e. having the objective 
function equal to one, is not guaranteed to be reached. 

For verification, classic and pre-optimized LHSs are going to be 
investigated as one-shot sampling approaches. Concerning adaptive 
methods, Sobol, Halton, MIP, and MIPT will be considered. 

3. Verification and discussion 

3.1. Evaluation of the results 

The sampling methods presented in the previous section are evalu
ated in terms of space-filling, non-collapsing, and granularity properties. 
For this preliminary testing phase (Section 3.4), three different design 
spaces are considered (2-,5- and 10-dimensional domain), to investigate 
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the influence of the dimensionality of the problem and size of the dataset 
on the performance of each algorithm. The size of the DoE is set to 10 
samples per input parameter (n = 10⋅d) as recommended by [34] and 
[24]. The MIP, MIPT, FpPLHS and MqPLHS sampling methods start from 
a 10-sample, pre-optimized Latin Hypercube design. Each test is 
repeated 30 times to identify 95% confidence interval bandwidths due 
to their stochastic nature. The most promising methods are then tested 
on several benchmark functions (Section 3.5) and on a highly non-linear 
FEA problem for verification (Section 3.6). 

3.2. Analytical test functions for optimization 

To test the performances of the investigated sampling methods, six 
two-dimensional benchmark tests are investigated. The formulae of the 
functions are listed below. 

Shubert 2D 

f (x) = (
∑5

i=1
icos((i + 1)x1 + 1)(

∑5

i=1
icos((i + 1)x2 + 1)), x1,2 ∈ [− 2, 2]

(12) 

Ackley 2D 

f (x) = − 20e

(

− 0.2*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

∑2
i=1

x2
i

√
)

− e

(

1
2

∑2
i=1

cos(2πxi)

)

+ 20 + e, x1,2 ∈ [− 5, 5]
(13) 

Rosenbrock 2D 

f (x) = 100
(
x2 − x2

1

)2
+ (x1 − 1)2

, x1,2 ∈ [− 2, 2] (14) 

Michalewicz 2D 

f (x) = −
∑2

i=1
sin(xi)sin20

(

i
x2

i

π

)

, x1,2 ∈ [0, 4] (15) 

Sphere 2D 

Fig. 7. Comparison of the objective function flhs value between FpPLHS and MqPLHS.  

Fig. 8. Two-dimensional Shubert, Ackley, Rosenbrock, Michalewicz, Sphere, and Zakharov function.  
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f (x) =
∑2

i=1
x2

i , x1,2 ∈ [− 5, 5] (16) 

Zakharov 2D 

f (x) =
∑2

i=1
x2

i + (
∑2

i=1
0.5ixi)

2
+ (
∑2

i=1
0.5ixi)

4
, x1,2 ∈ [− 10, 10] (17) 

The analytical functions listed above are often used as benchmark 
functions for optimization problems. According to the classification 
proposed by Winston [39], these functions can be grouped in terms of 
features, such as modality, valleys, separability, and dimensionality. 
These features are shortly summarized below.  

• Modality: A function with more than one local optimum is called 
multimodal, otherwise it is called unimodal. 

• Valleys: Functions where a narrow area of little change is sur
rounded by regions ofsteep descent  

• Separability: This is a measure of the difficulty in optimizing a given 
benchmark function. In the literature different definitions of sepa
rability are given [4,32]. Generally speaking, functions that present 
inter-relations between variables are non-separable.  

• Dimensionality: number of dimensions (or variables) of a given 
function 

The choice of the presented six benchmark functions (Group 1) was 
made based on the features outlined in the work of [1,22], and [29]. 

To begin with, the Shubert function is a multimodal uniformly 
waving function and has several local minima. Similarly, the Ackley 
function is also a multimodal function with many local minima but is not 
separable. Moreover, the Ackley function is perfectly symmetric to each 
of its variables. This function is highly nonlinear and is characterized by 
a nearly flat outer region and a large hole at the center leading to its 
global minimum. Rosenbrock function is a unimodal, non-separable 
function, which has a single, nearly flat valley at the center. It is often 
used to test gradient-based optimization algorithms because of the 
flatness of the valley. The Michalewicz function has a number of local 
minima equal to the dimensionality of the function itself. The area 
containing the minima is very small compared to the entire search space. 
This means that this function has very steep ridges comparable to 
mathematical discontinuities. On the contrary, the Sphere function is 
separable, convex, and unimodal. Finally, the Zakharov function is a 
plate-shaped function without local minima except the global one. This 
function is multimodal and non-separable. Fig. 8. 

Because of the “curse of dimensionality”, most of the metamodeling 
techniques and optimization algorithms are generally affected by the 

increasing dimensionality of a problem. According to [39] and [41], as 
the number of dimensions increases, the search space increases expo
nentially. This could be a relevant barrier for some sampling techniques 
as well. 

For the above reasons, it is worth investigating the performance of 
the sampling algorithms in problems with different dimensionality. The 
Ackley, Rosenbrock, and Sphere functions are investigated also in a 5-, 
10- and 30-dimensional design space (Group 2). The generic d-dimen
sional formulae are given below. 

Ackley d-D 

f (x) = − 20e

(

− 0.2*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
d

∑d

i=1
x2

i

√
)

− e

(

1
d

∑d

i=1
cos(2πxi)

)

+ 20 + e, x1,…,d ∈ [− 5, 5]
(18) 

Rosenbrock d-D 

f (x) =
∑d− 1

i=1
[100(xi+1 − x2

i )
2
+ (xi − 1)2

], x1,…,d ∈ [− 2, 2] (19) 

Sphere d-D 

f (x) =
∑d

i=1
x2

i , x1,…,d ∈ [− 5, 5] (20) 

A comprehensive listing of the benchmark functions considered is 
summarized in the table below. Table 1. 

3.3. Test scheme 

As a pre-processing step, the initial domain is linearly scaled to the 
hypercube [0, 1]d. As for adaptive methods, a space-filling LHS is used as 
the starting dataset, which is subsequently refined until the maximum 
number of allowed samples has been reached. This choice is aimed at 
having a fair comparison with one-stage methods. Nevertheless, for 
optimal performance, it would be ideal to start with a pre-optimized 
LHD whenever applicable. At each iteration, a metamodel is trained 
on the available samples. To prove that the performances of the sam
pling strategies are independent of metamodeling techniques, two 
regression models are investigated: Kriging or Gaussian Process (GP) 
and Support Vector Regression (SVR). Kriging is employed with a 
Rational Quadratic kernel while the SVR method with a Radial Basis 
Function kernel. A detailed description of GP and SVR can be found in 
[12,31] and [3,18] respectively. A schematic overview of the procedure 
used for numerical evaluation of sequential methods is represented by 

Table 1 
Summary of benchmark functions.  

Group Benchmark function Domain Number of variables Description 

Group 1 Shubert 2D [ − 2, 2]2 2 Multimodal, high nonlinearity 
Ackley 2D [ − 5, 5]2 2 Multimodal, high nonlinearity, symmetric 
Rosenbrock 2D [ − 2, 2]2 2 Unimodal, valley-shaped 
Michalewicz 2D [0,4]2 2 Multimodal, steep ridges 
Sphere 2D [ − 5, 5]2 2 Unimodal, bowl-Shaped, symmetric 
Zakharov 2D [ − 10,10]2 2 Unimodal, plate-Shaped 

Group 2 Ackley 5D [ − 5, 5]5 5 Medium dimensionality 
Rosenbrock 5D [ − 2, 2]5 5 Medium dimensionality 
Sphere 5D [ − 5, 5]5 5 Medium dimensionality 
Ackley 10D [− 5, 5]10 10 High dimensionality 
Rosenbrock 10D [− 2, 2]10 10 High dimensionality 
Sphere 10D [− 5, 5]10 10 High dimensionality 
Ackley 30D [− 5, 5]30 30 High dimensionality 
Rosenbrock 30D [− 2, 2]30 30 High dimensionality 
Sphere 30D [− 5, 5]30 30 High dimensionality  
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the flow chart in Fig. 9. 
Concerning the benchmark functions, in order to evaluate the ac

curacy of the regression model, the Root Mean Square Error (RMSE), 
defined in Eq. (21), is employed. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
t

∑t

i=1
(f (xi) − f̃ (xi) )

2

√

(21) 

f is the true function, ̃f is a metamodel built on the current samples 
and t represents the number of randomly spread test points (here 5000⋅ 
d) in the domain. Although this measure is quite accurate, it is not 
applicable for expensive black box functions such as FEM simulations. 

The RMSE results are compared with the RMSE of a one-stage LHS, 
which is one of the most widely used sampling strategies for dealing 
with expensive black box optimizations. Since pre-optimized LHDs are 
not available for every combination of dimensions and sampling points, 
the best space-filling design from 1000∙d Monte Carlo-based LHS design 
is considered. Non-collapsing properties are not expressly optimized, 
but keep in mind that the LHDs already benefit from good projective 
properties by definition. The results are marked as sf-LHS. This sampling 
strategy is also the same one that is used to generate the initial dataset 
for adaptive methods. 

Python 3.8 is the programming language used to get the results. 

3.4. Results 

The resulting mathematical properties are summarized in Fig. 10. 
Regarding MIPT, the parameter α is automatically tuned using the 
approach proposed in Section 2.5.1. The following design spaces were 
investigated:  

▪ 2-dimensional design space with 20 samples  
▪ 5-dimensional design space with 50 samples  
▪ 10-dimensional design space with 100 samples 

It is worth mentioning that the bar plots in Fig. 10 are solely 
dependent on the dimensionality of the domain and the size of the 
dataset. They are therefore unaffected by the problem investigated. 

The pre-optimized LHD outperforms any other algorithms in inter
site- and projected distance, which is expected, since these designs have 
been intensively optimized, and the number of samples is known a 

priori. However, this relevant information is often not available up- 
front. On the other hand, adaptive methods are specifically designed 
to be unrelated to the size of the DoE. If this information is available, 
pre-optimized LHS should be the first choice for sampling. 

Mc-intersite-proj-th confirms its potential as a powerful sequential 
algorithm. The investigation shows that it outperforms mc-intersite-proj 
with respect to the selected mathematical criteria. This also suggests that 
the automatic adjustment of the α parameter appears to work appro
priately as the dimensionality of the problem changes. 

As for the new methods proposed in Section 2.5, they show on 
average great space-filling properties. The projective properties are, 
however, relatively poor. This makes sense since the projective prop
erties have not been explicitly optimized. Note that the proposed designs 
are very close to LHDs and have very similar desirable mathematical 
properties as a result. Furthermore, these methods are on average 
comparable to, if not slightly preferable to, one-stage LHDs. 

As far as low-discrepancy sequences are concerned, the Sobol 
method shows very good projective properties. Among the samplings 
investigated here, it has the second-best non-collapsing properties by a 
clear margin, regardless of the dimensionality of the problem and the 
number of samples. However, especially for a problem with a small 
number of samples, its space-filling properties are relatively poor, even 
when compared to Halton sampling. 

Randomly generated LHSs showed the poorest performance. Apart 
from the slight improvement in terms of intersite distance offered by the 
improved Monte Carlo-based version (sf-LHS), the random distribution 
of samples in the grid intervals makes the non-collapsing properties 
mediocre, which is quite unusual for Latin Hypercube Designs. More
over, this can be seen as unfavorable in practical applications such as 
crashworthiness and optimizations where certain input variables have 
varying effects on response results. 

3.5. Application on the benchmark functions 

Due to their simple and efficient generation, LHSs are (and will likely 
remain) the most widely used one-shot sampling approaches. Therefore, 
a deeper study is conducted on benchmark functions (presented in 
Section 3.2) to compare the sf-LHS with the most promising adaptive 
sampling method, i.e. MIPT. To provide a basis for comparison, the new 
FpPLHS and MqPLHS methods are also included. They could offer a 
viable alternative when it is expressly desired to have a quasi-LHD. Also, 
since they are independent of any parameter tuning, there is interest in 
seeing their performance for medium to high dimensionality. 

By way of example, in Fig. 11, the RMSE curves obtained for the 2D 
Zakharov function are shown. The two metamodeling techniques, GP 
and SVR are depicted on the left and the right respectively. After some 
initial adjustment iterations, the RMSE error of the sequential methods 
decreases gradually, regardless of the adaptive method and metamod
eling technique chosen. All three adaptive methods outperform the sf- 
LHS method in terms of both mean error (smaller) and interval bands 
(much narrower). The MIPT algorithm delivers the best performance by 
far in this benchmark function, further corroborating the tests observed 
in Section 3.4. Even FpPLHS and MqPLHS yield encouraging results in 
terms of mean error, but with slightly wider confidence intervals than 
MIPT. The average RMSE value of the FpPLHS method also shows a 
sporadic trend that seems to resemble the frequency of the objective 
function observed in Fig. 7. By taking the worst result among the 
adaptive methods, an improvement of about 19% and 9% at the final 
stage is still guaranteed for GP and SVR respectively. 

This result underlines the potential of sequential methods, especially 
since the final number of samples does not have to be known in advance. 
Additionally, the shape of the convergence curve shows a flattening 
characteristic on average after 65–70 iterations. Also, the standard de
viation value remains relatively small. These are ideal properties for the 
application of a cut-off convergence criterion. 

A further example of a challenging benchmark function where the 

Fig. 9. Flow chart for the numerical evaluation of sequential sam
pling methods. 
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benefits of adaptive methods are less obvious is given by the 2D Ackley 
function. 

As shown in Fig. 12, albeit to a smaller extent, adaptive methods 
outperform the sf-LHS method in each way, particularly in terms of 
confidence intervals. The convergence rate is not as clear as in the 
previous function. This is most likely due to the difficulty of the 

metamodels in matching the numerous local minima of this function 
with so few samples available. In addition, the notable difference be
tween the two metamodeling techniques is probably due to the greater 
ease of Kriging in approximating the high non-linearities. Because this 
function is perfectly symmetric and uniformly wavy, the differences 
between the sampling strategies are less evident. Theoretically, space- 

Fig. 10. Intersite and projected distance in 2-, 5-, and 10-dimensional design spaces with 20,50, and 100 samples respectively.  
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filling properties are preferred over projected properties to achieve 
adequate accuracy results within this benchmark function. 

To convince the reader of the better accuracy achieved by the 
adaptive methods in this function, a further visualization of the meta
models is provided in Fig. 13. The GP metamodels for an sf-LHS and 
MqPLHS design are shown in a [ − 1, 1]2 with 30 samples. White dots 
represent initial samples that were used with a one-shot method (here sf- 
LHS). The green points instead are the result of a refinement of suc
cessive iterations of the MqPLHS method. The colormap used shows the 
trend of the absolute error compared to the real function: the more a 
region is colored red, the greater the error in that part of the function. 

The same visualization can be equally appreciated for other bench
mark functions, other sampling methods, error metrics, and metamod
eling techniques. For example, Fig. 14 shows the SVR-approximation of 
the Rosenbrock function with 30 samples in the [ − 2, 2]2 domain. Sf-LHS 
and MIPT are compared. To ideally scale the values, here the colormap 

accounts for the square root of the absolute error (RAE). 
Since it is not feasible to draw general conclusions from only a few 

functions, all benchmark functions presented in Section 3.2 are tested 
with both GP and SVR regression methods. The results are shown in 
Figs. 15–22. 

A first remark concerns the two metamodeling techniques used. 
Regardless of the function used and the dimensionality of the problem, 
the results seem consistent between the two regression methods. This 
suggests that adaptive sampling methods have some benefits over a one- 
stage approach such as sf-LHS independently of the metamodeling 
technique. Therefore, the comments that follow will apply to both GP 
and SVR. 

Although with different performances, all three proposed adaptive 
methods clearly outperform space-filling LHS in two dimensions. MIPT 
confirms its superiority in terms of convergence speed, RMSE values, 
and confidence intervals. This performance is very close to the one 
exhibited by MqPLHS. In particular, MqPLHS results are completely 

Fig. 11. RMSE error of adaptive methods MIPT, FpPLHS, MqPLHS (solid lines) and sf-LHS (bar plot) over sample size for the 2D Zakharov function with Gaussian 
Process (left) and SVR (right) metamodels. 

Fig. 12. RMSE error of adaptive methods MIPT, FpPLHS, MqPLHS (solid lines), and sf-LHS (bar plot) over sample size for the 2D Ackley function with Gaussian 
Process (left) and SVR (right) metamodels. 
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comparable and at times slightly superior in the Shubert and Michale
wicz functions. As a bit of a surprise compared to the tests in Section 3.4, 
FpPLHS shows the poorest and most fluctuating performance of these 
three sampling methods. A final plateau is reached in every function, 
further confirming that a stopping algorithm would be ideal. 

As the dimensionality of the problem grows, the difference between 
the adaptive methods and sf-LHS tapers off sharply, especially for the 
MIPT and FpPLHS methods. This is most likely due to the so-called 
"curse of dimensionality" effect that affects not only regression models 

[38] but also sampling methods [14]. In this regard, the MqPLHS 
method seems to be the method that succeeds to cope with this issue the 
best. The difference in performance at the final stage (i.e., after 350 
samples) in problems with 30 variables is remarkable (up to 14.3% 
improvement). Furthermore, with increasing dimensionality, the flat
ness of the observed plateau also decreases. This is indeed a factor to 
consider when implementing the stopping algorithm. 

Fig. 13. Comparison of the absolute error (AE) of the Ackley function with 30 samples using sf-LHS (on the left) and MqPLHS (on the right) sampling methods.  

Fig. 14. Comparison of the absolute error (AE) of the Rosenbrock function with 30 samples using sf-LHS (on the left) and MIPT (on the right) sampling methods.  
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3.6. Application on a crash-box optimization 

A final verification test with respect to the sampling strategies under 
consideration is carried out on a generic structural component subject to 
highly non-linear deformations. A crash box, shaped as a square-based 
pyramidal frustum, is compressed by a rigid plane impacting in the 
vertical direction. As boundary conditions, the velocity of the rigid body 
is fixed to a constant value of 75 mm/s, and the main base of the py
ramidal frustum is tied to a rigid plate. The impact between the crash 
box and the rigid plane is investigated for 0.07 s. The FEM model is 
composed of 2880 shell elements. The simulation is performed with the 

explicit solver LS-DYNA using 4 CPUs of an Intel Xeon W-2135 (8.25 M 
Cache, 3.70 GHz) processor. The complete computational time for a 
single solver run is roughly 76 s. 

As shown in Fig. 23, the crash box is vertically partitioned into three 
parts (colored in three different colors, respectively). The thickness of 
each part is used as the input variable. The mass of the structural 
component is the objective function, and the absorbed internal energy is 
set as a constraint function. Since optimization is beyond the scope of 
this paper, only the estimated model accuracy of these two functions is 
considered to evaluate the performances of the investigated sampling 
methods. Due to computational time restrictions, the application of each 

Fig. 15. 2-dimensional benchmark functions modeled with GP.  

Fig. 16. 2-dimensional benchmark functions modeled with SVR.  
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Fig. 17. 5-dimensional benchmark functions modeled with GP.  

Fig. 18. 5-dimensional benchmark functions modeled with SVR.  

Fig. 19. 10-dimensional benchmark functions modeled with GP.  

Fig. 20. 10-dimensional benchmark functions modeled with SVR.  
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sampling strategy is repeated 5 times, and LHS is only computed with a 
step-size of 10 samples. 

Here, the error metric formula of Eq. (21) is slightly modified by the 
employment of k-Fold Cross-Validation (k = 10). In this way, there is no 
longer a need to evaluate 5000⋅d random points (barely feasible when it 
comes to FEM simulations). The samples of the dataset can be re-used 
through an appropriate train-test split strategy. The readjusted for
mula of this error metric, denoted by RMSECV, is shown in Eq. (22): 

RMSECV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k
∑k

i=1
(f (pi) − f̃ (pi) )

2

√
√
√
√ (22)  

3.7. Discussion of the simulation results 

For the crash box optimization, two response functions are required: 
the total mass of the component (objective function), and the internal 
energy at the final stage (constraint function) i.e., the absorbed energy 

Fig. 21. 30-dimensional benchmark functions modeled with GP.  

Fig. 22. 30-dimensional benchmark functions modeled with SVR.  

Fig. 23. from left to right: undeformed crash box with impacting rigid body, undeformed crash box at t = 0.0s and deformed crash box at t = 0.07s..  
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during the deformation process. Since the mass of the component is 
linearly dependent on the thickness of the parts, the associated surrogate 
model can be accurately approximated. The total mass can be expressed 
by the following function: 

mtot = ρ1⋅V1 + ρ2⋅V2 + ρ3⋅V3 = ρ1⋅A1⋅t1 + ρ2⋅A2⋅t2 + ρ3⋅A3⋅t3 (23)  

where ρi,Vi,Ai, ti for i = 1,2, 3 stands for density, volume, area, and 
thickness of the i-th part, respectively. The areas of the parts and the 
densities of the material are constant. In this case, a linear surrogate 
model could deliver a more accurate approximation of the objective 
function than GP or SVR. Therefore, the focus is only on the internal 
energy response function. The comparison in Fig. 24 shows that the 
adaptive sampling outperforms the one-shot approach, both in terms of 
standard deviation and average error. Even if, at the final stage, the 
improvement is limited, the adaptive sampling strategy reaches a 
plateau, which suggests that additional iterations will not lead to sig
nificant improvements. This obtained information can be fed into a 
convergence criterium to stop the Design of Experiments after a certain 
quality of the surrogate model is reached. This can avoid unnecessary 
solver runs, which reduces the computational costs, and can support the 
automated development process of numerical problems. However, note 
that the cross-validation error curve is noisier in this case. This might 
make it challenging to apply an effective halting criterion for an early 
termination of the sampling process. 

4. Conclusions 

Within the range of exploration-oriented sampling methods, 
sequential and one-stage approaches were investigated. The results 
confirm that sequential methods, under certain circumstances, provide 
an ideal sampling strategy, compared to the classic one-stage sampling 
methods, such as Latin Hypercubes. On the one hand, the results in terms 
of metamodel accuracy are generally improved. On the other hand, 
adaptive methods enable us to evaluate the quality of the surrogate 
model at each iteration step, which can be used for the application of a 
convergence criterion to stop the sampling process. By applying a 
convergence criterion, critical under- and oversampling phenomena can 
be avoided. 

Regarding the three mathematical criteria selected for the evaluation 

of a sampling method (space-filling properties, non-collapsing proper
ties, and granularity), the simplified version of the adaptive algorithm 
that aims to optimize both space-filling and non-collapsing properties 
(MIPT) provided optimal results overall. The empirical method pro
posed to automatically adjust the α parameter seems to cope well with 
dimensionality variations. This ensures that an optimal trade-off be
tween space-filling - projective properties is achieved and that the al
gorithm always returns acceptable solutions. 

FpPLHS and MqPLHS were proposed with the aim of providing fine- 
grained approaches that could emulate an adaptive LHS method as 
closely as possible. 

Whenever the number of samples should be known a priori, the best 
sampling strategy would be the pre-optimized LHS. It outperformed any 
other sampling method in terms of either projected- or intersite distance. 
However, they have been extensively optimized for several hours, and 
they are not available for certain design space dimensions and dataset 
sizes. This considerably limits their application but does not exclude 
them from being used as initial designs of sequential methods. On the 
contrary, classic LHS has shown low performance in the field of space- 
filling and only moderate non-collapsing properties. Unoptimized LHS 
should therefore be avoided. 

The verification tests on the benchmark functions partially confirm 
the expectations that arose from the criteria considered. More stable and 
more robust results are generally observed for sequential sampling 
strategies. Smooth curves featuring flattening plateaus allow the 
implementation of a convergence criterion to avoid expensive and un
necessary solver runs. Again here, especially for small and medium 
dimensional problems, MIPT showed great performance in terms of 
convergence rate, RMSE, and confidence interval. 

MqPLHS has shown very promising results, especially in high- 
dimensionality problems. In functions with 30 variables, it seems to be 
the sampling method least affected by the "curse of dimensionality". An 
improvement of RMSE up to roughly 14% was observed in the final stage 
compared to the other adaptive methods. The FpPLHS method, on the 
other hand, showed a relatively poor performance compared to the other 
two sequential methods, but still superior to the sf-LHS. Nonetheless, 
FpPLHS has a very simple implementation, is efficient in generating 
datasets for medium- and high-dimensionality problems (d ≥ 10), and 
guarantees exact LHD at some stages, following the evolution of an 

Fig. 24. MRSE error of mc-intersite-proj-th (solid line) and sf-LHS (bar plot) for the crash box crushing test dependent on the sampling size.  
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exponential series. 
For verification, these methods are applied to the optimization of a 

crash box in the explicit simulation environment. The adaptive sampling 
methods show a good performance in terms of average error. The final 
plateau of the error curve obtained is the most interesting aspect of the 
adaptive sampling strategy. By applying a convergence criterion, a sig
nificant number of solver calls can be saved depending on the method 
considered. Especially in the field of crash simulations, where every 
iteration is usually computationally expensive, adaptive methods can 
significantly reduce the computational costs and avoid critical under
sampling, which can make a subsequent optimization challenging. 
However, the cross-validation error curve is in this case noisier, which 
demands an appropriate stopping criterion that can deal with this po
tential issue. 

The following problems are the object of future research. First, a 
suitable and effective convergence criterion that can successfully deal 
with noisy error curves is also required. This halting algorithm will 
probably have to consider: the variation of the error throughout itera
tions (strongly influenced by the dimensionality of the problem), an 
upper limit for the number of samples, and a possible accuracy target if 
known upfront. 

It would be worthwhile to further test the potential of MqPLHS in 
high-dimensional problems and with more engineering applications. 
Furthermore, FpPLHS and MqPLHS could be further improved by 
explicitly optimizing the projective properties to some extent. One focus 
of future research will certainly be aimed at comparing exploration- 
based and hybrid strategies for single and multi-response systems. 
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[14] A.I.J. Forrester, A. Sóbester, A. Keane, Sampling Plans in Engineering Design via 
Surrogate Modelling, John Wiley & Sons, 2008. 

[15] I.M. Fukuda, C.F.F. Pinto, Cd.S. Moreira, A.M. Saviano, F.R. Lourenço, Design of 
experiments (DoE) applied to pharmaceutical and analytical quality by design 
(QbD), Braz. J. Pharm. Sci. (2018). 

[16] S. Garud, I. Karimi, M. Kraft, Smart sampling algorithm for surrogate model 
development, Comput. Chem. Eng. (2017). 

[17] A. Grosso, A. Jamali, M. Locatelli, Finding maximin latin hyper- cube designs by 
iterated local search heuristics, Eur. J. Oper. Res. 197 (2009). 

[18] S. Gunn, Support vector machines for classification and regression, ISIS Tech. Rep. 
(1998). 

[19] J. Halton, G. Smith Radical inverse quasi-random point sequence, Algorithm 247 
Commun. ACM 1964. 

[20] J.M. Hammersley, D.C. Handscomb, The general nature of Monte Carlo, Methods 
Monte Carlo Methods (1964). 

[21] Husslage, B.G. M.: Maximin designs for computer experiments. Ph.D. thesis, 
Tilburg University, Center for Economic Research, 2006. 

[22] M. Jamil, X.S. Yang, A literature survey of benchmark functions for global 
optimisation problems, Int. J. Math. Model. Numer. Optim. (2013). 

[23] M.E. Johnson, L.M. Moore, D. Ylvisaker, Minimax and maximin distance designs, 
J. Stat. Plan. Inference 26 (1990). 

[24] D. Jones, M. Schonlau, W. Welch, Efficient global optimization of expensive black 
box functions, J. Glob. Optim. (1998). 

[25] Jiang P., Shu L., Zhou Q., Zhou H., Shao X., Xu J.: A novel sequential exploration- 
exploitation sampling strategy for global metamodeling. 17th IFAC Symposium on 
System Identification, Beijing, 2015. 

[26] J. Kleijnen, W. van Beers, Application-driven sequential designs for simulation 
experiments: kriging metamodeling, J. Oper. Res. Soc. (2004). 

[27] Koch M., Mattern S., Bitsche R.D.: Facing Future Challenges in Crash Simulation 
Engineering – Model Organization, Quality and Management at Porsche. 15th 
International LS-DYNA, Detroit, 2018. 

[28] R. Lehmensiek, P. Meyer, M. Müller, Adaptive sampling applied to multivariate, 
multiple output rational interpolation models with application to microwave 
circuits, Int. J. RF Microw. Comput. -Aided Eng. (2002). 

[29] Molga M., Smutnicki, C.: Test functions for optimization needs. 2005. 
[30] M.D. Morris, T.J. Mitchell, Exploratory designs for computational experiments, 

J. Stat. Plan. Inference 43 (1995). 
[31] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, The 

MIT Press, 2006. 
[32] R. Salomon, Re-evaluating genetic algorithm performance under coordinate 

rotation of benchmark functions: a survey of some theoretical and practical aspects 
of genetic algorithms, BioSystems (1996). 

[33] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance 
based sensitivity analysis of model output, Design and estimator for the total 
sensitivity index, Comput. Phys. Commun. 181 (2010). 

[34] J.B. Schreiber, A. Nora, F.K. Stage, E.A. Barlow, J. King, Reporting structural 
equation modeling and confirmatory factor analysis results: a review, J. Educ. Res. 
(2006). 

[35] R. Sheikholeslami, S. Razavi, Progressive Latin Hypercube Sampling: an efficient 
approach for robust sampling-based analysis of environmental models, Environ. 
Model. Softw. 93 (2017). 

[36] Sobol’ I. y.M.: On the distribution of points in a cube and the approximate 
evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi 
Fiziki 7, 1967. 

P. Lualdi et al.                                                                                                                                                                                                                                   

86 4.1. Publication I



Journal of Computational Science 60 (2022) 101603

20

[37] M. Sugiyama, Active learning in approximately linear regression based on 
conditional expectation of generalization error, J. Mach. Learn. Res. (2006). 

[38] M. Verleysen, D. François, The Curse of Dimensionality in Data Mining and Time 
Series Prediction. International Work-conference on Artificial Neural Networks, 
Springer, 2005. 

[39] P.H. Winston, Artificial Intelligence, Addison-Wesley, Boston, 1992. 
[40] C.F.J. Wu, A fresh look at effect aliasing and interactions: some new wine in old 

bottles, Ann. Inst. Stat. Math. (2018). 
[41] X. Yao, Y. Liu, Fast evolutionary programming. Proc. 5th Conf. on Evolutionary 

Programming, 1996. 
[42] J. Zhang, S. Chowdhury, A. Messac, An adaptive hybrid surrogate model, Struct. 

Multidiscip. Optim. (2012).  

M.Sc. Pietro Lualdi Pietro Lualdi graduated in 2016 from 
Politecnico di Milano with a degree in Mechanical Engineering 
(B.Sc.). Afterwards, he pursued his academic path by majoring 
in Automotive Engineering at RWTH Aachen University (M. 
Sc.). Between 2017 and 2018, he joined Magneti Marelli for a 
year working as Resident Engineer (working student). In 2019, 
following his master thesis defense, he joined the DLR Struc
tural Optimization and Integral Safety group of the Institute of 
Vehicle Concept in Stuttgart. His research focuses on 
metamodel-based optimization applied to crashworthiness 
problems and material characterization.  

Dr-Ing. Ralf Sturm After the studies of aerospace engineering 
at the university of Stuttgart, Ralf Sturm worked at the DLR 
institute of structure and design in the field of crashworthiness 
of aircraft. After the PhD in the corresponding research field, he 
changed to the DLR institute of vehicle concept. Currently Ralf 
Sturm Is the team leader of the “Structural optimization and 
integrated safety” group at the department “Vehicle Architec
tures and Lightweight Design Concepts”. The main focus of the 
group is the methods development and the optimization of 
structures under crash or impact loads.  

Prof. Dr.-Ing. Tjark Siefkes Tjark Siefkes has been head of the 
Institute of Vehicle Concepts at the German Aerospace Center 
(DLR) since 2020. Long-standing internationally recognized 
research and product manager in the vehicle industry. For five 
years successfully active as a development manager in the 
digitalization industry. In-depth experience in the areas of 
research and teaching, technology & product development, 
product management, marketing, enterprise knowledge man
agement as well as team and employee management. A high 
level of experience in goal-oriented leadership of international 
projects, teams and organizations. 2004–2007 Chairman of the 
Advisory Board for the "European Rail Research Network of 
Excellence". From 2009–2013 he was a lecturer for "Railway 

Systems and their Energy Supply" at TU Berlin. He held the professorship of Novel Train 
Systems at TU Berlin in 2019 and the professorship of Vehicle Concepts at the University of 
Stuttgart in 2020. 

P. Lualdi et al.                                                                                                                                                                                                                                   

Chapter 4. Publications 87



88 4.2. Publication II

4.2 Publication II

An uncertainty-based objective function for hyperparameter

optimization in gaussian processes applied to expensive black-

box Problems

This paper was submitted to the journal Applied Soft Computing on January 22,
2023. At the time of writing, it is still in the second round of review. The prolonged
duration of the review process is primarily due to challenges in securing reviewers,
with many accepting the assignment but not submitting their feedback. Neverthe-
less, a pre-print of the article has been accepted and published in the Social Science
Research Network journal by Elsevier.

Research contribution

The study focuses on the traditional method of tuning hyperparameters in Gaus-
sian processes and presents a new hybrid approach that incorporates uncertainty
estimates into predictions. This is motivated by the possibility that models can
be distorted with suboptimal performance predictions, which can be misleading in
identifying optimal sites on metamodels.

Methods

We propose a new method named hybrid loss (HL). This method aims to combine
information about data fit, complexity, and uncertainty to achieve superior predic-
tive performance. In addition, the method uses evolutionary algorithms to minimize
the chances of ending up in local minima of the objective function, a clear pitfall of
the traditional approach.

Results

Our tests were conducted on 22 benchmark functions and a dynamic 3-point bending
crash application. The results show how uncertainty can be effectively used to avoid
well-known pitfalls and thus improve hyperparameter selection. While results vary
depending on the complexity and dimensionality of the problem, the HL approach
has been able to reduce the number of iterations required to achieve a given accuracy
target by 3 % to 55 % compared to traditional log-marginal likelihood methods.
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A B S T R A C T

As of today, Gaussian processes (GPs) have been widely and successfully used in the context of design
optimization based on expensive-to-evaluate functions. This supervised learning method enables a generation
of accurate nonlinear surrogate models based on relatively small datasets. Nonetheless, their most valuable
asset is to provide uncertainty in predictions. Despite their excellent stochastic properties, Gaussian processes
are unfortunately not immune to threats such as the generation of distorted predictions, especially when
the amount of data available is very limited. This shortcoming is caused by a poor choice of the GP
hyperparameters and represents a serious threat to the efficiency and effectiveness of the whole surrogate-based
optimization. In this paper we present the Hybrid Loss (HL), a novel uncertainty-aware objective function for
the hyperparameter tuning of Gaussian processes. This method is intended to exploit information coming from
the predictive variance to remedy the typical shortcomings of the log marginal likelihood, i.e. the objective
function commonly used to optimize GP hyperparameters. By pairing this methodology with a well-known
adaptive sampling strategy, we investigate the performance on a wide range of benchmark functions and a
real engineering problem. The observed evidence clearly shows how uncertainty can be successfully exploited
to make a wiser choice of the hyperparameters. This translates into more accurate predictions, surrogate models
less prone to overfitting, and above all, greatly improved convergence rates.

1. Introduction

Surrogate models, often called metamodels, have been commonly
used over the past decades for dealing with complex real-world opti-
mizations problems. Their usage enables Metamodel-Based Optimiza-
tion (MBO), which can be considered as the most efficient technique
for solving the so-called expensive-to-evaluate black-box functions [1].
These functions are very common in several engineering applications
that rely on time-demanding numerical simulations such as Finite
Element Methods (FEM), Computational Fluid Dynamics (CFD) and
Computational Electromagnetics (CEM). Such numerical simulations
imply enormous computer resource utilization, ranging from hours to
full days of computation on computer architectures [2]. In this regard,
surrogate models are very promising methods to reduce the overall
number of function evaluations [3,4].

Support Vector Regression (SVR), Artificial Neural Network (ANN),
Radial Basis Functions (RBF) and Gaussian Process Regressor (GPR)
are successful metamodeling techniques and are ideal to relieve this
computational burden. These methods have been extensively reviewed
through literature [5–8].

∗ Corresponding author.
E-mail addresses: pietro.lualdi@dlr.de (P. Lualdi), ralf.sturm@dlr.de (R. Sturm), andres.camerounzueta@dlr.de (A. Camero), tjark.siefkes@dlr.de

(T. Siefkes).

Among them, GPR (often referred as Kriging) has gained special at-
tention in the literature over the past 20 years. Because of its stochastic
and interpolative properties, GPR is also referred as the most inten-
sively investigated surrogate model [9]. As stated in [9–11], Gaussian
processes show clear advantages against common metamodeling tech-
niques. First of all, they use an interpolative Bayesian metamodeling
technique with exactly accurate predictions of observed data [10].
Most importantly, unlike RBF, ANN and SVR, GPR provides predictive
distributions instead of point predictions. In other words, thanks to
their stochastic property, GPRs offer uncertainty information (often
referred to as predictive variance in the literature) about the predicted
values. Although the real function remains mathematically unknown,
low uncertainty implies that the predicted values are more likely to be
close to the real ones [9].

It should be noted that the accuracy of the metamodels has a
significant impact on the computational effort and convergence of
the metamodel-based optimization. The metamodel quality primarily
depends on the number of observations (also known as samples),
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the way the observations themselves are distributed in the design
space, and the choice of GPR hyperparameters. Generally speaking, the
higher the number of observations, the higher the model accuracy that
can be achieved. Fewer samples require lower computational expense,
but could result in inaccurate metamodels [11]. However, even with
a proper number of samples, poor sample locations and suboptimal
model parameters can lead to distorted metamodels [9].

In order to get the most out of the observations, several authors
have been focusing on developing sampling strategies suitable for Gaus-
sian processes. Some have recently proposed new one-shot sampling
strategies [12], [13], some others sequential space-filling sampling
methods [14,15], while others have shifted the focus to adaptive sam-
pling strategies [16–21]. These methods have been deeply analyzed in
the recent reviews by Liu et al. [22] and Fuhg et al. [23].

Even with an ideal dataset of observations, poor metamodels can
still be generated if the hyperparameters are not chosen appropriately.
The selection of ideal model parameters is an optimization problem
commonly known as Hyperparameter Optimization (HPO) or Hyperpa-
rameter Tuning (HPT). As pointed out in [24], several challenges are
to be solved in applying optimization to HPT depending on the search
space. Some of the most common challenges are posed by the presence
of flat and noisy regions, discontinuities, local minima, and very steep
gradients.

One of the simplest HPO approaches is grid search: Each hyper-
meter is discretized into a set of values, and models are trained and
assessed across all possible combinations of hyperparameters. Key find-
ings of [25] have shown a effective alternative based on random
search. As long as solutions are excluded from the search space in
a stochastic fashion, remarkable speedups are guaranteed, compared
to the exponential grid search burden. More elaborate approaches are
instead based on optimization algorithms such as Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [26], Evolutionary Algorithms
(EA) [27], Tabu Search (TS) [28], and Bayesian Optimization [29]. It
has to be noted that grid and random search are still the default choices
for many open source machine learning packages [30].

Gaussian Process Regressors are commonly tuned by maximizing the
Log Marginal Likelihood (LML), employing evolutionary or gradient-
based algorithms [2]. The goal is to find a reasonable trade-off between
data-fit and model complexity. Although this approach is still consid-
ered as the state of the art and widely used as a standard method
the main machine learning packages, it hides certain pitfalls. Namely,
in case of a nonconvex, multimodal LML function, it is likely that
GPRs may suffer from overfitting. A poor choice of the hyperparameter
ranges could also lead generating subpar metamodels.

This issue becomes of great relevance when, as is often the case in
simulation-based optimization, Gaussian processes are combined with
active learning methods [31]. These approaches rely on algorithms that
are allowed to query an oracle for additional data to further improve
the accuracy of metamodels. Common examples of active learning
methods are adaptive sampling strategies and Bayesian optimization,
where the focus is usually to learn better predictive models rather than
to solely perform optimization [32]. Surprisingly enough, as can be
observed from Fig. 1, the sequential addition of observations does not
necessarily guarantee enhanced prediction.

One possible way to improve the accuracy of GPRs is to consider
uncertainty in the objective function of the hyperparameter optimiza-
tion. A few authors have already tried to consider predictive variance
to make metamodel decisions. Chugh et al. employed the Mean Stan-
dardized Log Loss (MSLL) [11], an uncertainty-based performance
metric presented by Rasmussen and Williams [33] to manage the trade-
off between the complexity term and data fit with a multi-objective
optimization approach. Nonetheless, this metric is based on a test
dataset that may be prohibitive in the context of expensive-to-evaluate
functions. Rahat et al. instead exploited uncertainty information to
determine the probabilistic dominance of one solution over another in
a multi-objective optimization framework [34].

To the best of our knowledge, overall, little attention has been paid
to the usage of uncertainty within the objective function to improve
the hyperparameter selection of GPR in the context of expensive-to-
evaluate functions. Therefore, we propose here the Hybrid Loss, a novel
approach to integrate predictive variance into the log marginal likeli-
hood for training Gaussian Process Regressors. The approach is best
suited for computationally-demanding functions where the user cannot
afford to employ a test dataset to inspect how the model generalizes
on unseen data. The proposed method is tailored for static functions,
independent of time and sequence dependencies.

The key contributions of this paper can be summarized as follows:

• We propose here a novel uncertainty-aware hyperparameter tun-
ing objective function to fit Gaussian Process Regressors. This
approach is robust against overfitting.

• We optimize this novel objective function using a meta-heuristic
optimization algorithm to escape local minima and avoid subop-
timal regions. We further polish the resulting optimum with a
gradient-based algorithm.

• We combine this approach with an adaptive sampling strategy
to reveal significant improvements in the convergence rate and
overall stability across iterations.

This paper is structured as follows. In Section 2 we briefly introduce
Gaussian Process Regressors, a few commonly used GP kernel functions,
the current standard methodology to fit these metamodels, and the
most relevant pitfalls related to log marginal likelihood. In Section 3
we present the newly developed Hybrid Loss methodology and its
mathematical formulation. We test the proposed approach on several
benchmark functions and a crashworthiness use case in Section 4. We
finally draw the conclusions and discuss potential future research step
in Section 5.

2. Background on Gaussian Process Regression

In the framework of expensive-to-evaluate functions, a popular task
is to infer the relationship between a set of independent variables
(or features) and a dependent variable (response function or target
function). This can be achieved by first generating a set of points (often
known as observations or samples) and then fitting a regression model
to the observed points. The entire set of samples is commonly referred
to as design of experiment (DoE).

In order to introduce basic notation, consider an initial design of
experiment of 𝑛 observations  = {(𝑥𝑖, 𝑓 (𝑥𝑖))|𝑖 = 1,… , 𝑛}, where 𝑥𝑖
is a 𝑑-dimensional variable vector so that 𝑥𝑖 ∈ R𝑑 , 𝑓 ∶ R𝑑 → R is a
time-consuming black box function and 𝑓 ∶ R𝑑 → R is the surrogate
model prediction of 𝑓 .

2.1. Predictive distribution

Gaussian processes are a general class of function models. More
precisely, a Gaussian process is any distribution over functions such
that any finite set of function values 𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑛) have a
joint Gaussian distribution [33]. Before conditioning on data, a GPR is
completely specified by its mean function (Eq. (1)) and kernel function,
sometimes referred as covariance function (Eq. (2))

𝜇(𝑥) = E(𝑓 (𝑥)) (1)

𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝐶𝑜𝑣(𝑓 (𝑥𝑖), 𝑓 (𝑥𝑗 )) (2)

Therefore, we can write the Gaussian process as:

𝑓 (𝑥) ∼ (𝜇(𝑥), 𝑘(𝑥𝑖, 𝑥𝑗 )) (3)

Since the uncertainty about the mean can be taken into account by
adding an extra term to the kernel, it is common practice to assume
that the mean function is zero everywhere in the design domain [35].
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Fig. 1. Gaussian Process Regressor trained on 6 (on the left) and 7 (on the right) observations. The additional sample on the right (marked in orange) is added by adaptive
sampling.

Therefore, the type of structure that can be captured by a GPR is
entirely determined by its kernel function. This function determines
how the metamodel generalizes new data. We will present few basic
kernel functions in Section 2.2.

The combination of the prior belief (based solely on the kernel
function) and the data leads to the posterior distribution over functions.
In probabilistic terms, making the prior distribution agree with the
observed data points is a relatively simple operation that corresponds
to condition the joint Gaussian distribution on the observations [33].
Note that the posterior predictive distribution is also normal:

𝑝(𝑓 |𝑥,,𝜽) ∼  (𝑓 |𝑓 (𝑥), 𝜎2(𝑥)) (4)

where the predictive mean and variance are given by:

𝑓 (𝑥) = 𝑘(𝑥,𝑋,𝜽)(𝐾 + 𝜎2𝑛𝐼)
−1𝐟 (5)

𝜎2(𝑥) = 𝑘(𝑥, 𝑥,𝜽) − 𝑘(𝑥,𝑋,𝜽)𝑇 (𝐾 + 𝜎2𝑛𝐼)
−1𝑘(𝑥,𝑋,𝜽) (6)

The 𝑑 × 𝑛 matrix of the observations is referred as 𝑋 so that
𝑋 ∈ R𝑑×𝑛. The vector 𝑓 is the corresponding response vector 𝑓 =
(𝑓1, 𝑓2,… , 𝑓𝑛) and thus 𝑓 ∈ R𝑛. The covariance matrix 𝐾 ∈ R𝑛×𝑛

represents the kernel function 𝑘(𝑥′, 𝑥′′,𝜽) evaluated for each pair of
observations (𝑥′, 𝑥′′) ∈ 𝑋. The vector of covariances between an
arbitrary 𝒙 and each sample points is represented by 𝑘(𝑥,𝑋,𝜽) ∈ 𝑅𝑛.
Model parameters are collected in the hyperparameter vector 𝜽 ∈ R𝑘.
In presence of noisy responses such as 𝑦 = 𝑓 (𝑥) + 𝜀, the noise variance
is taken into account by the 𝜎2𝑛 term.

2.2. Covariance functions

The choice of the kernel function has a significant role when fitting
Gaussian process since it reflects our ability to express prior knowledge
of the shape of the function we are trying to model [36].

A covariance function is a positive-definite function of two feature
vector inputs 𝑥𝑖 and 𝑥𝑗 . As mentioned above, a kernel function is also
controlled by a set of 𝑘 hyperparameters enclosed in the vector 𝜽. The
intuition behind the covariance function lies in the fact that data points
that are spatially close in Euclidean space should exhibit very similar
responses. The relationship between these points is described by the
hyperparameters themselves.

We present below three covariance functions that are very common
in literature. For the purposes of this research, we will focus the atten-
tion on stationary kernels only. In such kernels the covariance between
two points depends only on the distance between the points, not on the
exact location of the points. This implies that the function properties
are the same everywhere in the input space. Each of the following
(stationary) covariance functions has an amplitude hyperparameter 𝜎2𝑓

in common that describes how the response function can span. Note
that the notation 𝑑(⋅, ⋅) refers to the Euclidean distance.

Squared-exponential

𝑘𝑆𝐸 (𝑥𝑖, 𝑥𝑗 ) = 𝜎2𝑓 exp

(
−
𝑑(𝑥𝑖, 𝑥𝑗 )2

2𝑙2

)
(7)

The Squared-exponential kernel, also known as Radial Basis Func-
tion (RBF) or Gaussian kernel, is parametrized by a length scale pa-
rameter 𝑙 > 0 which defines how quickly the correlation relationship
between two points drops as their distance increases. Because of its
universality, and the fact that you can integrate it against most func-
tions that you need to, the RBF kernel is de-facto the default kernel for
Gaussian processes [35,36].

Rational Quadratic

𝑘𝑅𝑄(𝑥𝑖, 𝑥𝑗 ) = 𝜎2𝑓

(
1 +

𝑑(𝑥𝑖, 𝑥𝑗 )2

2𝛼𝑙2

)
(8)

The Rational Quadratic covariance function can be seen as an
infinite sum of RBF kernels with different characteristic length scales.
It is parametrized by a length scale parameter 𝑙 > 0 and a scale mixture
parameter 𝛼 > 0. The parameter 𝛼 describes the relative weighting of
large-scale and small-scale fluctuations. Large values of alpha make the
RQ kernel lean toward a standard RBF kernel [35].

Exponentiated Sine Squared

𝑘𝐸𝑆𝑃 (𝑥𝑖, 𝑥𝑗 ) = 𝜎2𝑓 exp
(
− 2
𝑙2

sin2
(𝜋𝑑(𝑥𝑖, 𝑥𝑗 )

𝑝

))
(9)

Exponentiated Sine Squared, often referred as periodic kernel, al-
lows the modeling of functions that repeat themselves exactly. While
the l parameter works the same way as in the RBF kernel, the period
𝑝 simply determines the distance between repetitions of the functions.
This kernel has been derived by David Mackay in [37].

It has to be noted, that we can also build ‘‘made to order’’ kernel
with desired properties. Indeed, new tailored kernels can be constructed
through mathematical operations such as multiplication or addition of
well-known kernels. Although there have been efforts in the literature
to search for an ideal covariance function over a space of combined
kernel structures (e.g. [38]), choosing a kernel function remains a
challenging task that often requires prior knowledge about the problem.
Since, however, this is not the focus of this paper, we are going to select
well known kernel structures for further discussion in this article.

2.3. Hyperparameters optimization

Given a covariance function, we can compute the marginal like-
lihood of a dataset. This is a crucial property to compare different
models, balancing between the capacity of a GP and its fit to the data
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Fig. 2. The breakdown of the log marginal likelihood is shown in the subplot above. Below, the impact of the length scale 𝑙 of a trained RBF kernel on a given dataset is
illustrated. Starting from the left, we see a trained GP with a 𝑙 = 0.02, 𝑙 = 0.115 (optimum LML) and 𝑙 = 0.5, respectively.

points. Because of this property, as mentioned in Section 1, Gaussian
processes are commonly tuned by maximizing the Log Marginal Like-
lihood [39]. In this section we briefly derive the marginal likelihood
function and break it down into its main components.

Maximizing the marginal likelihood 𝑝(|𝜽) of the Gaussian process
distribution based on the observed data  to get the optimal set of
hyperparameters 𝜽∗ can be formulated as follows:

𝜽∗ = argmax
𝜽

(𝑝(|𝜽)) (10)

Bear in mind that the marginal likelihood of the Gaussian process is
the likelihood of a Gaussian distribution. Substituting the mean and the
covariance matrix based on observed data and taking the logarithm to
the left and right of the equation, we derive the log marginal likelihood:

log 𝑝(|𝜽) = −1
2
𝐟𝑇 (𝐾 + 𝜎2𝑛𝐼)

−1𝐟 − 1
2
log |𝐾 + 𝜎2𝑛𝐼| − 𝑛

2
log 2𝜋 (11)

The marginal likelihood function described in Eq. (11) can be
broken down into three main terms, each of which has interpretable
roles. The first term is the only one dealing with observations and is
called ‘‘data-fit’’. The second term is the complexity penalty, referred
to as ‘‘differential entropy’’ by some authors [40]. The last term is
a normalization constant, and its influence is not relevant since its
value does not change as the hyperparameters vary. Therefore, the
optimal hyperparameter set obtained from the log marginal likelihood
optimization is the trade-off outcome between the data fit and the
complexity term.

The effect of the length scale is shown in Fig. 2. Poorly tuned length
scale values 𝑙 result in suboptimal metamodels. In this case, a low 𝑙
value (𝑙 = 0.02, on the left) and a high 𝑙 value (𝑙 = 0.5, on the right)
respectively reflect overfitting and underfitting issues.

It should be noted that the marginal likelihood gradient is known
since it can be derived analytically. In fact, starting from Eq. (11), we
can calculate the partial derivatives with respect to the hyperparame-
ters as shown in Eq. (12).

𝜕
𝜕𝜃𝑖

log 𝑝(|𝜽) = −1
2
𝐟𝑇𝐾−1 𝜕𝐾

𝜕𝜃𝑖
𝐾−1𝐟 − 1

2
tr
(
𝐾−1 𝜕𝐾

𝜕𝜃𝑖

)
(12)

Since the gradient is a known function and the computational
overhead of computing partial derivatives is small (time 𝑂(𝑛2) per
hyperparameter once 𝐾−1 is known), the use of gradient-based al-
gorithms is encouraged. L-BFGS-B [41,42], is commonly used in the
literature [24].

Since by convention, most optimization algorithms aim to minimize
a function, it is convenient to consider the negative log marginal
likelihood function as the objective function. Furthermore, to relax the
notation, from now on we define the negative log marginal likelihood
function as:

𝑓𝑁𝐿𝑀𝐿(|𝜽) = − log 𝑝(|𝜽) (13)

2.4. Pitfalls of the marginal likelihood method

Hyperparameter tuning by maximizing marginal likelihood is a
proven and widely used approach due to the benefits shown in the pre-
vious sections. However, some pitfalls that can easily lead to distorted
metamodels, are concealed behind this method.

The major pitfall in optimizing the marginal likelihood is landing
in a suboptimal region of the hyperparameter space. Indeed, not only
is the convexity of this function not guaranteed, but the function itself
can also be multimodal. Multimodality implies the existence of local
maxima that gradient-based methods are strongly vulnerable to. The
reason for this is that gradient-based algorithms are highly dependent
on their starting point.

As an example, consider the rational quadratic kernel for recon-
structing the function 𝑓 (𝑥) = 7∕2𝑥 + 𝑠𝑖𝑛(6𝑥)2 − 10𝑥 ⋅ 𝑠𝑖𝑛(5𝑥) as shown
in Fig. 3. In this case, as seen on the left, the L-BFGS-B method clearly
failed to find the global optimum of the marginal likelihood function.
This results in a distorted metamodel characterized by an unreasonably
small length scale (on the right-hand side). This type of metamodel is a
highly undesirable outcome, especially in the context of expensive-to-
evaluate functions where the user is reluctant to increase the design of
experiment size to improve the quality of the metamodel, unless strictly
necessary.

A widespread first practice to remedy this threat is to increase the
number of restarts of the gradient based optimizer. In this way, the
optimization of marginal likelihood can be reiterated starting from
different regions of the hyperparameter space and limiting the traps
of local minima. Another solution employed by some authors to best
optimize the log marginal likelihood is using a meta heuristic algorithm
such as Evolutionary Algorithms. These methods are well suited when
the marginal likelihood is expected to be a highly multi-modal function.
Genetic Algorithms (GA) are a popular choice for this purpose [43].
From now on, as a meta-heuristic method, we will use the Differential
Evolution (DE) method introduced for the first time in [44]. It has

92 4.2. Publication II



Applied Soft Computing 154 (2024) 111325

5

P. Lualdi et al.

Fig. 3. Common pitfall when optimizing the marginal likelihood with a gradient-based method. The L-BFGS-B method fails in finding the optimum (on the left). As a consequence
(on the right), the prediction suffers from overfitting issues.

Fig. 4. Remedies to LML optimization pitfalls: a gradient-based multi-start strategy is shown on the left, and three successive population evolution stages (in black, magenta and
orange, respectively) of DE are shown on the right.

been proven to be an efficient method for optimizing multi-modal
objective functions. It is also simple to use, has excellent convergence
properties and is suitable for parallelization. Since finding the best
possible meta-heuristic method is not in the scope of this paper, we will
not elaborate further on this topic. More information about DE can be
found in [45,46].

The improvements in the prediction of a Gaussian process are shown
in Fig. 4, made by increasing optimizer restarts (on the left) and using
a meta heuristic method (on the right).

Landing in a suboptimal hyperparameters space is not the only
threat of the marginal likelihood approach. Indeed, even landing some-
where near the global minimum of this function generally does not
prevent running into overfitting or yielding suboptimal metamodels.
On this matter, see the example in Fig. 5.

As seen here, in this case the marginal likelihood has a completely
flat and very extensive optimal region, revealed by multiple optimal
spots and labeled by green hexagonal markers. Using the differential
evolutionary algorithm, we can easily land in this optimal area, but
it is not clear what combination of hyperparameters is best suited
for the problem. In fact, although all these ‘‘green marks’’ share the
same value of log marginal likelihood, their impact on the quality of
the metamodel is quite different. One possible approach to draw a
distinction between these points, would be to consider the uncertainty
of the Gaussian process as a decision factor among these optima.
Another method is to directly integrate the contribution of prediction
variance within the objective function. The goal is to explore new
combinations of hyperparameters by considering information that is
not explicitly accounted for by using the marginal likelihood. In the
next section, we show a viable approach based on this idea.

3. Hybrid loss

As mentioned in the introduction, the main advantage of Gaussian
processes is to provide uncertainty information about the prediction.
This is a priceless resource that holds potential for avoiding marginal
likelihood pitfalls and improving the quality of Gaussian processes in
general. In order to get an intuitive understanding for how uncertainty
bounds relate to the quality of predictions, consider the example shown
in Fig. 6.

Given the same dataset based on five observations, we optimize the
marginal likelihood of a Gaussian process with RQ covariance function
with the L-BFGS-B (on the left) and the DE algorithm (on the right).
Although it is clear how an erroneous choice of hyperparameters can
lead to barely usable predictions such as the metamodel shown on the
right, it is non-trivial to figure out how these subpar models can be
avoided. As we saw in the previous section, employing a meta-heuristic
algorithm does not guarantee an optimal choice of hyperparameters.
Nonetheless, what can be easily observed is the difference in the con-
fidence intervals (i.e., uncertainty) between the two predictions. Bear
in mind that a high variance implies that the predicted function has a
lower chance of being close to the real black-box function. Therefore,
the uncertainty of the fitted model can be exploited as an additional
objective to be optimized.

3.1. Uncertainty estimation

Estimating the uncertainty can be seen as calculating a definite
integral in a generic interval [𝑎, 𝑏] of the predictive variance, that
is the area underlying the 𝜎2(𝑥) function. Again, keep in mind that
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Fig. 5. On the left, the subregion of multiple optimal solutions (marked in green) of the log marginal likelihood. On the right, the prediction based on the solution found by DE.

Fig. 6. Underlying intuition of the Hybrid Loss. GP prediction obtained from the same train dataset by optimizing the LML with the L-BFGS-B algorithm (on the left) and with
the DE algorithm (on the right).

the methodology we propose is driven by global metamodeling goals,
i.e. achieving the most accurate prediction possible across the entire
variable design space.

Let 𝑑 ≥ 1 be a given dimension of the variable space. With no loss of
generality, let 𝐼𝑑 = [0, 1]𝑑 be the 𝑑 dimensional unit hypercube so that
each feature is normalized in the unit interval. Aware that 𝜎2(𝑥) is a
positive definite function and assuming that it is integrable throughout
the entire domain, we want to approximate

𝐹𝜎2 = ∫𝐼𝑑 𝜎
2(𝑥)𝑑𝑥 (14)

Since it is not always possible to evaluate an integral analytically,
approximating numerical integrals is a well-known problem of nu-
merical analysis. Depending on the application area, sometimes high
accuracy is required, while sometimes a relatively low level is suf-
ficient. Moreover, as reported by [47], in certain applications a low
level approximation is not only acceptable but preferable, as it might
be spurious to report otherwise. Numerous integration techniques are
available in the literature and these can be grouped into two broad
categories: deterministic and Monte Carlo integration. Deterministic
techniques are methods that blend well with low-dimensional inte-
grals (mainly one dimension) when very high accuracy is required.
However, they are very sensitive to the ‘‘curse of dimensionality’’
(sometimes referred as ‘‘dimensional effect’’) and therefore are unsuited
for high-dimensional integrals. Unlike deterministic methods, Monte
Carlo techniques are stochastic based approaches that are particularly
attractive for multi-dimensional problems [47,48]. More information in
this regard is provided in Appendix A.1.

A key difference between deterministic and Monte Carlo methods
concerns their convergence properties. The approximation error for
deterministic methods typically converges as 𝑂(𝑛−𝑑 ), thus very slowly

for large dimensions. In contrast, Monte Carlo methods show slow
convergence equal to 𝑂(𝑛−1∕2), but independent of spatial dimension
𝑑. A secondary benefit of Monte Carlo integration over common deter-
ministic techniques, such as quadrature rules, is the ease of extending
to high-dimensional integrals. Since 𝑁𝑑 samples are needed for a 𝑑-
dimensional problem, the exponential growth of samples makes the
employment of these methods computationally prohibitive. In contrast,
Monte Carlo techniques give the freedom of choosing any arbitrary
sample size 𝑁 [49].

Given the application of our interest, the highest priority is arguably
to achieve an efficient variance estimate that can be conveniently
scaled to multidimensional problems. This is imperative so that, when
optimizing hyperparameters, as many function evaluations as needed
can be carried out without overburdening the computational effort.
Regarding the accuracy of uncertainty estimation, we believe that
even a coarse estimate can have a decisive impact on hyperparameter
tuning enhancements. Bear in mind that Eqs. (5) and (6) involve matrix
inversion using Cholesky factorization. Therefore, some round-off error
is expected. Losing in efficiency to over-model these error components
is not advisable. For the reasons mentioned above, we believe that a
Monte Carlo-based estimator is a suitable choice for this application.

To further improve the uniformity in the distribution of the samples,
we employ a Latin Hypercube Design (LHD) sampling strategy as shown
by [50]. Let 𝐼𝑙 = [ 𝑙−1𝑁 , 𝑙

𝑁 ) for 1 ≤ 𝑙 ≤ 𝑁 and {𝑉 𝑖
1 ,… , 𝑉 𝑖

𝑁} be independent
random variable with 𝑉 𝑖

𝑙 uniformly distributed over 𝐼𝑙. Assuming that
{𝜋1,… , 𝜋𝑠} are independent permutations of 1,… , 𝑁 , we define 𝑊𝑙 so
that 𝑊𝑙 = {𝑉 1

𝜋1
,… , 𝑉 𝑠

𝜋𝑠} [48]. Therefore, we can approximate Eq. (14)
as follows:

𝐹𝑁
𝜎2

= 1
𝑁

𝑁−1∑
𝑖=0

𝜎2(𝑊𝑙) (15)
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Compared with random sampling, LHD shows improved variance
reducing proprieties. Indeed, key findings in [51] showed that for any
square-integrable function, LHD does reduce the variance relative to
random sampling asymptotically (𝑁 → ∞).

3.2. Hybrid loss objective function

With all the ingredients at our disposal, we can finally formalize the
novel Hybrid Loss. The proposed objective function is based on a multi-
objective optimization approach by means of weighted sum method
where the two main building blocks are made up of the negative log
marginal likelihood 𝑓𝑁𝐿𝑀𝐿 and the estimated uncertainty 𝐹𝑁

𝜎2
. In order

to lighten the notation and ease readability, the dependence of both
these components on the observation dataset  and the hyperparame-
ters 𝜽 will be omitted within the loss function equation. We therefore
present the Hybrid Loss objective function in Eq. (16):

𝑓𝐻𝐿(|𝜽) = 𝑤𝑁𝐿𝑀𝐿 ⋅ log

(
𝑓𝑁𝐿𝑀𝐿 − 𝑓𝑚𝑖𝑛

𝑁𝐿𝑀𝐿

𝑓𝑚𝑎𝑥
𝑁𝐿𝑀𝐿 − 𝑓𝑚𝑖𝑛

𝑁𝐿𝑀𝐿

)
+𝑤𝜎2 ⋅

𝐹𝑁
𝜎2

𝐹𝑁,𝑚𝑎𝑥
𝜎2

(16)

Since negative marginal likelihood and uncertainty can have ranges
with very different orders of magnitude, it is convenient to normalize
the two main components into a unit interval. In this regard, the
maximum and minimum values 𝑓𝑚𝑎𝑥

𝑁𝐿𝑀𝐿, 𝑓𝑚𝑖𝑛
𝑁𝐿𝑀𝐿 and 𝐹𝑁,𝑚𝑎𝑥

𝜎2
, which are

not known beforehand, are adaptively updated based on the function
evaluations in the early iterations of loss function minimization. Keep
in mind that the negative log marginal likelihood can vary in (−∞,+∞)
while the variance estimate in [0,+∞). Therefore, the minimum 𝐹𝑁,𝑚𝑖𝑛

𝜎2
is known as priori and is equal to zero. Next, we filter the NLML
component with a logarithmic function. This is mainly intended to
slightly unbalance the importance of the objective function toward the
component that includes the data fit term. In addition, the logarithm
also prioritizes small changes in NLML against small changes in vari-
ance. This has a beneficial effect on the convergence of hyperparameter
tuning, which, otherwise, could be undesirably over-extended by un-
certainty round-off errors. Finally, to give the user more control and
flexibility according to the application of interest, we added the two
weights 𝑤𝑁𝐿𝑀𝐿 and 𝑤𝜎2 . The impact of these two scaling factors on
the final outcome and recommendations on the choice of the weights
are going to be clarified in the next sections.

In order to mitigate the pitfalls described in Section 2.4, we decided
to combine the benefits of a meta-heuristic algorithm with a gradient-
based one. Therefore, at the first stage, the Hybrid Loss is optimized
with the differential evolution algorithm. The best population member
at the end is then further polished by the L-BFGS-B method.

4. Experiments

In this section we test and analyze the performance of the Hybrid
Loss approach proposed in Section 3 on a wide range of test problems
and one engineering application. To be more specific, in Section 4.1
we give an overview of the visual comparison between the common
approach of log marginal likelihood and Hybrid Loss. We also show
the influence of weights on the tuning process of the Gaussian process.
In Section 4.2 we illustrate the scheme by which all the tests in
this chapter are going to be conducted. In Section 4.3 we introduce
the benchmark functions investigated and the results of their tests
in Section 4.4. Finally, in Section 4.5 we present two variants of an
engineering use cases and related results analysis.

4.1. Visual performance comparison and impact of weights

Before diving into performance analysis of the Hybrid Loss across a
wide range of test problems, we want to visually illustrate the impact
of this approach on metamodels and the influence of 𝑤𝑁𝐿𝑀𝐿 and 𝑤𝜎2

weights. In this regard we investigate a couple of low dimensional

benchmark functions. An overview of the appearance of these func-
tions, their formulas, and the validation metrics used to evaluate their
accuracy can be found in Sections 4.2 and 4.3.

In the first example, we investigate, once again, the one-dimensional
sine function introduced in 2.4. We choose a rational quadratic co-
variance function with the same hyperparameter bounds used for the
example shown in Fig. 5. The comparison between the marginal like-
lihood optimization with differential evolution and the Hybrid Loss
approach is shown in Fig. 7. In this first attempt we set the weights
𝑤𝑁𝐿𝑀𝐿 = 0.7 and 𝑤𝜎2 = 0.3.

The result is unquestionably promising. Within the same hyperpa-
rameter space the marginal likelihood approach seems paradoxically
to worsen its prediction over iterations, despite new data being fed to
the GP. On the contrary, the Hybrid Loss approach appears to be very
stable and better suited to cooperate with this active learning logic.

During each iteration, it appears that the Hybrid Loss function
can generate a prediction significantly closer to the target function’s
value while simultaneously retaining considerably narrower confidence
intervals. To quantify the quality of the prediction, we compute the
MSE (refer to Table 3 of Section 4.2 for the mathematical formula)
on 10000𝑑 test points randomly spread over the whole domain. In this
specific instance, the novel approach enables us to reduce the error by
approximately 67.9% in the final iterative step.

Someone might argue that the rational quadratic kernel is probably
not the most appropriate kernel to approximate a periodic function.
Therefore, we carry out a new test on the same benchmark function
using a periodic kernel. For this test, we include again the classical ap-
proach based on marginal likelihood using gradient based optimization
(see Fig. 8).

In this case, the MSE of Hybrid Loss is even two orders of magnitude
smaller than differential evolution and about thirteen times smaller
than the gradient-based approach. Both marginal likelihood-oriented
methods focus on an extremely small (albeit plausible) periodicity.
Further evidence on visual performance on a two-dimensional test is
shown in Appendix A.3.

An insightful understanding of the impact of the weights on the tun-
ing of metamodels (given the same design of experiment) can be drawn
from Fig. 9. We consider the Easom function, a nearly flat function in
the whole domain except around its global minimum located in (𝜋, 𝜋).
For this problem we employ an RBF kernel trained on ten samples and
we vary the weight ratios 𝑤𝑁𝐿𝑀𝐿 ∶ 𝑤𝜎2 from 90 ∶ 10 to 50 ∶ 50.

An imbalance of Hybrid Loss in favor of variance generally leads
to a smoothing effect of the metamodel. This is not always considered
a desired effect, merely due to the fact that it comes at the expense
of the data-fit term. High values of the uncertainty weight (e.g., from
𝑤𝜎2 ≥ 0.5) should be considered in applications where the metamodel is
not expected to go through every single training point (e.g. applications
with noisy observations).

Fig. 10 shows the pareto curve by decomposing the objective func-
tion of Eq. (16) into two sub-objectives: the negative log likelihood
and the variance. It becomes clear how an increase in the uncertainty
weight pushes the optimum point toward the elbow of the pareto curve.
It should be noted that a weight selection of 50 ∶ 50 still does not
place the optimum exactly on the elbow of the curve. This is due to
the unbalance given by the logarithm.

4.2. Test scheme

In order to draw any general inferences about the Hybrid Loss
approach, the promising results presented in the previous section re-
quire further evidence. Therefore, the performance of the Hybrid Loss
function is initially tested against that of the marginal likelihood on a
variety of benchmark functions that differ from each other, in features
and dimensionality (more details on this in Section 4.3)

We are aware that the underlying assumption is that the response
evaluations are extremely time demanding. The focus of the analysis
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Fig. 7. Comparison across three iterations between the log marginal likelihood (first row) and the Hybrid Loss approach (second row). Both objective functions are optimized
with the DE algorithm.

Fig. 8. Comparison of LML with L-BFGS-B (left), LML with DE (center) and Hybrid Loss with DE (right) using a periodic kernel function.

Fig. 9. Impact of the weights 𝑤𝑁𝐿𝑀𝐿 and 𝑤𝜎2 of the Hybrid Loss tested on the Easom function. Starting from the left, the following weight ratios are shown: 90:10, 80:20 and
50:50.
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Fig. 10. Impact of the weights on the Pareto curve of the Hybrid Loss tested on the Easom function. A trade-off with weight ratio of 90:10 (on the left) and 50:50 (on the right)
is shown.

will be not only geared toward achieving the best possible metamodel
accuracy, but also accomplishing it using the least number of training
samples possible. In this regard, beginning with an initial dataset with
excellent space-filling properties, an observation will be added at the
end of each iteration by means of an exploration-oriented adaptive
sampling strategy. This means that the observations will be distributed
so as to cover the variable domain as uniformly as possible, regardless
of the response values of the dataset (more information available
in [14,15]). As an additional assessment criterion, special attention will
be paid to the stability and monotonicity of the convergence curve. This
allows to assess robustness against undesired severe fluctuations in the
convergence. Especially for the last mentioned criterion, we prefer to
report the results as convergence history graphs instead of tables.

In order to perform a sound comparison between the hyperparam-
eter tuning techniques, comparable and fair numerical conditions are
ensured for all methods and problems investigated (see Fig. 11). In
particular:

• In initial input dataset 𝑥 = 𝑥1,… , 𝑥𝑛0 of size 𝑛0 is normalized to
a unit hypercube [0, 1]𝑑 . In the same domain we fit the Gaussian
processes.

• To ensure optimal space-filling properties, the design of experi-
ment of size 𝑛0 is retrieved from a pre-optimized LHD database
presented in the works of Husslage [52] and van Dam [53]
and available at https://spacefillingdesigns.nl. In case the re-
quired dataset is not available in the database, then an optimal
LHD is generated using the Translational Propagation algorithm
proposed by Viana [12].

• At 𝑖th iteration, each method has the option to use the optimal set
of hyperparameters 𝜽∗ found at iteration (𝑖 − 1)th as the starting
point of HPO.

• As a stopping criterion, we set the number of maximum iterations
to 𝑛𝑚𝑎𝑥. We avoid accuracy goal base early stops to get a better
understanding of the convergence behavior.

• Depending on the dimensionality, we set 𝑛0 and 𝑛𝑚𝑎𝑥 around a
value given by the common rule of thumb 10𝑑 proposed by Jones
and supported by Loeppky’s findings [54].

• For the adaptive sampling method, we employ the MIPT (acronym
for ‘‘mc-intersite-proj-th’’, a Monte Carlo method aiming
to find an optimal balance between intersite and projected dis-
tance) approach presented by Crombecq et al. [14] and revised
by Lualdi et al. [15].

• To prove that the tuning methods under consideration are inde-
pendent of the kernel function, we alternate between using RBF
and RQ covariance kernel. However, choosing the most suitable
kernel for the test problem under investigation is beyond the
scope of this paper. We consider the fixed bounds (10−5, 105) for
the hyperparameters 𝜎2𝑓 , 𝑙 and 𝛼.

• For similar reasons, we also vary the usage of different error
metrics to assess the quality of GPRs. These metrics will be used
on 𝑛𝑡𝑒𝑠𝑡 = 10000𝑑 test points randomly spread across the domain.
An overview of the metrics employed can be found in Table 3.

• Considering that function responses are remarkably time-
consuming, we set the maximum budget of time to train a
Gaussian process at two minutes. At the end of this time window,
the best set of hyperparameters found so far will be used.

• Since Monte Carlo methods and other stochastic components are
involved in the sampling strategy and in optimization methods,
each test run is repeated 30 times. The ultimate performance will
be depicted as an average value with a 95% confidence interval.

That being said, the focus shifts to the hyperparameter tuning
techniques to be investigated. The first method aims to optimize the
log marginal likelihood via L-BFGS-B algorithm with a multi-start
strategy. The second method also relies on LML maximization but
through differential evolution algorithm. The third and last method
aims at minimizing the Hybrid Loss objective function via metaheuristic
method (we employ differential evolution here as well). For the sake of
clarity, we will refer to these three hyperparameter tuning approaches
as LML-GB, LML-MH, HL-MH, respectively. Here below we clarify some
specific parameters for each method:

LML-GB
Depending on the dimensionality of the hyperparametric space 𝑘,

we run the L-BFGS-B algorithm for 6𝑘 one run starting from 𝜽∗ found
at the end of the most recent iteration. The marginal likelihood gradient
shown in Eq. (12) is fed to the gradient based algorithm as well.

LML-MH
To set the most relevant differential evolution parameters, we refer

to the recommendations provided during the experiments performed
by Storn and Price. Accordingly, the values of population size, mu-
tation constant and cross-over probability are set to 6𝑘, 0.5 and 0.7,
respectively [44]. In addition, apart from the run based on the best 𝜽∗

of the previous iteration, each population member is further polished
with an L-BFGS-B run once the metaheuristic approach has reached
convergence.

HL-MH
The differential evolution parameters are set just as for the LML-MH

method. In addition, for the Monte Carlo-based uncertainty estimation,
we use 10000𝑑 integration samples. Finally, given the absence of noise
in the tests we slightly promote the NLML contribution by setting the
weights at 𝑤𝑁𝐿𝑀𝐿 = 0.85 and 𝑤𝜎2 = 0.15.
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Fig. 11. Flow chart about the methodology used to perform the experiments.

Table 1
Summary of benchmark functions.

Group Benchmark function Domain Dimensionality Name

Test bed 1 𝑓1 [−3, 3]1 1 Modified Sine Wave
𝑓2 [−8, 8]1 1 Peaks
𝑓3 [−4, 4]1 1 Salomon

Test bed 2 𝑓4 [0, 10]2 2 Alpine 1
𝑓5 [−4, 4]2 2 Easom
𝑓6 [−2, 2]2 2 Goldstein-Price

Test bed 3 𝑓7 [−4, 4]4 4 Colville
𝑓8 [0, 1]6 6 Hartman 6
𝑓9 [−4, 4]7 7 Griewank

Test bed 4 𝑓10 [−2, 2]10 10 Ackley
𝑓11 [−5, 5]15 15 Trid
𝑓12 [−5, 5]15 15 Dixon-Price

4.3. Benchmark functions

Several benchmark functions have been developed and collected
over the years. These functions are particularly useful for testing the
performance of optimization algorithms or regression models before
moving on to experiments based on real data.

A comprehensive summary of the benchmark functions considered
within this work is given in Table 1.

For more information regarding the formulas, illustrations and crite-
ria by which these functions were selected, please refer to Appendix A.5

4.4. Results of the benchmark functions

In this section we reveal the results obtained on the test functions
for both the RBF and RQ kernels. We distinguish the LML-GB, LML-MH
and HL-MH methods by blue, orange and green colors, respectively.

The results of the one-dimensional test bed support the favorable
findings already observed in the examples of Section 4.1. From Figs. 12
and 13 we can clearly observe that, starting from a very small initial
dataset, after 10 iterations, the MSE of the HL-MH method is the lowest
regardless of the function analyzed and the kernel employed. Moreover,
its confidence intervals are consistently the narrowest, evidence that
the method has a robust performance over minor variations in the
starting dataset as well. This can be explained by looking at Fig. 14.

On one hand, the initial dataset is prohibitively limited, i.e., con-
sisting of only five samples. On the other hand, the Salomon function
is characterized by a very high frequency. Therefore, the sampling rate
is well below the Nyquist rate (twice the upper cutoff frequency), thus
violating the Nyquist-Shannon sampling theorem. This phenomenon is
better known as under-sampling by some authors [55,56]. The LML-
GB and LML-GB metamodels, despite the noticeable overfitting issues,

show smaller errors during the first five iterations. The MSE value
of these iterations is, therefore, misleading and cannot be considered
representative enough at that sampling stage.

The outcome of test bed 2 is given in Figs. 15 and 16. This time,
we analyzed two-dimensional benchmark functions and assessed the
quality of the metamodels through the 𝑅2 score. Therefore, the closer
the convergence curves approach the value 1, the more regression
models are expected to be accurate. The Hybrid Loss approach appears
consistent not only in approximating the wide Goldstein-Price basin
and Alpine’s wobbling landscape, but also in modeling the sharp peak
of the Easom function. Once again, HL-MH outperforms the other two
in terms of both mean error and confidence bands (the peak of the
Easom is critical to the confidence of all three methods). Such findings
suggest that the choice made for Hybrid Loss weights is a reasonable
compromise if no a prior information about the black-box function is
available. Comparing the convergence rate in the Alpine and Goldstein-
Price functions is of particular interest: both the HL-MH and LML-MH
methods apparently can strive for the same level of accuracy. However,
the crucial difference is that, given the same information (dataset), the
Hybrid Loss reaches this level faster and more consistently than the
other methods. It should be finally noted that, as one might expect,
on average the LML-MH method performs consistently better than
LML-GB.

Finally, we present the results of test beds 3 and 4 where the range
of dimensionality varies from 4 up to 15 variables. RMSE and NMAE
were used as the error metrics for test beds 3 and 4 respectively. Apart
from remarking once again the excellent properties already observed in
the previous tests, as a key-feature of the Hybrid Loss, we would like
to emphasize the good scalability of the approach even across several
variables. Figs. 17–20 also show enhanced qualitative performance.
Although we expect that as iterations increase, it will coelesce more
and more with the LML-MH. Interestingly, the performance of LML-
GB and LML-MH match nearly perfectly when the RQ kernel is used.
Furthermore, the gradient-based approach looks alarmingly unstable
with the RBF covariance function. The only out-of-the-box discovery
concerns the tremendous performance of the Hybrid Loss with the
Griewank function. Yet, given the extreme modality of the function and
the fact that the LML-based methods are not even converging, it may
be that again, the interpretation of the RMSE is misleading in this case.

4.5. Further results on the bbob test suite

To achieve a more comprehensive evaluation the HL-MH, we ex-
tend our survey to include ten additional benchmark functions. To
accomplish this, we leverage the blackbox optimization benchmarking
test suite, bbob, via the COCO (COmparing Continuous Optimizers)
platform [57]. To showcase the versatility of our approach across
diverse covariance functions, we also consider two additional kernels:
the Matern and Mixed (see A.2). We select two functions from each of
the five bbob categories: Separable Functions, Functions with Low or
Moderate Conditioning, Unimodal Functions with High Conditioning,
Multi-modal Functions with Adequate Global Structure, and Multi-
modal Functions with Weak Global Structure. Each function undergoes
testing in four separate dimensions, specifically, 2, 5, 10, and 20,
with a starting DOE of 5, 30, 80, and 150 samples, respectively.
We select random function instances to enable shifting, scaling, and
rotation operations (see Appendix A.6). We set an 𝑅2 error target
based on the complexity and dimensionality of the functions, similar
to the methodology proposed by Xu et al. [17]. To assess the statistical
significance of the results when comparing the three methods, we
performed a pairwise comparison using the Conover test for a two-
way balanced complete block design, complemented by the Holm
𝑝-value adjustment method [58]. For a concise presentation of the
results, we employed the compact letter display method commonly
used in multiple-comparisons procedures [59], similar to the analysis
performed by Camero et al. [60]. Methods that share a letter are not
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Fig. 12. Results of test bed 1 with RQ kernel.

Fig. 13. Results of test bed 1 with RBF kernel.

Fig. 14. Misleading MSE values with the Solomon function because of under-sampling.

significantly different (we assumed a significant level of 𝛼 = 0.01). The
results, including this statistical analysis, are presented in Table 2. The
best results of the Conover test are also highlighted in bold. The goal is
to ensure that upon reaching the error target, we can achieve at least
a 10% improvement over the best 𝑅2 value calculated with the initial
design.

For each method, we show the average minimum number of it-
erations needed for a method to reach the 𝑅2 target error in each
domain kernel. The best performing method of each domain assessment
is highlighted in bold. We also report the standard deviation based
on 30 different runs. Overall, our findings show that the LML-MH
consistently exhibits better performance than LML-GB. Undeniably, the
Hybrid Loss approach further outshines, showing faster accuracy im-
provement across 38 out of the 40 synthetic problems assessed against
the other two, state of the art, methods. The HL-MH method also seems
to scale its performance well as the dimensionality of the problem
increases. The two cases where it did not outperform the LML methods
are likely attributable to underfitting complications, resembling those
discussed in Fig. 14. Moreover, the standard deviation of the Hybrid
Loss approach is distinctly tighter, or at the very least, in line with the
outcomes of the log marginal likelihood methods. The results of the
Conover tests show statistically significant differences in the majority
of the test cases, confirming the different performance of the evaluated
methods. An exception is the function bbob_f008_i02, where no

statistical difference was observed at the chosen 𝛼 level. Notice that the
ranking implied by the compact letter display does not correspond to a
hierarchy of method performance. For example, in the two-dimensional
bbob_f012_i04 case, the letter ‘a’ represents the most efficient
methods and indicates similar statistical performance between LML-GB
and HL-MH, as evidenced by a Wilcoxon test 𝑝-value of 0.011 (null
hypothesis not rejected). Conversely, a comparison between HL-MH
and LML-MH shows a significant statistical difference, with a 𝑝-value
of 3.8e−06, rejecting the null hypothesis (for more information on the
Wilcoxon test, see [61]).

4.6. Engineering application

In order to verify the results obtained on benchmark-problems,
in this section we present an engineering application in the crash-
optimization framework. In automotive safety analysis, besides axial
crush, 3-point bending impact is a relevant impact mode to investigate
the energy absorption behavior and the intrusion of structural com-
ponents. Please refer to Appendix A.7 for more details on the 3-point
bending test.

We prepare a FEM model for the single precision LS-DYNA explicit
solver 9.3.1. Both the impactor and supports are modeled as rigid
bodies. In contrast, the bar is composed of 9360 deformable shell
elements. The material of the beam is an extrusion aluminum alloy
AA6014, a typical lightweight material used to improve the crash
performance of the body in white. We consider two different versions
of this load case:

As shown in Fig. 21, we distinguish a problem (𝑎) where the
beam consists of a single LS-DYNA Part, from problem (𝑏) where the
sample is randomly divided into small subgroups of shell elements that
belong to two different LS-DYNA parts. Shell elements with a constant
thickness are assigned to each part. Therefore, we use shell thicknesses
as independent variables. Consequently, in problem (𝑎) we have a single
thickness 𝑡, while in problem (𝑏) we are dealing with thicknesses 𝑡1 and
𝑡2 (i.e. the two input variables). From now on, we collect the thickness
variables in the generic vector 𝒕 = {𝑡1,… , 𝑡𝑑} Note that the two-variable
variant, although unrealistic from the point of view of manufacturing,
is very interesting in terms of predicting response function values.

In terms of the response functions to be predicted, for either prob-
lem we analyze the absorbed energy and stresses and strains with the
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Fig. 15. Results of test bed 2 with RQ kernel.

Fig. 16. Results of test bed 2 with RBF kernel.

Fig. 17. Results of test bed 3 with RQ kernel.

Fig. 18. Results of test bed 3 with RBF kernel.

Fig. 19. Results of test bed 4 with RQ kernel.
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Table 2
Summary of test results on the bbob test suite. The best results are highlighted in bold.

Group bbob id Domain Kernel R2 target LML-GB LML-MH HL-MH Conover

Group 1 bbob_f002_i03 [−5, 5]2 RBF 0.97 4.8 ± 1.3 4.5 ± 1.3 3.9 ± 0.4 a-a-b
[−5, 5]5 RBF 0.97 6.8 ± 4.3 4.1 ± 1.4 2.9 ± 1.3 a-ab-b
[−5, 5]10 RBF 0.97 18.3 ± 2.4 15.5 ± 2.7 13.9 ± 2.9 a-ab-b
[−5, 5]20 RBF 0.85 20.1 ± 3.5 19.5 ± 2.5 16.3 ± 2.5 a-ab-b

bbob_f004_i04 [−5, 5]2 RQ 0.95 15.6 ± 1.6 15.3 ± 1.8 15.1 ± 0.9 a-a-a
[−5, 5]5 RQ 0.7 23.5 ± 1.3 23.5 ± 2.8 15.3 ± 2.0 a-a-b
[−5, 5]10 RQ 0.55 16.5 ± 4.5 16.3 ± 4.6 8.7 ± 3.7 a-a-b
[−5, 5]20 RQ 0.55 19.3 ± 7.9 19.3 ± 7.9 11.9 ± 6.4 a-a-b

Group 2 bbob_f006_i01 [−5, 5]2 Matern 0.95 3.3 ± 0.9 3 ± 0.9 2.7 ± 0.4 a-ab-b
[−5, 5]5 Matern 0.9 13.5 ± 2.9 13.3 ± 2.8 10.2 ± 2.3 a-a-b
[−5, 5]10 Matern 0.9 4.5 ± 1.9 4.8 ± 1.8 3.4 ± 2.0 a-a-a
[−5, 5]20 Matern 0.9 >50 >50 16.6 ± 3.0 a-a-b

bbob_f008_i02 [−5, 5]2 RQ 0.9 6.1 ± 0.2 6.1 ± 0.2 5.5 ± 0.3 a-a-a
[−5, 5]5 RQ 0.85 9.7 ± 3.0 9.7 ± 3.0 7.7 ± 2.3 a-a-a
[−5, 5]10 RQ 0.8 16.4 ± 3.4 16.4 ± 3.4 15.4 ± 2.8 a-a-a
[−5, 5]20 RQ 0.75 13.5 ± 5.3 13.5 ± 5.3 12.3 ± 5.0 a-a-a

Group 3 bbob_f011_i03 [−5, 5]2 RBF 0.97 8.9 ± 1.6 8.1 ± 1.0 7.6 ± 0.8 a-b-b
[−5, 5]5 RBF 0.97 9.11 ± 3.3 6.7 ± 2.9 4.6 ± 1.9 a-ab-b
[−5, 5]10 RBF 0.95 15.8 ± 5.8 15.6 ± 4.0 7.7 ± 3.3 a-a-b
[−5, 5]20 RBF 0.6 17.2 ± 4.0 18.5 ± 4.2 12.7 ± 2.8 a-a-b

bbob_f012_i04 [−5, 5]2 Mixed 0.9 7.6 ± 1.0 13.0 ± 2.3 6.2 ± 0.5 a-b-a
[−5, 5]5 Mixed 0.4 24.6 ± 0.7 24.0 ± 0.2 21.2 ± 0.6 a-b-c
[−5, 5]10 Mixed 0.25 13.3 ± 7.0 11.5 ± 4.5 10.6 ± 4.5 a-b-b
[−5, 5]20 Mixed 0.2 32.7 ± 4.7 27.4 ± 3.1 27.4 ± 3.0 a-b-b

Group 4 bbob_f015_i03 [−5, 5]2 Matern 0.97 9.6 ± 1.1 9.3 ± 1.1 8.3 ± 0.6 a-ab-b
[−5, 5]5 Matern 0.7 14.8 ± 3.1 14.7 ± 4.8 10.1 ± 2.4 a-ab-b
[−5, 5]10 Matern 0.65 22.2 ± 2.7 17.7 ± 2.8 11.2 ± 2.5 a-ab-b
[−5, 5]20 Matern 0.45 25.9 ± 1.5 23.5 ± 1.7 5.9 ± 3.2 a-a-b

bbob_f019_i02 [−5, 5]2 RQ 0.9 19.3 ± 1.3 19.1 ± 1.0 18.2 ± 0.8 a-a-a
[−5, 5]5 RQ 0.5 18.3 ± 5.4 18.9 ± 5.5 11.8 ± 1.7 a-a-b
[−5, 5]10 RQ 0.3 13.9 ± 1.7 13.5 ± 3.4 14.9 ± 1.9 a-a-a
[−5, 5]20 RQ 0.25 8.6 ± 6.0 8.6 ± 6.0 6.5 ± 6.4 a-a-a

Group 5 bbob_f020_i05 [−5, 5]2 RBF 0.95 5.8 ± 1.5 4.5 ± 1.0 4.2 ± 0.5 a-b-b
[−5, 5]5 RBF 0.95 20.8 ± 4.9 19.6 ± 4.7 14.7 ± 4.9 a-a-b
[−5, 5]10 RBF 0.9 23.8 ± 2.0 23.8 ± 1.0 16.6 ± 1.2 a-a-b
[−5, 5]20 RBF 0.75 >50 >50 15.4 ± 5.2 a-a-b

bbob_f024_i02 [−5, 5]2 Mixed 0.65 15.7 ± 1.8 18.1 ± 0.9 12.3 ± 0.5 a-b-a
[−5, 5]5 Mixed 0.65 9.0 ± 3.0 8.2 ± 2.6 5.6 ± 2.3 a-a-a
[−5, 5]10 Mixed 0.7 13.6 ± 2.4 11.2 ± 1.6 11.6 ± 1.5 a-a-a
[−5, 5]20 Mixed 0.7 13.7 ± 6.3 11.4 ± 7.8 11.1 ± 3.0 a-a-a

Fig. 20. Results of test bed 4 with RBF kernel.

Fig. 21. Beam tested in the 3-point bending load case: Version (𝑎), one part, on the
left and version (𝑏), two parts, on the right.

most critical values. As a background assumption, we average between
values measured on the respective integration points such that there is
only one value for each shell element. The generic function of the most
critical stress/strain value can be formulated as follows:

max
𝒕,𝑖,𝑘

(𝑦𝑖(𝒕))𝑘 (17)

where the variable 𝑦 represents a generic response function for strain
and stresses. The letters 𝑖 = 1,… , 9360 and 𝑘 = 1,… , 10 represent the
indices of the shell elements and timesteps of the numerical simulation,
respectively. In total, we consider 18 response functions: the unique six
elements of the strain matrix 𝑬 (namely 𝜀𝑥𝑥, 𝜀𝑥𝑦, 𝜀𝑥𝑧, 𝜀𝑦𝑦, 𝜀𝑦𝑧, and 𝜀𝑧𝑧),
the three deviatoric strains 𝑒𝑥𝑥, 𝑒𝑦𝑦, 𝑒𝑧𝑧, and the nine equivalent stress
components. See Appendix A.8 for more details.
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Fig. 22. Starting from left to right, RBF prediction of the 𝑒𝑧𝑧 critical value with LML-GB, LML-MH and HL-MH approach.

Fig. 23. Starting from left to right, numerical simulation values of 𝑠𝑦𝑦, RQ prediction of the LML-GB, LML-MH and HL-MH approach.

4.7. Results of the engineering application

Finally, we report the outcome of the test on the crash application
analyzed. Instead of showing again the convergence curves for all
19 response functions investigated, we would like to summarize the
key-findings through two very interesting metamodel comparisons,
observed while simulating the two 3-point bending impact versions.
Keep in mind that in this case, unlike the test beds with the benchmark
functions, the target function is unknown and most importantly, it is
‘‘expensive to evaluate’’. Therefore, it is not practicable to generate
10000𝑑 test points to assess the GPR quality.

With reference to test (𝑎), Fig. 22 shows the prediction comparison
of the critical deviatoric strain 𝑒𝑧𝑧 gained on a dataset of eleven samples
with an RBF kernel.

Since the analytic function is not known a priori, to have a better
visual understanding of the test case we ran 100 LS-DYNA simulations
by evenly varying the thickness 𝑡1 in the interval [0.8, 4.0] mm. The
results of these simulations are shown as a blue scatter plot in Fig. 22.
The prediction of LML-based methods turns out to be familiar and
reminds us of the problems of distorted metamodels already described
in Section 2.4. By contrast, the Hybrid Loss method does not experience
this issue and, on the same dataset, returns a prediction that is closer
to the real simulation values.

Finally, we turn the focus to the stress prediction of the 2-
dimensional test case, i.e., problem (𝑏). Here, we noticed that the
deviatoric stress prediction 𝑠𝑦𝑦 is particularly prone to the pitfalls of
LML. In order to visually reproduce the response function 𝑠𝑦𝑦 we run
a homogeneous grid of 32 × 32 numerical simulations in the [0.8, 4.0]2
mm2 design space. The trend of this response function can be observed
on the leftmost side of Fig. 23.

The target function 𝑠𝑦𝑦 has a very steep region, nearly a discontinu-
ity, for values of 𝑡1 and 𝑡2 that are very similar to each other. Based on
an optimal dataset of 10 observations, we can visually see how LML-
based methods completely fail to predict 𝑠𝑦𝑦, generating almost flat
patterns instead. In contrast, the MH-HL method, with only 10 samples,
succeeds in nicely capturing the landscape of the target function. This
is a very beneficial property in order to guide the design optimization
in its early stages. To support the visual evidence, we compute the
𝑅2 score by exploiting the 1024 grid points used to render the target
function. While the LML methods score nearly zero, the 𝑅2 score of the
Hybrid Loss marks an impressive 0.741.

5. Conclusions

In this paper we proposed the Hybrid Loss (HL), a new uncertainty-
aware objective function which can be employed to improve the fitting
performance of Gaussian Process (GP). The method is targeted at
‘‘black-box’’ applications featuring time-demanding function evalua-
tions, where all available observations are expected to be used to
generate the most accurate global prediction possible and there is
no room for unnecessary solver-calls. By using a Monte Carlo based
approach, the proposed methodology integrates a global estimation of
the variance of the Gaussian process into the Log Marginal Likelihood
(LML), the objective function commonly used in the literature for the
hyperparameter tuning of GPs. The novel objective function is defined
according to a weighted-sum logic and is optimized with a meta-
heuristic algorithm. Following a common active learning practice, this
method was coupled with an adaptive sampling learning strategy to
further study its global metamodeling accuracy and its convergence
across an iterative process.
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Our tests were carried out on 22 benchmark functions and one
engineering application. They clearly revealed how uncertainty can be
successfully leveraged to avoid the well-known pitfalls of the marginal
likelihood and to improve the hyperparameter selection. Although
results naturally differ depending on the complexity and dimensionality
of the problem, as the summary in Table 2 shows, the HL-MH approach
can reduce the number of iterations needed to reach a specific accu-
racy target by 3% to 55% compared to LML methods. Therefore, the
collected evidence show that the Hybrid Loss succeeds in extracting
the best from the dataset used. Considering that a single function
evaluation in the domain of time-consuming functions can take several
hours to days, saving even one evaluation becomes vital. The presented
methodology also proves to be remarkably robust against overfitting
and is well suited to active learning methods, yielding very consistent
results. In addition, the method seems to scale well with problem di-
mensionality and is independent of the covariance function being used.
These remarkable improvements, especially in the convergence rate of
response predictions, suggest that the Hybrid Loss has great potential
to transform conventional GP fitting practices, thereby significantly
improving the overall efficiency of the optimization process in this
application domain.

Since the scope of application is broad, we are confident that the
proposed methodology has great potential. Among the benefits already
mentioned, we would like to remark that the main one is to favor the
efficiency of design optimizations, avoiding the waste of costly numer-
ical simulations. In addition, the MH-HL method proved to be quite
flexible even with relatively large hyperparameter ranges. This could
be a very handy user-friendly feature, especially for less experienced
users.

A possible future research direction could be the extension to other
multi-objective optimization (MOO) approaches. This could help to
handle properly, for instance, nonconvex Pareto curves. Furthermore,
although the approaches employed within this work have provided
great results, it might be worth exploring more recent integration meth-
ods and meta-heuristic algorithms such as VEGAS algorithm and Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES), respectively.
Additionally, the analysis of time- or sequence-dependent problems,
such as dynamic processes and time series, represents a fascinating
avenue for future research. Investigating the applicability and effective-
ness of our method in these contexts could further broaden its scope
and potentially open new frontiers in GP-based optimization.
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Appendix

A.1. Numerical integration

Given a set of 𝑁 random samples 𝑋𝑖 in a generic interval [𝑎, 𝑏]𝑑 ,
the integral of Eq. (14) can be approximated using a basic Monte Carlo
estimator as follows.

𝐹𝑁
𝜎2

= 1
𝑁

𝑁−1∑
𝑖=0

𝜎2(𝑋𝑖)
𝑝𝑑𝑓 (𝑋𝑖)

(18)

It should be noted that in the case of uniform distribution, the pdf of
𝑋𝑖 equals 1∕(𝑏−𝑎) since the samples are generated with equiprobability.
Since in our case the generic interval [𝑎, 𝑏]𝑑 equals the unit hypercube
[0, 1]𝑑 , this equation could be further simplified. The 𝑁 samples used
for numerical integration should not be confused with the 𝑛 samples of
the DoE. These are two completely different datasets generated in the
same variable space. The use of capital letters for numerical integration
is intended to avoid any confusion.

In order to get an idea of how accurate and efficient the presented
stochastic integration method can possibly be, consider the follow-
ing analytical example. The well-known Alpine 1 function is given
(please refer to Section 4.3 for the mathematical formula). This must
be integrated in the two-dimensional space [0, 10]2.

Aware that the analytic solution 𝑉𝑟𝑒𝑎𝑙 is known for this problem,
we want to observe how the number of integration samples 𝑁 affects
the accuracy of the Monte Carlo approximation 𝑉𝑀𝐶 . Consider the
definition of relative error 𝜀𝑟𝑒𝑙 in Eq. (19):

𝜀𝑟𝑒𝑙 =
|𝑉𝑟𝑒𝑎𝑙 − 𝑉𝑀𝐶 |

𝑉𝑟𝑒𝑎𝑙
⋅ 100 (19)

In the same way as the number of initial samples of a DoE is often
estimated, it is intuitive to think that the number of points is dependent
on the dimensionality of the problem. Similar to what [54] showed
empirically, assuming linear dependence we investigate the following
values of 𝑁 ∶ 100𝑑, 1000𝑑 and 10000𝑑

Although Monte Carlo methods are sometimes criticized for not
being sufficiently accurate, the relative error displayed in Fig. 24 shows
promising results as early as 100𝑑 samples. It should also be noted
that, unlike the design of experiment points, integration samples are
cheap to evaluate. Therefore, the efficiency of the method allows better
accuracy to be achieved by scaling up the number of samples without
compromising the computational burden irretrievably. To give a rough
idea, the same problem investigated in a 30-dimensional hypercube
with 𝑁 = 300000 samples requires only 0.22 𝑠 using an Intel(R)
Core(TM) i7-10850H CPU @ 2.70 GHz.

A.2. Additional covariance functions

Matern

𝑘𝑀𝑎𝑡𝑒𝑟𝑛(𝑥𝑖, 𝑥𝑗 ) = 𝜎2𝑓
1

𝛤 (𝜈)2𝜈−1

(√
2𝜈
𝑙

𝑑(𝑥𝑖, 𝑥𝑗 )

)𝜈

𝐾𝜈

(√
2𝜈
𝑙

𝑑(𝑥𝑖, 𝑥𝑗 )

)
(20)

Matern kernels are essentially a broader category of the Radial
Basis Function (RBF) kernel, introducing an extra parameter, 𝜈, which
determines smoothness of the function. With a decrease in 𝜈, the func-
tion approximated becomes less smooth. When 𝜈 approaches infinity,
the Matern kernel aligns with the RBF kernel. Typical values for 𝜈
are 1.5 and 2.5, referring to once and twice differentiable functions
respectively. For our tests, we set 𝜈 = 1.5.

In Eq. (20), 𝐾𝜈(⋅) is a modified Bessel function and 𝛤 (⋅) represents
the gamma function. More information on Matern kernel variants can
be found in [33].

Combining Kernels
Kernels can be custom-built to exhibit specific properties for vari-

ous structures. By combining kernels in certain ways, new ones with
distinct properties can be created, which enables the incorporation
of requisite high-level structures into our models. Kernel combination
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Fig. 24. Starting from the left, integral approximation by Monte Carlo method with LHS of the volume underneath the Alpine 1 function with 200, 2000, and 20 000 samples,
respectively.

can be achieved through basic mathematical operations such as addi-
tion and multiplication. From a notation point of view, these kernel
operations can be expressed as follows:

𝑘𝑎 + 𝑘𝑏 = 𝑘𝑎(𝑥𝑖, 𝑥𝑗 ) + 𝑘𝑏(𝑥𝑖, 𝑥𝑗 ) (21)

𝑘𝑎 × 𝑘𝑏 = 𝑘𝑎(𝑥𝑖, 𝑥𝑗 ) × 𝑘𝑏(𝑥𝑖, 𝑥𝑗 ) (22)

Keeping this notation in mind, we introduce a composite kernel
below, achieved by multiplying the SE kernel with the summation of
the periodic and the rational quadratic kernels. This kernel structure
is acknowledged in the current literature and has been employed, for
instance, in Duvenaud’s work as the foundational kernel architecture
for extrapolating the carbon dioxide level records from the Mauna Loa
observatory [38].

𝑘𝑀𝑖𝑥𝑒𝑑 = 𝑘𝑆𝐸 × (𝑘𝐸𝑆𝑃 + 𝑘𝑅𝑄) (23)

For ease of reference, we will denote this kernel as the Mixed kernel.

A.3. Visual performance on the 2D Rosenbrock function

A second test with a two-dimensional function is shown in the
following. We consider the Rosenbrock function, a nonconvex function
characterized by a nearly flat u-shaped region in the middle of the
domain and steep gradient in the bordering areas of the domain. The
mathematical formula of the Rosenbrock function is given in Eq. (24):

Rosenbrock

𝑓𝑅𝑜𝑠(𝒙) = 100(𝑥2 − 𝑥21)
2 + (𝑥1 − 1)2 𝑥1, 𝑥2 ∈ [−4, 4] (24)

For this problem we employ an RBF kernel trained on ten samples
with the same set the weights used in the previous example (see
Figs. 25 to 28)

Again, the Hybrid Loss generates the closest representation of the
target function. In the gradient based metamodel, the length-scale of
the RBF kernel is remarkably small and this generates a series of spikes
across the training points. The metamodel obtained by differential
evolution, although more accurate, shows an unusual wavelike pattern
in the presence of the training points.

A.4. Error metrics

A.5. Benchmark functions

To take a heterogeneous selection of test functions, we summarize
below some function classification criteria presented by Winston and
afterwards resumed by Jamil et al. [62,63].

Table 3
Error metrics.

Error metric Notation Formula

𝑅2 score 𝑅2 1 −
∑𝑛𝑡𝑒𝑠𝑡

𝑗=1 (𝑓 (𝑥𝑗 )−𝑓 (𝑥𝑗 ))2∑𝑛𝑡𝑒𝑠𝑡
𝑗=1 (𝑓 (𝑥𝑗 )−𝑓 (𝑥𝑗 ))2

Mean squared error 𝑀𝑆𝐸 1
𝑛𝑡𝑒𝑠𝑡

∑𝑛𝑡𝑒𝑠𝑡
𝑗=1 (𝑓 (𝑥𝑗 ) − 𝑓 (𝑥𝑗 ))2

Root mean squared error 𝑅𝑀𝑆𝐸
√

1
𝑛𝑡𝑒𝑠𝑡

∑𝑛𝑡𝑒𝑠𝑡
𝑗=1 (𝑓 (𝑥𝑗 ) − 𝑓 (𝑥𝑗 ))2

Normalized mean absolute error 𝑁𝑀𝐴𝐸
1

𝑛𝑡𝑒𝑠𝑡

∑𝑛𝑡𝑒𝑠𝑡
𝑗=1 |𝑓 (𝑥𝑗 )−𝑓 (𝑥𝑗 )|

max𝑗 𝑓 (𝒙𝒋 )−min𝑗 𝑓 (𝒙𝒋 )

• Modality: The modality of a function refers to the amount of
ambiguous peak in its landscape. Such peaks often match local
optima, which are real traps for optimization algorithms and are
non-trivial to be approximated by regression models. A function
with only one optimum is said to be unimodal.

• Basins: A basin is a relatively large area that can be entered by
passing through a very steep gradient. This makes the basins a
very attractive region. However, once landed in this region, the
identification of the optimum is challenging since the landscape
resembles a plateau.

• Valleys: A valley corresponds to an attractive narrow area of little
change surrounded by regions of steep descent.

• Separability: Several definitions of separability are given in the
literature, although it is generally understood as the complexity
in optimizing a given benchmark function. Here, we use the
definition of separability used by Salomon [64], which is:
𝜕𝑓 (𝒙)
𝜕𝑥𝑖

= 𝑔(𝑥𝑖)ℎ(𝒙) (25)

where 𝑔(𝑥𝑖) denotes any function that depends on the variable
𝑥𝑖 only, while ℎ(𝑥) is a function which depends on all other
variables.

• Dimensionality: Dimensionality 𝑑 refers to the number of inde-
pendent variables of a function. An increase in dimensionality
leads to an exponential increase in the design space.

With these features in mind, we present hereinafter a selection of
12 benchmark functions to be used for testing. We group these test
functions into four test beads based on increasing dimensionality.

Test bed 1 (𝑑 = 1)

(1) Modified sine wave

𝑓1(𝑥) =
7
2
𝑥 + sin(6𝑥)2 − 10𝑥 ⋅ sin(5𝑥) 𝑥 ∈ [−3, 3] (26)

(2) Peaks

𝑓2(𝑥) = 3(1−𝑥2) ⋅exp (−𝑥2 − 1)−(2𝑥−10𝑥3) ⋅exp (−𝑥2) 𝑥 ∈ [−8, 8] (27)

104 4.2. Publication II



Applied Soft Computing 154 (2024) 111325

17

P. Lualdi et al.

Fig. 25. Results of the three HPO techniques (starting from the left: LML with L-BFGS-B, LML with DE and Hybrid Loss with DE) tested on the Rosenbrock function.

Fig. 26. Benchmark functions of the test bed 1.

(3) Salomon

𝑓3(𝑥) = 1 − cos (2𝜋|𝑥|) + 0.1|𝑥| 𝑥 ∈ [−4, 4] (28)

Test bed 2 (𝑑 = 2)

(4) Alpine 1

𝑓4(𝒙) = |𝑥1𝑠𝑖𝑛(𝑥1) + 0.1𝑥1| + |𝑥2𝑠𝑖𝑛(𝑥2) + 0.1𝑥2| 𝑥1, 𝑥2 ∈ [0, 10] (29)

(5) Easom

𝑓5(𝒙) = − cos(𝑥1) cos(𝑥2) exp(−(𝑥1−𝜋)2−(𝑥2−𝜋)2) 𝑥1, 𝑥2 ∈ [−4, 4] (30)

(6) Goldstein-Price

𝑓6(𝒙) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥22)]
⋅ [30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1
+ 12𝑥21 + 4𝑥2 − 36𝑥1𝑥2 + 27𝑥22)] 𝑥1, 𝑥2 ∈ [−2, 2] (31)

Test bed 3 (3 ≤ 𝑑 < 10)

(7) Colville

𝑓7(𝒙) = 100(𝑥21 − 𝑥2)2 + (𝑥1 − 1)2 + (𝑥3 − 1)2 + 90(𝑥23 − 𝑥4)2

+ 10.1((𝑥2 − 1)2 + (𝑥4 − 1)2)

+ 19.8(𝑥2 − 1)(𝑥4 − 1) 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ [0, 4] (32)

(8) Hartman 6

𝑓8(𝒙) =
4∑
𝑖=1

𝑐𝑖 exp

[ 6∑
𝑗=1

𝑎𝑖𝑗 (𝑥𝑗 − 𝑝𝑖𝑗 )2
]

𝑥𝑗 ∈ [0, 1] (33)

(9) Griewank

𝑓9(𝒙) = 1 +
7∑
𝑖=1

𝑥2𝑖
4000

−
7∏
𝑖=1

cos

(
𝑥𝑖√
𝑖

)
𝑥𝑖 ∈ [−4, 4] (34)

Test bed 4 (10 ≤ 𝑑 ≤ 15)

(10) Ackley

𝑓10(𝒙) = −20 ⋅ exp
⎛⎜⎜⎝
−0.2

√√√√ 1
10

10∑
𝑖=1

𝑥2𝑖
⎞⎟⎟⎠
− exp

(
1
10

10∑
𝑖=1

cos(2𝜋 ⋅ 𝑥𝑖)

)

+ 20 + 𝑒𝑥𝑝(1) 𝑥𝑖 ∈ [−4, 4] (35)

(11) Trid

𝑓11(𝒙) =
15∑
𝑖=1

(𝑥𝑖 − 1)2 −
15∑
𝑖=2

𝑥𝑖𝑥𝑖−1 𝑥𝑖 ∈ [−5, 5] (36)
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Fig. 27. Benchmark functions of the test bed 2.

(12) Dixon-Price

𝑓12(𝒙) = (𝑥1 − 1)2 +
15∑
𝑖=2

𝑖(2𝑥2𝑖 − 𝑥𝑖−1)2 𝑥𝑖 ∈ [−10, 10] (37)

The first two test beds we consider are low dimensional so that
we can inspect the representation of the metamodel if needed. The
second test bead includes features with the number of features 𝑑 < 10,
while the third with 10 ≤ 𝑑 ≤ 15. Almost all functions are multimodal,
with different degrees of modality: 𝑓4, 𝑓7 have medium modality, while
𝑓3, 𝑓9 and 𝑓10 are high frequency functions with extreme modality.
Dixon-price, i.e., 𝑓12 is the only unimodal function characterized by a
large central basin. 𝑓6 and 𝑓11 are particularly challenging functions
because of the several orders of magnitude difference between hyper-
surface and domain values. The function 𝑓1 is a combination of linear
and sinusoidal terms that has already shown several pitfalls in the
examples shown in Figs. 3,4 and 5. 𝑓2 is a simplified 1𝑑 of the well-
known Peaks function, a function with central valleys in an overall
flat landscape. Similarly, 𝑓5 has the global minimum located in a
sharp peak in a very narrow region of an overall nearly flat domain.
Among multi-dimensional functions, 𝑓6, 𝑓7, 𝑓8, 𝑓10, 𝑓11 and 𝑓12 are
non-separable.

A.6. bbob test suite

In this section we provide a summary table describing the 10
benchmark functions chosen out of the 24 available in the bbob test
suite, a comprehensive framework mainly designed to evaluate the
performance of optimization algorithms. These benchmark functions
cover unimodal and multimodal landscapes, with varying degrees of
separability and scalability. All benchmark problems are located within
the domain of [−5, 5]𝐷, where 𝐷 represents the dimensionality of the
problem at hand. For the majority of the functions, the global optimum,
denoted as 𝒙𝑜𝑝𝑡, lies in the [−4, 4]𝐷 domain. While 𝒙𝑜𝑝𝑡 denotes the
coordinates of the global optimum in the original search space, 𝒛𝑜𝑝𝑡
represents the coordinates of the global optimum in the transformed
search space. Transformations between these spaces are crucial for the
construction and characterization of the BBOB problem set. Moreover, a
penalty function, 𝑓𝑝𝑒𝑛, is utilized for few bbob problems. This function
applies a penalty to the objective function value for solutions that
surpass the defined domain boundaries, keeping the solutions within
the intended scope of the problem. In addition, the bbob test suite
makes use of operators for creating complex problem characteristics.
These include the order-based spherically symmetric transformation,
denoted as 𝑇𝑜𝑠𝑧, and an asymmetry transformation, 𝑇𝑎𝑠𝑦. Furthermore,
the bbob suite uses the diagonal matrix 𝝀𝛼 as a scaling transformation,
allowing the control of the problem’s conditioning. Finally, orthogonal
matrices, 𝑸 and 𝑹, are utilized to introduce axis-parallel rotations

Fig. 28. Dynamic 3-point bending test scheme.

to the problem space, contributing to the creation of diverse and
challenging landscapes for the optimization algorithms to navigate. For
a more detailed description of the test suite and its notation, we refer
the reader to [65] (see Table 4).

A.7. 3-Point bending test

The 3-point bending load case scenario can be used to derive useful
information to analyze a side rail in a side pole scenario, an NCAP crash
load case [66]. Consider the following dynamic 3-point bending load
case scenario shown below.

As can be seen from the scheme, a beam standing on two fixed
supports is hit by an impactor with a given impact velocity fixed at
2 m∕s. Both the supports and the impactor have a cylindrical shape with
a radius of 50 mm. The beam has a rectangular-shaped cross-section
with a base and height of 10 mm and 100 mm, respectively. Throughout
the simulation, the beam is subjected to an increasing bending moment
until it deforms plastically. The impact is analyzed for 40 ms.

A.8. Element strains and stresses

Element strains are collected in a strain matrix 𝑬 which for the gen-
eral three-dimensional strain situation can be formulated as
follows:

𝑬 =
⎡⎢⎢⎣

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑥𝑦 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑧𝑧

⎤⎥⎥⎦
(38)

With the deviatoric strains:
𝑒𝑥𝑥 = +2∕3 ⋅ 𝜀𝑥𝑥 − 1∕3 ⋅ 𝜀𝑦𝑦 − 1∕3 ⋅ 𝜀𝑧𝑧
𝑒𝑦𝑦 = −1∕3 ⋅ 𝜀𝑥𝑥 + 2∕3 ⋅ 𝜀𝑦𝑦 − 1∕3 ⋅ 𝜀𝑧𝑧
𝑒𝑧𝑧 = −1∕3 ⋅ 𝜀𝑥𝑥 − 1∕3 ⋅ 𝜀𝑦𝑦 + 2∕3 ⋅ 𝜀𝑧𝑧

(39)

Analogously, element stresses are collected in a stress matrix 𝑺
which for the general three-dimensional strain situation can be formu-
lated as follows:

𝑺 =
⎡⎢⎢⎣

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

⎤⎥⎥⎦
(40)
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Table 4
Summary of the investigated bbob benchmark functions.
bbob id Math formula Function name

bbob_f002 𝑓2(𝒙) =
∑𝐷

𝑖=1 10
6 𝑖−1

𝐷−1 𝑧2𝑖 + 𝑓𝑜𝑝𝑡
𝒛 = 𝑇𝑜𝑠𝑧(𝒙 − 𝒙𝑜𝑝𝑡)

Ellipsoidal

bbob_f004 𝑓4(𝒙) = 10
(
𝐷 +

∑𝐷
𝑖=1 cos(2𝜋𝑧𝑖)

)
+
∑𝐷

𝑖=1 𝑧
2
𝑖 + 100𝑓𝑝𝑒𝑛(𝒙) + 𝑓𝑜𝑝𝑡

𝑧𝑖 = 𝑠𝑖𝑇𝑜𝑠𝑧(𝑥𝑖 − 𝑥𝑜𝑝𝑡) for 𝑖 = 1,… , 𝐷

𝑠𝑖 =

{
10 × 10

1
2

𝑖−1
𝐷−1 , if 𝑧𝑖 > 0 and 𝑖 = 1, 3, 5,…

10
1
2

𝑖−1
𝐷−1 , otherwise

Büche-Rastrigin

bbob_f006 𝑓6(𝒙) = 𝑇𝑜𝑠𝑧
(∑𝐷

𝑖=1(𝑠𝑖𝑧𝑖)
2
)0.9

+ 𝑓𝑜𝑝𝑡
𝒛 = 𝑸𝛬10𝑹(𝒙 − 𝒙𝑜𝑝𝑡)

𝑠𝑖 =

{
102 , if 𝑧𝑖 × 𝑥𝑜𝑝𝑡𝑖 > 0
1, otherwise

Attractive Sector

bbob_f008 𝑓8(𝒙) =
∑𝐷−1

𝑖=1
(
100(𝑧2𝑖 − 𝑧𝑖+1)2 + (𝑧𝑖 − 1)2

)

𝒛 = max(1,
√
𝐷
8
)(𝒙 − 𝒙𝑜𝑝𝑡) + 1

𝒛𝑜𝑝𝑡 = 𝟏

Rosenbrock, original

bbob_f011 𝑓11(𝒙) = 106𝑧21 +
∑𝐷

𝑖=2 𝑧
2
𝑖 + 𝑓𝑜𝑝𝑡

𝒛 = 𝑇𝑜𝑠𝑧(𝑹(𝒙 − 𝒙𝑜𝑝𝑡))
Discus

bbob_f012 𝑓12(𝒙) = 𝑧21 + 106
∑𝐷

𝑖=2 𝑧
2
𝑖 + 𝑓𝑜𝑝𝑡

𝒛 = 𝑹𝑇 0.5
𝑎𝑠𝑦 (𝑹(𝒙 − 𝒙𝑜𝑝𝑡))

Bent Cigar

bbob_f015 𝑓15(𝒙) = 10
(
𝐷 +

∑𝐷
𝑖=1 cos(2𝜋𝑧𝑖)

)
+ ‖𝒛‖2 + 𝑓𝑜𝑝𝑡

𝒛 = 𝑹𝛬10𝑸𝑇 0.2
𝑎𝑠𝑦 (𝑇𝑜𝑠𝑧(𝑹(𝒙 − 𝒙𝑜𝑝𝑡)))

Rastrigin

bbob_f019 𝑓19(𝒙) =
10
𝐷−1

∑𝐷−1
𝑖=1

(
𝑠𝑖

4000
− cos(𝑠𝑖)

)
+ 10 + 𝑓𝑜𝑝𝑡

𝒛 = max(1,
√
𝐷
8
)𝑹𝒙 + 0.5

𝑠𝑖 = 100(𝑧2𝑖 − 𝑧𝑖+1)2 + (𝑧𝑖 − 1)2 for 𝑖 = 1,… , 𝐷
𝒛𝑜𝑝𝑡 = 𝟏

Composite Griewank-Rosenbrock F8F2

bbob_f020 𝑓20(𝒙) = − 1
100𝐷

∑𝐷
𝑖=1 𝑧𝑖 sin(

√|𝑧𝑖|) + 4.18982887 + 100𝑓𝑝𝑒𝑛
𝒛
100

+ 𝑓𝑜𝑝𝑡
𝑧1 = 𝑥1 , ̂𝑧𝑖+1 = ̂𝑥𝑖+1 + 0.25(𝑥𝑖 − 2|𝑥𝑜𝑝𝑡𝑖 |) for 𝑖 = 1,… , 𝐷 − 1
𝒛 = 100(𝛬10(𝒛̂ − 2|𝒙𝑜𝑝𝑡|) + 2|𝒙𝑜𝑝𝑡|)
𝒙𝑜𝑝𝑡 = 4.2096874633∕2 𝟏+−

Schwefel

bbob_f024 𝑓24(𝒙) = min
(∑𝐷

𝑖=1(𝑥𝑖 − 𝜇0)2 , 𝑑𝐷 + 𝑠
∑𝐷

𝑖=1(𝑥𝑖 − 𝜇0)2
)

+10
(
𝐷 −

∑𝐷
𝑖=1 cos(2𝜋𝑧𝑖)

)
+ 104𝑓𝑝𝑒𝑛(𝒙) + 𝑓𝑜𝑝𝑡

2sign(𝑥𝑜𝑝𝑡)⊗ 𝒙,𝒙𝑜𝑝𝑡 = 𝜇0
2

𝟏+−
𝒛 = 𝑸𝛬100𝑹(𝒙̂ − 𝜇0𝟏)

𝜇0 = 2.5, 𝜇1 = −
√

𝜇2
0−𝑑
𝑠

, 𝑠 = 1 − 1
2
√
𝐷+20−8.2

, 𝑑 = 1

Lunacek bi-Rastrigin

With the deviatoric stresses:
𝑠𝑥𝑥 = +2∕3 ⋅ 𝜎𝑥𝑥 − 1∕3 ⋅ 𝜎𝑦𝑦 − 1∕3 ⋅ 𝜎𝑧𝑧
𝑠𝑦𝑦 = −1∕3 ⋅ 𝜎𝑥𝑥 + 2∕3 ⋅ 𝜎𝑦𝑦 − 1∕3 ⋅ 𝜎𝑧𝑧
𝑠𝑧𝑧 = −1∕3 ⋅ 𝜎𝑥𝑥 − 1∕3 ⋅ 𝜎𝑦𝑦 + 2∕3 ⋅ 𝜎𝑧𝑧

(41)
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A multi-fidelity successive response surface method for crash-

worthiness optimization problems

This paper was submitted to the journal Applied Sciences on September 6, 2023.
After a double-blind peer review process involving three reviewers, our paper was
accepted and published on October 19, 2023 in Volume 20 of the special issue Struc-
tural Optimization Methods and Applications.

Research contribution

This work aims to address well-known gaps in successive surrogate modeling (SSM)
methods, optimization strategies based on the sequential use of surrogate models
that are employed for the most challenging crash problems, such as front and rear
crash scenarios. Without deviating from the basic philosophy of the sequential
approach, we propose a more advanced logic, based on mature surrogate models
but, most importantly, coupled by an active learning logic that aims to improve the
information from all the collected observations.

Methods

We present the multi-fidelity successive response surface (MF-SRS) method. This
approach exploits the potential of the sequential sampling MIPT-α strategy intro-
duced in Publication I and aims to replace polynomial response functions with the
superior predictive performance of Gaussian processes. In addition, the method in-
cludes a multi-fidelity extension based on the non-linear auto-regressive Gaussian
process (NARGP) model to combine different sources of information for prediction.

Results

The MF-SRS approach was successfully tested on both synthetic problems and a
7-variable mixed size-shape optimization problem to optimize the crash performance
of a crash absorber with trigger mechanisms. MF-SRS consistently outperformed
the original SSM method. We achieved an improvement in specific energy absorption
of about 14 % over the baseline design, with a more efficient use of computational
resources based on parallelized logic.
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Abstract: Due to the high computational burden and the high non-linearity of the responses, crash-
worthiness optimizations are notoriously hard-to-solve challenges. Among various approaches,
methods like the Successive Response Surface Method (SRSM) have stood out for their efficiency in
enhancing baseline designs within a few iterations. However, these methods have limitations that
restrict their application. Their minimum iterative resampling required is often computationally pro-
hibitive. Furthermore, surrogate models are conventionally constructed using Polynomial Response
Surface (PRS), a method that is poorly versatile, prone to overfitting, and incapable of quantifying
uncertainty. Furthermore, the lack of continuity between successive response surfaces results in sub-
optimal predictions. This paper introduces the Multi-Fidelity Successive Response Surface (MF-SRS),
a Gaussian process-based method, which leverages a non-linear multi-fidelity approach for more
accurate and efficient predictions compared to SRSM. After initial testing on synthetic problems,
this method is applied to a real-world crashworthiness task: optimizing a bumper cross member
and crash box system. The results, benchmarked against SRSM and the Gaussian Process Successive
Response Surface (GP-SRS)—a single-fidelity Gaussian process-driven extension of SRSM—show
that MF-SRS offers distinct advantages. Specifically, it improves upon the specific energy absorbed
optimum value achieved by SRSM by 14%, revealing its potential for future applications.

Keywords: crashworthiness optimization; MF-SRS; SRSM; multi-fidelity; design optimization;
Gaussian process; NARGP; concept design

1. Introduction

At present, the automotive industry is mainly facing two pivotal challenges. The
first is the growing importance of road and vehicle safety, which has raised legislative
requirements and forced the inclusion of more effective protection systems in vehicles. The
second challenge is the rising interest in environmental sustainability and energy transition,
which is driving the automotive industry toward higher lightweighting standards, aiming
to reduce fuel and battery consumption. In response to these dual challenges, substantial
efforts are being made to develop vehicles that are both crashworthy and lightweight,
thereby addressing these seemingly contradictory issues at the same time [1].

Over the past decades, the widespread usage of surrogate models, often called meta-
models, has fundamentally transformed the approach to complex real-world optimization
challenges. These methods, introduced as metamodeling techniques by Sacks et al. nearly
35 years ago [2], have evolved into Metamodel-Based Optimization (MBO), a highly effec-
tive strategy for tackling complex black-box “expensive-to-evaluate” functions [3].

This category of functions is particularly prevalent in engineering applications, which
are typically underpinned by time-intensive numerical simulations, such as Finite Element
Analysis (FEA) and Computational Fluid Dynamics (CFD). These simulations require large
computational resources, often monopolizing high-performance computing architectures
for hours or even full days [4].
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To cope with this issue, surrogate models have emerged as an innovative solution
to reduce the vast number of function evaluations required, hence optimizing resource
utilization. These models operate as an abstraction of an underlying phenomenon, generat-
ing a “model of the model” as referred to by Kleijnen [5]. Surrogate modeling operates by
utilizing a set of sampling evaluations. Typically, this process begins with the design space
being sampled through Design of Experiment (DoE) techniques. Subsequent numerical
simulations at these sampled points are executed and results are used to fit surrogate
models over the variable domain [6].

A broad spectrum of metamodeling techniques have been advanced over recent years
to aid complex engineering designs that are reliant on simulation-based methods. These
include Gaussian Process (GP) [7], Polynomial Response Surface (PRS) [8,9], Support Vector
Regression (SVR) [10], Radial Basis Function (RBF) [11], and Neural Network (NN) [12,13].
In the specific context of optimizing crashworthiness problems, PRS, RBF, and GP stand
out as the most commonly used and most successful metamodels [14,15].

Alongside regression methods, various global search strategies can be useful in at-
tempting to identify an optimal global solution in crashworthiness optimization. Given
the highly non-linearity of these problems, which commonly results in the presence of
multiple local minima, methodologies such as Genetic Algorithms (GAs) [16], Evolutionary
Algorithms (EAs) [17,18], and Simulated Annealing (SA) [19] are particularly suitable, but
they often come with a high computational cost that might be unaffordable. In contrast,
gradient-based methods are generally not recommended, particularly for the optimization
of frontal collisions, as they exhibit increased sensitivity to bifurcations compared to lateral
impacts. However, these methods may prove useful as local search strategies for refining
the solution identified by a global optimization algorithm.

Regardless of the regression model considered, the use of global response surfaces is
generally discouraged due to the high non-linearity of crash load cases. In contrast, an iter-
ative approach based on the successive construction of response surfaces is recommended,
especially when the optimum approaches regions of the variable domain with very high
gradients or even discontinuities. This approach, commonly known as the Successive
Response Surface Method (SRSM), has been shown to be effective in crashworthiness
applications, as demonstrated by the research of Stander et al. and Kurtaran et al. [20–22].

Although SRSM has proven capable of identifying the optimal region for various
crashworthiness problems, its application has some limitations. First, SRSM relies on
iterative resampling, which could be a practical challenge since crashworthiness simulations
are very time-consuming. Another potential drawback is the lack of continuity between
successive approximations, making it difficult to incorporate information from previous
iterations [14,23]. Finally, to our current understanding, the method does not seem well
suited for integrating valuable data derived from response evaluations of lower fidelity
models. These models, which are comparatively cheaper to evaluate, are often available or
can be generated through automated process chains. The effectiveness of such models has
been shown in the work of Acar et al. [24].

This paper proposes an approach that further enhances the SRSM and aims to overcome
most of its existing limitations. The main contributions of this research are the following:

• We extended the SRSM to achieve qualitatively superior optima and potentially
improve its computational efficiency. This is accomplished by leveraging GP, adaptive
sampling techniques, and multi-fidelity metamodeling.

• Unlike conventional multi-fidelity methods (e.g., basic co-kriging), our approach is
based on a method able to effectively handle complex non-linear correlations between
different fidelities. We also quickly show how this method benefits from parallel job
scheduling on a High-Performance Computer (HPC), enhancing its overall efficiency.

The organization of this paper unfolds as follows. In Section 2, we briefly outline a
common iterative process used to optimize crashworthiness problems and provide the
necessary mathematical notation. Then, in Section 3, we review the key steps of the
sequential response surface methodology. Section 4 then provides a brief overview of multi-
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fidelity metamodeling based on GPs and touches on its potential applications, in which we
distinguish between linear and non-linear multi-fidelity approaches and emphasize the
superiority of the latter through a selection of pedagogical examples. This paper continues
in Section 5, where we present the workflow of our extension of SRSM based on multi-
fidelity metamodeling. In Section 6, we test the proposed approach on a set of multi-fidelity
benchmark functions, in addition to a crashworthiness use case. Finally, in Section 7, we
outline the conclusions and consider potential future research directions.

2. Crashworthiness Optimization: Problem Formulation

Describing a generic crashworthiness design optimization problem using appropriate
mathematical notation is relatively straightforward. Assuming that continuous design vari-
ables are to be handled in a single objective-constrained problem, we can mathematically
formulate the problem as follows:

min
x

f (x) (1)

subject to gj(x) ≤ 0, j = 1, . . . , nc (2)

xil ≤ xi ≤ xul , i = 1, . . . , d, (3)

where x ∈ Rd is the vector of the d design variables, xil and xiu denote the physical lower
and upper bounds on these variables, f is the objective function, and gi with j = 1, . . . , nc
is the jth of the nc constraint functions necessary to set the inequality constraints. Note
that both the objective and constraint functions map from the d-dimensional real space to
the real numbers, so that f : Rd → R and gi : Rd → R, respectively. The goal is to find the
optimal xopt ∈ Rd, the vector that minimizes the response of the objective function f .

3. Successive Response Surface

Due to the high computational burden and the challenge of globally capturing the
non-linearities within the variable domain, the problem, as formulated above, is not yet
ready for resolution. The SRSM can navigate us toward a more feasible formulation for
such a problem by employing two main adjustments. Initially, the “expensive-to-evaluate”
response functions associated with FEA simulations are substituted with the response
surface models. Specifically, f and gj are replaced with f̂ and ĝj respectively, such that
f̂ : Rd → R and ĝi : Rd → R. These surrogate models are nothing but regression models
constructed on an initial dataset of np observations, commonly referred to as the Design of
Experiment (DoE): D = {(xp, yp)|p = 1, . . . , np}.

Many authors have used Polynomial Response Surface models as a simple but effective
way of generating a surrogate model [22,25,26]. The function is given for a general quadratic
polynomial surface approximation:

yp = β0 +
d

∑
i=1

βixpi +
d

∑
i=1

d

∑
k=1

βikxpixpk + εp p = 1, . . . , np, (4)

where xp are the design points used to train the model, yp are the associated evaluated
response values, βi are the constants to be determined, and εp includes both the bias errors
and random errors. The minimum number of numerical simulations, denoted as np,min,
required to construct a given approximation depends on the number of design variables.
For instance, in the case of a quadratic approximation, np,min = (d + 1)(d + 2)/2. The
D-optimal sampling is frequently employed to explore the variable domain. For a deeper
understanding of the PSR and D-optimal criterion, we recommend readers refer to the
work of Myers and Montgomery [8].

Moreover, we substitute the original optimization problem with a succession of less
complex and smaller problems. Ideally, these subproblems should be located in a subregion
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of the variable domain and should still provide the same optimal solution to the original
problem. We can formulate the kth subproblem by readjusting Equations (1)–(3) as follows:

min
x

f̂ (k)(x) (5)

subject to ĝj
(k)(x) ≤ 0, j = 1, . . . , nc (6)

x(k)il ≤ xi ≤ x(k)ul , i = 1, . . . , d (7)

where x(k)il ≥ xil , x(k)iu ≤ xiu, (8)

where x(k)il and x(k)il define the kth subregion, called the Region of Interest (RoI) by some
authors [27,28].

The domain of the variables can be translated and narrowed by adjusting the bounds
of each variable. In this way, the focus of optimization can be shifted to only the new sim-
plified domain of interest. Several heuristic schemes using different measures to evaluate
the accuracy of the metamodel have been proposed and used to automate the so-called
“panning and zooming“ strategy. In this article, we briefly introduce the bounds adjustment
scheme, which has been successfully used to solve a variety of crashworthiness optimiza-
tion problems [20,21,29]. As shown in Figure 1, the Ωk+1 subproblem is centered on the
optimal design of the Ωk subproblem, i.e., x(k)opt. Moreover, the size of the Ωk+1 subregion
is a fraction of the Ωk subregion. This reduction in the feature domain along a generic ith
variable is determined by the fraction parameter λi, which is computed as follows:

λ
(k+1)
i = η + (γ− η)

|x(k)i,opt −
x(k)iu +x(k)il

2 |
x(k)iu −x(k)il

2

. (9)

Figure 1. Sequential update of the Region of Interest: (a) pure panning, (b) pure zooming, and (c) a
pan-and-zoom combination.

From Equation (9), it is quite clear that λ
(k+1)
i is equal to γ when the optimum is

located at the lower and upper bounds. This extreme case results in pure panning, i.e.,
the pure translation of the RoI, when γ = 1. Conversely, when the optimum lies at the
midpoint between x(k)il and x(k)iu , λ

(k+1)
i is equal to η, resulting in pure zooming or domain

shrinkage. It is quite clear that η and γ represent the upper and lower boundary values,
respectively, of the fraction parameter λi.

The maximum value of λ
(k+1)
i , represented by λ(k+1) = max λ

(k+1)
i for (i = 1, . . . , n),

is selected as the fraction to be applied across all design variables. This choice preserves
the aspect ratio of the design region throughout the iterative process. Using the fraction
parameter value λ(k+1), we can establish the upper and lower bounds of the ith design
variable for the (k + 1)th subregion as follows:

x(k+1)
il = x(k)i,opt −

1
2

λ(k+1)(x(k)iu − x(k)il ) (10)
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x(k+1)
iu = x(k)i,opt +

1
2

λ(k+1)(x(k)iu − x(k)il ). (11)

4. Multi-Fidelity Metamodeling

Multi-fidelity modeling techniques are increasingly gaining momentum in the design
optimization field, offering a viable solution to reduce the computational cost of high-
fidelity response evaluations without compromising accurate metamodel predictions. Even
though these techniques may be of a different nature, being based on either linear regression
or neural networks, the most common building block of multi-fidelity schemes is GP
regression [30,31]. GPs are well-suited to many MF-metamodel methods due to their ability
to capture highly non-linear responses in as few functions as possible, which is the reason
this study focuses on GP methods.

This section begins with an overview of the Gaussian Process, which is essential
for understanding the multi-fidelity approach discussed in this paper. Then, both linear
and non-linear multi-fidelity methodologies are described, highlighting their importance,
challenges, and solutions for integrating different levels of fidelity.

4.1. Background on Gaussian Process

Within the context of black-box expensive-to-evaluate functions, a common goal is to
discern the connection between the design variables and a generic black-box function f .
This task can be accomplished by initially retrieving a dataset D of input and output obser-
vation pairs (for the sake of clarity, we recall that D = {(xp, yp)|p = 1, . . . , np} = {x, y})
and then fitting a regression model to the collected observations. Before conditioning on
such observations, a GP is defined by its mean function and kernel function (or covari-
ance function):

f (x) ∼ GP(µ(x), k(xi, xj)). (12)

It is common practice to assume that, before conditioning GP on the observations, the
mean function is zero across the variable domain, especially since uncertainty about the
mean can be accommodated by including an additional term in the kernel [32]. As a result,
the structure that a GP can capture is entirely dictated by its covariance function k. This
function, which depends on a vector of hyperparameters θ, yields the positive-definite
symmetric covariance matrix K ∈ Rnp×np . By maximizing the log-marginal likelihood
(Equation (13)), it is possible to calculate vector θ:

log p(D|θ) = −1
2

yTK−1y− 1
2

log |K| − n
2

log 2π. (13)

Once the hyperparameters are identified, it is possible to infer the posterior distribution
by conditioning the joint Gaussian distribution to make predictions on unseen data:

p( f∗|x∗,D, θ) ∼ N ( f∗|µ∗(x∗), σ2
∗(x∗)) (14)

µ∗(x∗) = knp K−1y (15)

σ2
∗(x∗) = k∗∗ − k∗nK−1kT

∗n, (16)

where x∗ refers to a new given input, f∗ to its prediction, k∗∗ = k(x∗, x∗), and
k∗n = [k(x∗, x1), . . . , k(x∗, xnp)]. The posterior mean µ∗ and its related uncertainty, namely
the posterior variance σ2∗ , can be, therefore, employed to make predictions. For more
details on the conditioning of the Gaussian distribution and some examples of covariance
functions, we suggest that the reader refer to the work of Rasmussen and Williams [7].

4.2. Linear Multi-Fidelity Metamodeling

In this section, we briefly present a common linear multi-fidelity technique used in
engineering disciplines to integrate computational models of varying fidelity (accuracy) to
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make predictions. This autoregressive scheme was proposed by Kennedy and O’Hagan
in 2000 [30], commonly referred to as AR1, and is still widely viewed as a reference point.
Although most practical problems involve only two fidelities, we generalize the problem
by assuming that we have s levels of information sources available. Therefore, for a generic
level t, we define yt(xt) to be the output of a given input xt ∈ Rd. We can then, for each
level, group inputs and outputs into a generic database Dt = {xt, yt} by ordering the data
by increasing fidelity, i.e., t = 1, . . . , s. In other words, y1 is the output of the least accurate
model, while ys is the output of the most accurate model. That being said, we present the
autoregressive scheme of Kenny and O’Hagan in Equation (17):

ft(x) = ρ · ft−1(x) + δt(x). (17)

In Equation (17), ρ serves as a scaling factor to denote the magnitude of correlation
among different fidelity outputs, δt(x) is a GP with mean µδt and covariance function kt,
ft(x), and ft−1(x) are the GPs predicting data at fidelity level t and t− 1, respectively. This
linear autoregressive scheme relies on the Markov property, asserting that when the closest
point ft−1(x) is known, no further information about ft(x) can be gained from any other
model output ft−1(x′) [33]:

cov{ ft(x), ft−1(x′)| ft−1(x)} = 0 ∀x 6= x′. (18)

4.3. Non-Linear Multi-Fidelity Metamodeling

Although Kennedy and O’Hagan’s scheme has already been proven successful in
the literature [34,35], there are cases that are very common in realistic modeling scenarios,
where cross-correlations between models of different fidelity, while very informative,
show a more complex pattern than a simple linear correlation. In such a case, a linear
autoregressive scheme might work well only in narrow ranges of the input parameters,
but would not be able to learn a more comprehensive non-linear correlation in the global
domain. With this in mind, we briefly introduce the non-linear autoregressive multi-
fidelity GP regression (NARGP) algorithm introduced by Perdikaris et al. [36], which
aims to extend the Kennedy and O’Hagan scheme to more complex non-linear and space-
dependent correlations. We assume the design datasets to have a nested structure, such as
D1 ⊆ D2 ⊆, . . . ,Ds, and we generalize the scheme of Equation (17):

ft(x) = zt−1 · ft−1(x) + δt(x) (19)

where the mapping between a low model and its higher fidelity counterpart is denoted by
the unknown function zt−1. To enable flexible and non-linear multi-fidelity algorithms, a
GP prior is assigned to z. Since ft−1 is also assigned a GP prior, the posterior distribution
of ft, because of the functional composition of two priors, is no longer Gaussian.

The generalization outlined in Equation (19) does not come without implications in
terms of computational cost and implementation complexity. This is mainly because of the
need to use variational Bayesian methods to approximate intractable integrals. Therefore,
to favor an algorithmic complexity closer to that of GP regression, Perdikaris et al. proposed
a reformulation of the generalized scheme in which the GP prior ft−1 is replaced by the GP
posterior of the first inference level f∗t−1:

ft(x) = gt(x, f∗t−1(x)) (20)

where gt is assigned the prior of Equations (21) and (22):

f (x) ∼ GP( ft|0, kt; θt) (21)

ktg = ktρ(x, x′; θtρ) · kt f ( f∗t−1(x), f∗t−1(x′); θt f ) + ktδ
(x, x′; θtδ

), (22)
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where ktρ , kt f , and ktδ
are squared exponential anisotropic kernel functions based on

Automatic Relevance Determination (ARD) weights (for additional details, please refer
to [7]) and θtρ , θt f , θtδ

represent their hyperparameters. With this scheme, it is possible to
infer the high fidelity response through gt by projecting the lower fidelity posterior onto a
latent manifold of dimension d + 1.

The lowest fidelity level of the proposed recursive scheme is still a common GP
regressor with kernel function k1(x, x′, θ1). Therefore, its posterior distribution is still
Gaussian. However, as for all the other levels, the predictions have to be made given a test
point (x∗, f∗t−1(x∗)). Therefore, for t ≥ 2, the posterior distribution is no longer Gaussian
and is defined by the following integral:

p( f∗t(x∗)) =
∫

X
p( ft(x∗, f∗t−1(x∗))|yt, xt, x∗)p( f∗t−1(x∗)) dx∗. (23)

Bear in mind that solving the integral of Equation (23) is commonly performed by a
recursive Monte Carlo approach [36].

5. Multi-Fidelity Successive Response Surface

As mentioned in the introduction, it is quite clear that the SRSM method has some
limitations that limit its application to specific real-world scenarios. In this section, we
introduce our improved version of SRSM, tailored for multi-fidelity crashworthiness prob-
lems, which we will refer to as the Multi-Fidelity Successive Response Surface (MF-SRS).
We will provide an overview of the main workflow and then discuss its key components,
highlighting the improvements over the traditional approach.

The general workflow of the MF-SRS approach is shown in Figure 2. The first step is
to formulate the optimization problem as described in Section 2. Therefore, it is necessary
to define the d design variables with their respective bounds, the objective function, and
any nc constraint functions with associated thresholds. Next, we can start the variable
domain exploration phase using a hybrid sampling strategy. In this phase, we start with an
Optimal Latin Hypercube Design (OLHD) to set the highest fidelity DoE, Ds. Samples of
lower fidelity are distributed by sequential sampling to gather information about areas left
unexplored by the OLHD.

After generating the datasets for each fidelity level and computing their respective
responses, the datasets D1, . . . ,Ds undergo preprocessing, which includes scaling of input
variables and normalizing the response values. These pre-processed datasets are then fed
into the NARGP model, creating a metamodel for each response function. The accuracy
of these metamodels is assessed using a cross-validation-based error procedure. If the
metamodels do not meet user-defined accuracy targets, infill algorithms can be optionally
employed to add more samples. Within the original variable domain, an initial solution
is extracted using Metamodel-Based Optimization with an evolutionary algorithm. The
identified optimum is verified using Finite Element Analysis (FEA) simulations with the
obtained optimal design variables to measure any deviations from the initial prediction.
This result is incorporated into the respective DoEs and serves as the center of the RoI for
the subsequent iteration. After adjusting the range of variables using the pan-and-zoom
method, new exploratory samples are added to the RoI based on the reused samples.
The metamodels are then updated with this augmented data. The process iterates until a
convergence criterion is met or until a predefined maximum iteration limit is reached.

The following subsections describe the main steps of the MF-SRS framework, starting
with sampling strategies. It then explores multi-fidelity response surfaces and sample
reuse, RoI adjustments, and appropriate optimization approaches, and concludes with a
discussion of the convergence criteria.
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Figure 2. Overview of the MF-SRS framework.

5.1. Adaptive Sampling: OLHD and MIPT

Since it is assumed that no a priori information is available about the nature of the
response functions, the first stage of the workflow is necessarily a step of pure exploration
of the variable domain. In this sampling step, we distribute samples according to a
“hybrid” sampling strategy. The highest fidelity points are distributed according to a
scheme of pre-optimized Latin Hypercube Designs [37]. As demonstrated by the work
of Crombecq et al. [38], these datasets have been optimized for several hours in order
to maximize their projective- and space-filling properties. Please note that space-filling
properties refer to the ability of a design to uniformly cover the domain of interest, ensuring
that the entire input space is adequately represented without leaving large gaps. A dataset
with good projective properties, instead, ensures that if we consider only a subset of
its dimensions (i.e., we project the design onto a lower dimensional space), the resulting
dataset still has desirable space-filling properties in that lower dimensional space. Therefore,
unlike the statistical factorial experimental designs commonly used in the SRSM [20], pre-
optimized Latin hypercubes allow extracting as much information as possible from each
individual sample while avoiding space-near points and repetitive values. We use the
database developed by Dam et al. [37], available at [39]. Although this database is extensive,
it has its limitations; it only provides datasets for specific combinations of a number of
samples and design variables. If the required DoE is not available in this database, we rely
on the translational propagation algorithm of Viana et al. to quickly generate Optimal or
Near-Optimal Latin Hypercube Designs [40].

Once the highest fidelity DoE is generated, we employ a sequential sampling strategy
to build all the remaining lower-fidelity designs.

For this purpose, we use a Monte Carlo method originally developed by
Crombeq et al. [38] and extended by Lualdi et al. [6]: mc-inter-proj-th (MIPT). Starting from
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a pre-existing design, this method is able to add samples with unit granularity, ensuring an
optimal trade-off between space-filling and projective properties. As shown in Figure 3, by
using the OLHD points, the MIPT algorithm is able to construct an optimal second layer
of samples of lower fidelity. This process is repeated iteratively if more than two levels
of fidelity are required. Please see Appendix A for more details on the formulation of the
MIPT algorithm. The versatility of this algorithm allows us to apply the same adaptive
sampling logic across iterative steps. Unlike one-shot sampling methods, such as LHDs,
the MIPT method enables the inheritance and reutilization of samples used in previous
iterations. This feature is critical in crashworthiness optimization, both to extract the full
potential of each individual FEM simulation and to avoid running unnecessarily expensive
crashworthiness simulations.

Figure 3. From left to right, sampling in order of decreasing fidelity: (a) OLHD with 10 samples (Ds),
(b) MIPT adds 20 Ds−1 samples, and (c) MIPT adds 80 Ds−2 samples.

To conclude on the topic of sampling, it is important to emphasize that the MIPT sam-
ples are introduced in a purely exploratory fashion, independent of the response function
values. While this approach may seem less than optimal at first, it remains one of the most
robust and effective strategies, especially when dealing with multiple response functions.
Balancing different functions within the same domain can pose challenging problems.

5.2. Multi-Fidelity Response Surface and Sample Reuse

To achieve maximum performance from the regression model, it is essential to pre-
process the data obtained from the DoEs. By leveling out the differences in absolute values
that may exist, both in the different ranges of the input variables and in the response
evaluations associated with different black-box functions, it is possible to avoid unwanted
biases and distortions in the metamodel. Therefore, we scale the input variables to a unit
hypercube Ω0 = [0, 1]d and standardize the response values to obtain new distributions
with the unit mean and zero variance.

The scaled and normalized values of the designs are fed into the NARGP algorithm
to infer a posterior distribution of each response function, as explained in Section 4.3. In
addition to the regression model and data fusion approach, another significant difference
from the original SRSM method is the selection of points for metamodel training. Given the
significant computational effort involved in a passive safety FEM analysis, it is imperative
to utilize all the information gained from previous iterations. Therefore, in the MF-SRS
method, we retain points from previous iterations, both inside and outside the RoI. This
strategy ensures a metamodel with a more reliable global trend, allowing us to use fewer
points in each iteration for further exploration of the RoI. Refer to Figure 4 for a visualization
of how the RoI and the addition of new samples evolve from the initial domain. Please
note that both the number of samples and the zoom have been magnified for clarity.

Note that it is always good practice to evaluate the accuracy of the metamodels at the
end of the training phase and to add any samples if the reliability of the prediction is poor.
Some authors recommend using an additional 10–30% of the initial samples as test points to
evaluate the accuracy of the metamodel alone [41]. Given the enormous computational cost
this would imply, in the context of crashworthiness optimization, our approach is based on
the guidelines of Loeppky et al. [42] for choosing a sufficiently representative initial number
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of samples (rule np = 10 · d) and the leave-one-out cross-validation approach presented
by Viana et al. This method evaluates the quality of metamodels without necessitating
additional FEM simulations. For an in-depth understanding, readers can refer to [40].

Figure 4. Progressing from left to right, the figures depict the evolution of the RoI and the subsequent
addition of samples over three iterations. High-fidelity samples are represented in red, low-fidelity
samples in purple, and samples from prior iterations that fall outside the RoI are shown in gray.

5.3. Adjustment of the RoI

Regarding the definition of the boundaries of the new Region of Interest, we stick to
the original algorithm already presented in Equations (9)–(11). As previously discussed,
while the boundaries of the new RoI at a given iteration do not define the limits of the
metamodel limits, they do set the boundaries for both the optimization algorithm and
iterative resampling. Unless otherwise stated, in this article, we will use η = 0.6 and γ = 0.9
as defaults.

5.4. Optimization Approach: Differential Evolution, Trust Region, and Verification Step

Design optimization for expensive-to-evaluate engineering applications involves find-
ing the best set of design variables that meet specific objectives while navigating through a
demanding computational environment. Hence, the challenge is to identify the maximum
of such costly objective functions with the minimum number of sequential queries, thus
reducing time and cost [43].

Numerous single-objective optimization methods have been developed to date, en-
compassing both local and global optimization techniques. Typically, selecting the right
optimization algorithm is crucial for locating the optimum, especially when surface re-
sponse models are not in use. Yet, as Duddeck pointed out [15], when Metamodel-Based
Optimization approaches are employed, the selection of the optimization algorithm be-
comes less critical if the surrogate models accurately capture the physical properties. This
statement highlights the importance of accurate metamodeling for effective optimization of
complex engineering design problems.

Our proposed optimization strategy employs a hybrid approach. Initially, we leverage
a probability-based global optimization algorithm to rapidly identify an optimal point.
Subsequently, using this point as a starting reference, a local method refines the solution.
This secondary step ensures that potential local enhancements are duly captured and not
overlooked. The Differential Evolution (DE) algorithm is selected as the global optimiza-
tion method in our approach due to its remarkable convergence properties, capability to
address non-linear constraints, adaptability for parallelization, and straightforward imple-
mentation. This stochastic global search algorithm excels in managing non-differentiable,
non-linear, and multi-modal objective functions. Furthermore, its efficacy is validated in
prior studies on structural optimization applications [44–46]. In our implementation, we
chose a population size of 25, a crossover probability of 0.7, and allowed the differential
weight to range from 0.5 to 1 (dithering is employed). These parameter values are based
on average values as reported in the tests by Storn et al. [47]. It is important to note
that while these parameter choices play a role in the optimization process, they are not of
primary importance in determining the optimization result in our context. The accuracy
of the metamodel is of greater importance in influencing the final results. Based on our
experience, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) could be a
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compelling global method, delivering a performance comparable to the DE algorithm.
For detailed information on DE and CMA-ES, please refer to [47–49], respectively. As a
local optimization method, our choice falls on the Trust Region, a popular gradient-based
optimization algorithm well suited for non-linear problems. Its use is primarily motivated
by the need to manage the quality of the model approximation in non-linear optimization.
The basic idea is to iteratively refine an estimate of the optimum based on local information.
Like other local optimization methods, Trust Region methods are sensitive to the starting
point. If the function has multiple local optima, the method is expected to converge to a
different optimum depending on where you start [50]. Therefore, its use must be combined
with a global optimization method, such as DE.

In our approach, a local optimization is performed starting from each member of
the last population of the DE algorithm. Since optimization on metamodels is very fast
compared to the computational burden of a function evaluation, we adopt a DE population
size of 20 and we repeat the entire optimization process (global and local optimization)
10 times.

Verification serves as the final step of the optimization phase. The optimal solution
derived from the metamodel is validated through an FEA to confirm the accuracy of the
metamodel’s prediction compared to the actual ground truth value.

5.5. Convergence Criteria

We use two stopping criteria to determine if the problem has achieved convergence:
the maximum number of iterations and the Average Relative Function Tolerance (ARFT).
The process is halted when either of these criteria are satisfied. The maximum number
of iterations is determined by the user, based on the specific problem at hand. The ARFT
formula, inspired by the criterion presented by Querin et al. [51], is provided below:

ARFTk =
1

nARFT

nARFT

∑
i=0

| f (x(k+1−i)
opt )− f (x(k−i)

opt )|
| f (x(k−i)

opt )|+ ε
. (24)

Here, nARFT denotes the number of pairs of successive iterations under consideration,
and ε is a very small number introduced to prevent division by zero when f (x(k−i)

opt ) equals
zero. Convergence is achieved when ARFT drops below a specified threshold ε f :

ARFTk < ε f . (25)

By default, we set ε = 10−8 and ε f = 0.01. This ensures that the optimization will stop
if the average relative change in the objective function over the last three iterations is less
than 1%. Unless otherwise stated, in this paper, we will use nARFT = 4.

6. Results and Discussion

In this chapter, we evaluate the effectiveness of MF-SRS through a series of experiments
on both synthetic problems and a real-world engineering challenge. We begin with a
visual illustration of two well-known problems from the literature to demonstrate the
robustness of a multi-fidelity regression model capable of capturing both linear and non-
linear correlations. We continue with optimization tests on multi-fidelity benchmark
functions to compare the convergence of the SRSM with the MF-SRS. We conclude with a
comprehensive section dedicated to the design optimization of a vehicle front structure
subsystem, focusing specifically on a crash box and a bumper cross member. Finally, we
briefly analyze a possible integration of a parallel job submission on an HPC.

6.1. Synthetic Illustrative Problems

We begin with a visual illustration of two well-known problems in the literature of
multi-fidelity functions: The Forrester function and the Sinusoidal Wave function have
been presented in the works of [36,52], respectively. We break down the mathematical
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formula of the Forrester into its fidelities in Equations (26) and (27), while the high- and
low-fidelity functions of the Sinusoidal Wave are described in Equations (28) and (29).

The multi-fidelity Forrester function is

fhigh(x) = (6x− 2)2 sin(12x− 4) (26)

flow(x) = 0.5 fhigh(x) + 10(x− 0.5)− 5. (27)

The multi-fidelity Sinusoidal Wave function is

fhigh(x) = (x−
√

2) · f 2
low(x) (28)

flow(x) = sin(8πx). (29)

The inclusion of these formulas is important to show the different types of mappings
between the fidelities of these two functions. The dominance of the “linear mapping” in the
Forrester function is clearly seen in the 0.5 fhigh term, while the quadratic mapping between
the fidelities of the sine wave is also recognizable. The upper part of Figure 5 shows the
overall trend of these functions. The high-fidelity functions are shown in red, while the
low-fidelity ones are shown in violet. The lower part of the same figure plots the correlation
between the fidelity levels. It can be seen that, unlike the sine wave, the Forrester function
has a predominantly linear type of correlation.

Figure 5. The first row shows the ground-truth values of the Forrester (first column) and Sinusoidal
Wave (second column). The bottom row illustrates the respective mapping between the fidelities.

To caution readers against drawing simplistic conclusions, we would like to point
out that the idea of a linear mapping between the high-fidelity and the low-fidelity repre-
sentations in the Forrester function is just a simplification, commonly used for illustrative
purposes in multi-fidelity contexts. This does not mean that a plot of fhigh(x) over flow(x)
will yield a perfectly straight line over the entire range of the function. Indeed, this would
have been the case if there were no deviations induced by the bias term 10(x− 0.5), which
is linear in x but not in fhigh(x).

To observe the practical implications of the theory outlined in Section 4, we approach
comparing GP, AR1, and NARGP methods on these two functions. As a rule of thumb
for these experiments, we always used twice as many high-fidelity observations for the
low-fidelity level. Note that this number depends strongly on the problem at hand, and
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especially on the “cost” ratio of the fidelities. While comparing GP and multi-fidelity
models may seem unfair, it serves as an insightful exercise. This comparison highlights
the capability of multi-fidelity models to assimilate valuable information from alternative
sources, potentially leveraging it for faster convergence.

The results for the Forrester function, based on five observations, are shown in Figure 6.
Without delving into error metrics, it is evident that the multi-fidelity methods perform
similarly, representing the function with greater precision compared to GP. Indeed, NARGP
and AR1 show comparable performance in terms of mean and uncertainty. The most
noticeable differences with GP appear at domain boundaries and within the valley of the
optimum. In these regions, low-fidelity observations contribute valuable information that
a conventional GP model cannot exploit.

Figure 6. From left to right: GP, AR1, and NARGP reconstructions of the Forrester function. All use
5 high-fidelity observations; multi-fidelity methods also use 10 low-fidelity observations.

A different scenario can be seen in Figure 7. Based on seven high-fidelity observations,
the GP and AR1 methods appear to have a remarkably similar posterior distribution that
deviates significantly from the true sinusoidal trend. While the subpar metamodeling of
GP can be justified by the low sampling rate with respect to the period of the function, the
performance of the AR1 is rather surprising. It seems to struggle to exploit the information
from the low-fidelity observations. In contrast, NARGP, while not a perfect representation
of the original function, seems to capture its periodic pattern and average amplitude,
providing a much more accurate approximation. These results echo the key observations of
Perdikaris et al. and suggest that NARGP may be a superior and more reliable option for
navigating intricate relationships between fidelities.

Figure 7. From left to right: GP, AR1, and NARGP reconstructions of the Sinusoidal Wave function.
All use 7 high-fidelity observations; multi-fidelity methods also use 14 low-fidelity observations.

6.2. Results on Benchmark Functions

We continue our experiments with tests on benchmark functions, aiming to evaluate
the convergence performance of the MF-SRS method in terms of speed and effectiveness.
We aim to compare our method with its simplified variant, GP-SRS, which relies solely on
GP and high-fidelity, and with the SRSM method based on PRS. Given our primary focus
on crashworthiness problems, the objective remains to identify the best achievable local
optimum with the least number of function evaluations. Our general expectation is to see a
clear predominance of Gaussian process-based methods over polynomial regression-based
approaches. We also hope to see possibly more efficient convergence of MF-SRS than GP-

122 4.3. Publication III



Appl. Sci. 2023, 13, 11452 14 of 29

SRS, especially in the first few iterations, although we do not necessarily expect superior
performance in the long run.

For this evaluation, we leverage the work of van Rijn and Schmitt [53], who have
gathered a set of well-known benchmark functions from the literature, each with at least
two levels of fidelity. The mathematical formula of those functions and further details
regarding the input variables can be found in Appendix B. Specifically, we investigate:

• The Currin function [54]: a 2D single-objective problem.
• The Branin and Himmelblau functions [55]: a 2D double-constrained single-objective prob-

lem.
• The Borehole function [54]: an 8D single-objective problem.

For the first problem, the goal is to either maximize or minimize the negative coun-
terpart of the Currin function. We specify that each method starts with an equal set of
high-fidelity points, 10 in this case. After each iteration, both GP-SRS and SRSM add six
more high-fidelity samples, while MF-SRS introduces only four. The ratio of low-fidelity to
high-fidelity samples remains constant at 2:1. For these analytical functions, which do not
come with any evaluation cost, we will consistently use twice the number of low-fidelity
samples compared to high-fidelity samples, similar to what is shown in [36].

The comparison between MF-SRS and GP-SRS of the first four iterations is shown
in Figure 8. The first iteration highlights the value of low-fidelity samples; while GP-
SRS suffers from severe overfitting complications, making it difficult to extract valuable
information, MF-SRS shows a more stable progression, guiding the optimization toward
the optimum despite having fewer high-fidelity samples. Both methods appear to converge
quickly to the global minimum. In a second two-dimensional test, we focus on minimizing a
double-constrained Branin function. We impose a constraint on the objective function itself,
thereby preserving the nearly flat region where the three global minima of the function
lie. In addition, we further narrow down this region through a constraint applied to the
Himmelblau function, as shown by Equations (30)–(33):

min
x

fbranin(x) (30)

subject to ghimmelblau(x) ≥ 60, (31)

gbranin(x) ≤ 80, (32)

− 5 ≤ xi ≤ 15, i = 1, 2. (33)

Figure 8. First four iterations for the Currin function: MF-SRS (top row) and GP-SRS (bottom row)
are shown. Red dots represent high-fidelity observations; purple dots represent low-fidelity ones.

From the first four iterations shown in Figure 9, it is quite clear that the combination
of the given constraints poses a significant challenge for accurate representation, especially
with only 15 high-fidelity observations available. However, while the GP-SRS method
bounces between opposite sides of the variable domain during the initial iteration steps, the
MF-SRS method exhibits more stable behavior. It guides the RoI toward a global minimum
from the first iteration, consistently avoiding the infeasible region.
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Figure 9. First four iterations for the constrained Branin function: MF-SRS (top row) and GP-SRS
(bottom row) are shown. Red dots represent high-fidelity observations, purple dots represent low-
fidelity observations, and gray areas represent unfeasible regions.

We then analyze the convergence behavior of both problems and include the SRSM
approach in the comparison for a more comprehensive evaluation. It is important to note
that, for the SRSM method, a quadratic PRS was used. As explained in Section 3, this
requires a minimum of six observations when dealing with two variables. Our expectations
were indeed met. For both problems, the SRSM method is significantly the slowest to
converge and consistently produces qualitatively worse results than the other methods
at almost every iteration (see Figure 10). The initial investment in MF-SRS seems to pay
off, as it consistently outperforms the other methods in making more accurate predictions,
especially in the early steps. The lack of high-fidelity points does not seem to affect
its performance, and the efficient use of all available points seems to be a key feature
contributing to its effectiveness. The choice of MF-SRS over GP-SRS under these conditions
would depend on the computational cost associated with different fidelity levels, as well as
the potential for job submissions that utilize multiple computing resources.

Figure 10. Convergence history of the SRSM, GP-SRS, and MF-SRS methods for the Currin function
(left) and the constrained Branin function (right).

As our final synthetic problem, we examine the Borehole function, an eight-dimensional
problem. This function models the flow of water through a borehole drilled from the ground
surface through two different aquifer layers. The flow rate of water, expressed in cubic
meters per year (m3/year), is described by the properties of both the borehole and the
aquifers. The borehole function is often used to compare different types of metamodels
and to perform feature importance analysis. Since the optimum of this function is known,
we aim to minimize the problem and to compare the predictions of the surface response
models at the initial stage.
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Considering the complexity of this problem, we initiate the process with a dataset
of 80 high-fidelity samples for each method. In each subsequent iteration, we add four,
six, and nine new samples for the MF-SRS, GP-SRS, and SRSM methods, respectively. It is
important to note that, for the SRSM method, a linear polynomial form was employed due
to the prohibitively high cost associated with such a large number of function evaluations.
Indeed, this form requires d + 1 samples, which, although still quite expensive, is more
manageable than the (d + 1)(d + 2)/2 samples that would be required otherwise.

The initial prediction performance is depicted on the left side of Figure 11, where it is
compared with the ground-truth values. The MF-SRS method demonstrates remarkable
accuracy across the entire domain represented. The GP-SRS prediction is also strong,
although it exhibits a larger average deviation from the ideal diagonal prediction. Notably,
toward the minimum values, GP-SRS predictions are affected by a consistent bias that
progressively shifts values toward the upper region of the graph. On the other hand, the
SRSM method, based on PRS, exhibits the least accuracy, with a consistently higher level of
uncertainty across the considered range when compared to the other two methods.

Figure 11. Ground-truth vs. prediction plot (left) and convergence history (right) of the SRSM,
GP-SRS, and MF-SRS methods for the Borehole function.

These initial prediction results are echoed in the convergence performance, illustrated
on the right side of Figure 11. While none of the methods manage to reach the global
optimum, MF-SRS notably outperforms the other two methods, especially in terms of
efficiency, requiring 15 iterations compared to 25 and 34 (according to the convergence
criterion defined in Equation (24)) for GP-SRS and SRSM, respectively. The fact that GP-SRS,
despite several additional high-fidelity observations, fails to reach the same local minimum
identified by the multi-fidelity method suggests that GP-SRS may have been guided toward
a local minimum by a less accurate initial prediction.

6.3. Engineering Use Case: Crash Box Design

In this section, we address the design of an aluminum crash box for an urban electric
vehicle: a critical real-world engineering problem. Positioned between the bumper and
longitudinal rails, this energy-absorbing device is crucial for the vehicle’s crashworthiness.
It not only protects passengers and minimizes vehicle damage but can also reduce repair
costs. Therefore, maximizing the energy-absorbing capability of the crash box is essential.

In this use case, we examine a structural system consisting of a bumper beam cross
member, the crash box, and the crash box flange. This structure is attached to the rear end
of the crash box and is subjected to compression by a rigid body, the impactor, moving at a
constant velocity of 1.5 m/s. All structural components are made of AA 5083: an aluminum
alloy known for its good ductility and high strength-to-weight ratio.
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6.3.1. Key Performance Indicators (KPIs)

When evaluating the crashworthiness of crush boxes, a number of Key Performance
Indicators (KPIs) are often examined [56,57]. These KPIs provide quantifiable metrics to
assess the effectiveness of a crash box under crushing loads. An essential indicator is the
total Energy Absorbed (EA). This quantifies the work performed on the structure to induce
deformation due to the impact and is defined by Equation (34):

EA =
∫ Lc

0
F(x)dx, (34)

where Lc is the crushing length and F(x) denotes the resultant impact force over the
displacement x. Maximizing EA is a common objective function, as long as it does not
overweight the structure. To avoid this problem, it is often replaced by the Specific Energy
Absorbed (SEA), which is the absorbed energy per unit mass of material:

SEA =
EA
m

, (35)

where m is the sum of the mass of the crash box and the bumper beam in this case. Another
important indicator is the mean crushing force, which is given by Equation (36):

Fm =
EA
Lc

. (36)

The mean crushing force is a required element for the calculation of the Undulation of
Load Carrying Capacity (ULC). This indicator evaluates the stability of the structure under
crushing and is given by Equation (37):

ULC =

∫ Lc
0 |F(x)− Fm|dx

EA
. (37)

Finally, we introduce Crushing Force Efficiency (CFE), which relates the maximum
peak resistance force Fmax to the average force Fm:

CFE =
Fmax

Fm
(38)

These two critical parameters shown in Equation (38) directly affect the deceleration
experienced by vehicle passengers during a collision. Ideally, an absorber will have a
CFE equal to one, meaning that the crush box absorbs energy uniformly throughout the
deformation process and behaves in a controlled manner under crash conditions.

6.3.2. Problem Formulation

An overview of the structural system to be analyzed is given in Figure 12. Note that
there are two V-notch crush initiators (sometimes called triggers) T1 and T2 at the top and
bottom of the crash box. These are strategically placed engineering features introduced into
the crash box components of the vehicle structure to control the deformation path during
a collision.

As design variables, we consider the thicknesses of the crash box (tU and tS), the
flanges (tF), and the bumper cross member (tB). Additionally, we consider the distance
from the flanges to the first trigger (dT1), the distance between the two triggers (dT2), and
the angle (α), which symmetrically adjusts the tilt of both the top and bottom faces of the
crash box with respect to the horizontal plane. The last three variables imply a change
in the geometry of the crash box, classifying the problem as a mixture of size and shape
optimization. A detailed description of the design variables and their respective bounds is
given in Table 1.
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Figure 12. Overview of the FEA model components: impactor, crash box, and bumper beam. The
design variables of the optimization problem are highlighted in blue.

Table 1. Summary of design variables.

Variable Design Label Unit Lower
Bound

Upper
Bound

Upper crash box thickness tU (mm) 1.0 3.5
Side crash box thickness tS (mm) 1.0 3.5

Bumper cross member thickness tB (mm) 1.0 3.0
Flange thickness tF (mm) 1.0 4.0

Flange to T1 distance dT1 (mm) 20.0 70.0
T1 to T2 distance dT2 (mm) 30.0 100.0

Angle to horizontal plane α (deg) 1.0 3.5

The main objective is to maximize the SEA within certain passive safety constraints.
First, we set a value for the maximum peak deformation force Fmax and a maximum value
for the average deformation force Fm. This is to ensure that the crash box deforms before
the longitudinal members, thus ensuring a step-wise increasing deformation curve [58].
With reference to Figure 13 we set a threshold of 61.75 kN for Fmax (5% safety margin) and
a threshold of 50 kN for Fm.

Figure 13. Example of a step-wise increasing force curve with the smallest possible differences in the
force levels of the individual components. Figure inspired by [58].
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To ensure effective energy absorption, we set a minimum threshold for the energy
absorption of the bumper cross member after 35 ms, aligning with the expected timing
of the first peak force due to crash box deformation. This constraint prevents excessively
stiff bumper configurations that could cause premature deformation of the crash box.
Additionally, we require that CFC ≥ 0.5 and ULC ≤ 0.5. Although these constraints are
typically applied to crash boxes alone, in this context, they are employed to ensure an
adequate trade-off between force fluctuations and the initial peak relative to the mean force
value. The complete formulation of this optimization problem is provided in Appendix C.1.

6.3.3. High- and Low-Fidelity Models

Before diving into the optimization, we need to distinguish the two fidelities for
the MF-SRS method. To determine an optimal mesh size for the high-fidelity model, we
performed a mesh sensitivity analysis by varying the average element size. As shown
in Figure 14, reducing the mesh size below 2 mm has minimal impact on the response
functions considered. However, this size reduction significantly increases the simulation
time. For example, on a 2× AMD EPYC 7601 (32 cores, 2.2 GHz) per node of our HPC
cluster, the time changes from 20 min to 1 h and 26 min. Based on this analysis, we chose
an average mesh size of 2 mm for the high-fidelity model.

Figure 14. Mesh sensitivity analysis to assess the impact of the element size on the response functions.

Beyond mesh size, the presence of the damage model, which defines the failure
criterion for element deletion, is another significant factor that affects the duration of a
simulation. Disabling this feature in our aluminum material card results in approximately a
25% reduction of simulation time for the 2 mm finite element model. In addition, increasing
the mesh size to 5 mm dramatically drops the simulation time to approximately 3 min
and 10 s. While this coarser finite element model is obviously less accurate and deviates
from the response of the high-fidelity model, we propose its utility as a low-fidelity model.
We believe that it can capture significant global information that, when integrated with
high-fidelity runs, contributes significantly to the prediction of response functions. The two
models are illustrated in Figure 15.

For a more thorough understanding of the use case, we carried out additional simula-
tions to provide a broader view of the correlation between the high-fidelity and low-fidelity
models. This additional analysis serves to stress the complex relationship between the
two models, allowing for a more sound interpretation of the results. Detailed results and
discussions from these additional simulations are provided in Appendix C.3.
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Figure 15. High-fidelity model: 23,548 shell elements with element erosion (a) and low-fidelity model:
5940 shell elements without element erosion (b). Further comprehensive details about these models
are provided in Appendix C.2.

6.4. Results of the Engineering Use Case

In this section, we present the results of the crash box optimization, comparing the
three approaches introduced so far: SRSM, GP-SRS, and MF-SRS. For the MF-SRS approach,
we use a high-fidelity DoE consisting of 60 points, with an addition of four more high-
fidelity points at each iteration. Since the “cost” of low-fidelity simulations is less than
one-sixth of the high-fidelity ones, we set the 2:1 ratio that has shown great results so
far. In contrast, the GP-SRS approach uses a slightly larger DoE of 70 points and adds
five high-fidelity points to each iteration. The SRSM method also starts with a 70-point
DoE and iteratively adds eight high-fidelity points at each iteration based on the linear
polynomial criterion.

To achieve faster and more robust convergence, at each iteration, we record the best
feasible value using the criterion given in Formula (24) based on nARFT = 4. If this value
does not improve, we retain the best feasible value achieved in prior iterations. If all
designs at a specific iteration fail to meet the constraints, we mark the point in red. From
the results shown in Figure 16, the performance of MF-SRS stands out. It is clearly the most
effective approach, achieving a 13.1% and a 14.1% SEA improvement over GP-SRS and
SRSM, respectively. Alongside the improved optimum, the fast convergence and the ability
to accurately predict the feasibility limits of the domain are remarkable. This is particularly
evident in the result of the first iteration where, despite the deficit of 10 high-fidelity points,
MF-SRS still manages to identify an optimum that outperforms the other approaches.

The performance of GP-SRS is solid, although with a slower progression than expected.
We believe that with more relaxed convergence criteria, it may eventually surpass the
maximum obtained by MF-SRS, albeit at a significantly higher computational cost.

Conversely, SRSM appears to be the least robust approach. Despite the rapid im-
provement in the fourth iteration, the best-reported point often does not match with the
verification point, which is a discrepancy that is curious considering the predictive potential
offered by the eight new high-fidelity samples added at each iteration. From a computa-
tional point of view, SRSM seems to be the most “expensive” and, in terms of prediction,
the most unreliable of the methods investigated. Further details of the optimal designs of
response values and input variables are provided in Table 2 and Appendix C.4, respectively.

Table 2. Summary of the response functions of the optimal designs of each method. The best
achievable SEA value among the three methods is highlighted in bold.

Method niter SEA (J/kg) Fmax (kN) Fm (kN) EAB (J) CFE ULC

SRSM 19 8159.8 51.9 26.9 271.9 0.52 0.48
GP-SRS 17 8233.2 59.0 28.5 260.8 0.51 0.48
MF-SRS 15 9313.5 61.5 31.9 244.2 0.51 0.49
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Figure 16. Convergence history of the SRSM, GP-SRS, and MF-SRS methods for the crash box design.

The iteration by iteration evolution of the MF-SRS method is shown in the parallel
coordinates plot in Figure 17. The light gray lines represent designs that violate the
constraints and are, therefore, unfeasible, while the blue lines denote feasible designs. It
is clear that the density of the darker lines increases around the optimal design, which
is shown in orange. This provides further evidence of the robust convergence of the
MF-SRS method.

Figure 17. Parallel coordinates plot of the MF-SRS method; unfeasible designs are highlighted in
gray, feasible designs in blue, and the optimal design in orange.

The deformation force versus impactor displacement pattern is shown in Figure 18.
Although very similar in the first peak force (about 45 mm), the higher energy absorption
is in the crash box folding behavior with a higher average force value. As for the bumper
design, the MF-SRS method has probably room for improvement given the lower energy
absorption.
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Figure 18. Force vs. displacement plots of the optimal designs for the SRSM, GP-SRS, and MF-
SRS approaches.

6.5. Parallel Job Submission on an HPC

While we have primarily assessed convergence curves on an iteration-wise basis,
careful observers may rightly argue that this comparison does not fully account for effi-
ciency. Specifically, the MF-SRS method incurs an extra cost due to low-fidelity simulations,
different methods adding a different number of high-fidelity samples at each iteration,
and the MF-SRS starting with a DoE with 10 fewer high-fidelity samples. Taking these
factors into account, in this section, we delve into how the curves in Figure 16 adjust when
viewed in terms of cumulative computational time, with a particular focus on the HPC
logic implications.

Before presenting the results, we outline some assumptions:

• We use a cluster of Nnodes with 2 × 32 cores each (AMD EPYC 7601 processors);
• Only one job is submitted on each node at a time. Parallel job submissions across

different nodes are allowed, but splitting a single node among multiple jobs is not;
• We use a greedy job scheduler that ideally distributes jobs across nodes once the

optimization problem is defined. We assume that the availability of nodes at any given
time does not affect the formulation of the optimization problem;

• We assume that the computational cost of low-fidelity jobs is equivalent to a unit cost.
Therefore, given the cost ratio, we know that a high-fidelity job has a cost of 6.25 units
for this particular problem.

Bear in mind that the job scheduler prioritizes parallelization of high-fidelity jobs
across available nodes. It allocates low-fidelity jobs only after all the more demanding
high-fidelity simulations are completed.

Assuming the availability of five, seven, and eight nodes, the results are displayed
in Figure 19, from left to right, respectively. The top row illustrates the prioritization
of multi-fidelity DoE jobs according to the described scheduling logic. The bottom row
presents the full convergence curve, plotted against the cumulative computational cost. The
chosen node configurations ideally suit each of the three methods investigated. In fact, with
regard to the MF-SRS method, five nodes in parallel guarantee an exact division (without a
remainder) both for the number of high-fidelity samples of the DoE and for the number
of samples added iteratively. Similarly, seven and eight nodes are scenarios that favor the
GP-SRS and SRSM methods, respectively. We observe that, due to the additional cost of
the additional simulations with the coarse mesh, the first iteration of the multi-fidelity
approach is no longer vertically aligned with the other two. However, due to its cost-ratio
advantage and limited use of high-fidelity points, the MF-SRS method consistently emerges
as the most efficient approach, regardless of the number of nodes available. Any unused
nodes can be eventually assigned to handle batches of low-fidelity jobs, efficiently utilizing
computational resources while waiting for more resource-intensive simulations to complete.
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These results emphasize how parallel job scheduling can be leveraged to make the MF-SRS
method even more efficient and competitive.

Figure 19. The job schedule of the multi-fidelity DoE (top row) and the convergence curves over the
cumulative cost (bottom row) in the case of 5, 7, and 8 nodes available on the HPC.

7. Conclusions

In this paper, we introduced the MF-SRS method, a novel optimization approach
that leverages Gaussian processes to better handle the inherent complexity of crashworthi-
ness problems.

While the traditional SRSM is effective in some aspects, it has been found to have
significant limitations, particularly in the prohibitive use of costly function evaluations
and the shortcomings associated with the PSR method. The proposed MF-SRS method
addresses these challenges by employing a multi-fidelity approach that captures in-depth
information from both high-fidelity and low-fidelity models, wisely reuses information
from previous iterations, and queries new data at unexplored locations via adaptive infill
seed criteria. This combination results in a more robust and versatile framework compared
to SRSM.

Our experiments, ranging from benchmark functions to a real-world crashworthiness
application, yielded promising results. MF-SRS consistently demonstrated improved per-
formance over both SRSM and GP-SRS, despite the initial additional cost of low-fidelity
evaluations. Specifically, it achieved a remarkable 14.1% improvement in the optimal value
of specific energy absorption over SRSM, underscoring the stability and precision of the op-
timization process. This efficiency is even more pronounced when considering its ability to
achieve optimal values with less computational burden. The extent of such burden depends
on several factors, including available computational power and parallel job logic on an
HPC. Moreover, in a scenario characterized by a low-fidelity model with a coarse mesh and
no element erosion, MF-SRS successfully detected intricate relationships between different
fidelities, reinforcing its effectiveness and efficiency in various application contexts.

In our future research, we plan to primarily investigate the optimal ratio of high- and
low-fidelity points per iteration and within the initial DoE, with the aim of adaptively
adjusting these numbers based on the given problem. While NARGP stands out as a
promising multi-fidelity approach, this rapidly evolving field introduces exciting alterna-
tives at a rapid pace. Of particular interest are Multi-Fidelity Bayesian Neural Network
approaches, which offer the potential to address uncertainties in sampling and to capture
intricate correlations between fidelities thanks to the Neural Network framework. Finally,
tailoring specific covariance functions relevant to certain iterations within the GP-SRS
method offers another intriguing avenue of exploration.
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Appendix A

The main idea behind the mc-inter-proj-th (MIPT) [38] method is discarding candidates
that lie too close to each other based on the projected distance based on a threshold value.
The remaining points are then ranked on their intersite distance. Therefore, this Monte
Carlo method looks as follows:

MIP(P, p) =
{

0 if minpi∈P ‖pi − p‖−∞ < d
minpi∈P ‖pi − p‖2 if minpi∈P ‖pi − p‖−∞ ≥ d

, (A1)

where the threshold dmin is defined by a tolerance parameter α, which has a domain of
[0, 1]:

dmin =
2α

n
. (A2)

The tolerance parameter α defines the balance between the space-filling and non-
collapsing properties. Low values of α lead to a reduction in the projected distance con-
straint. Therefore, fewer candidates are discarded. On the other hand, high values of
α result in a strict constraint to be satisfied. This reduces the chance of finding a valid
candidate [6].
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Appendix B

The Currin function is given by

fh(x) =

(
1− exp(− 1

2x2
)

)
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
(A3)

fl(x) = ( fh(x1 + 0.05, x2 + 0.05)

+ fh(x1 + 0.05, x2 − 0.05)

+ fh(x1 − 0.05, x2 + 0.05)

+ fh(x1 − 0.05, x2 − 0.05))/4

(A4)

x∗opt = {(
13
60

, 0)}. (A5)

The Branin function is given by

fb(x) =

(
x2 − (5.1

x2
1

4π2 ) +
5x1

π
− 6

)2

+

(
10 cos(x1)(1−

1
8π

)
+ 10 (A6)

fh(x) = fb(x1, x2)− 22.5x2 (A7)

fl(x) = fb(0.71, 0.7x2)− 15.75x2 + 20(0.9 + x1)
2 − 50 (A8)

x∗opt = {(−π, 12.275),

(π, 2.275),

(9.42478, 2.475)}.
(A9)

The Himmelblau function is given by

fh(x) = (x2
1 + x2 − 11)2 + (x2

2 + x1 − 7)2 (A10)

fl(x) = fh(0.5x1, 0.8x2) + x3
2 − (x1 + 1)2 (A11)

x∗opt = {(3.0, 2.0),

(−2.805118, 3.131312),

(−3.779310,−3.283186),

(3.584428,−1.848126)}.

(A12)

The Borehole function is given by

f (x, A, B) =
A · Tu · (Hu − Hl)

log
(

r
rw

)(
B + 2L·Tu

log( r
rw )·r

2
w ·Kw

+ Tu
Tl

) (A13)

fhigh(x) = f (x, 2π, 1) (A14)

flow(x) = f (x, 5, 1.5) (A15)

x∗opt = {(0.05, 50000.0, 63070.0, 990.0, 63.1, 820.0, 1680.0, 9855.0)}, (A16)
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where

Tu = radial flow of the upper aquifer (m2/year)

Tl = radial flow of the lower aquifer (m2/year)

Hu = potentiometric head of the upper aquifer (m)

Hl = potentiometric head of the lower aquifer (m)

L = length of the borehole (m)

Kw = hydraulic conductivity of the borehole (m/year)

r = radius of influence (m)

rw = radius of the borehole (m)

Appendix C

Appendix C.1

The crash box optimization problem, from a mathematical point of view, is defined
as follows:

max
x

SEA(x) (A17)

subject to Fmax(x) ≤ 61.75 kN, (A18)

Fm(x) ≤ 50.0 kN, (A19)

EAB(x, t = 35) ≥ 100 J, (A20)

CFE(x) ≥ 0.5, (A21)

ULC(x) ≤ 0.5, (A22)

1.0 ≤ tU ≤ 3.5, (A23)

1.0 ≤ tS ≤ 3.5, (A24)

1.0 ≤ tB ≤ 3.5, (A25)

1.0 ≤ tF ≤ 4.0, (A26)

20.0 ≤ dT1 ≤ 70.0, (A27)

30.0 ≤ dT2 ≤ 100.0, (A28)

1.0 ≤ α ≤ 4.5 . (A29)

Appendix C.2

Table A1 provides the specifications for both high-fidelity and low-fidelity FE models
that are to be simulated using the LS-DYNA explicit solver (single precision, version 11.1).
The material model refers to the crash box only, while the impactor is considered as a rigid
body with its own material formulation. The contact type describes the primary interaction
between the crash box and the rigid plate.

Table A1. Details of high-fidelity and low-fidelity FE Models.

Parameter High-Fidelity Model Low-Fidelity Model

Number of Nodes 23,826 6082
Number of Elements 23,548 5940
Material Model * MAT_024
Element Type Shell Belytschko-Tsay
Contact Type AUTOMATIC_SURFACE_TO_SURFACE
Erosion Active Inactive

* MAT_PIECEWISE_LINEAR_PLASTICITY.
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Appendix C.3

In Figure A1, we illustrate the SEA correlation between the two fidelities with respect
to the variables tU and tS, holding all other variables constant. This correlation is visualized
by a 20 × 20 grid showing the ground-truth values derived from numerical simulations.

Figure A1. Contour plots representing SEA values across a 20 × 20 grid. From left to right: high-
fidelity ground-truth values, low-fidelity ground-truth values, and the absolute error between the
two fidelity levels.

Although the low-fidelity model roughly mirrors the pattern of its high-fidelity coun-
terpart, it is noticeable that the relationship between the two is not uniform across the 2D
domain. In certain local regions, the absolute error exceeds 2000 J/kg, indicating a complex,
non-linear relationship that requires careful management in the learning process. A similar
relationship can be observed in Fmax, as shown in Figure A2.

Figure A2. Contour plots representing Fmax values across a 20 × 20 grid. From left to right: high-
fidelity ground-truth values, low-fidelity ground-truth values, and the absolute error between the
two fidelity levels.

Appendix C.4

Table A2. Summary of the optimal design variables of each method.

Method tU (mm) tS (mm) tB (mm) tF (mm) dT1 (mm) dT2 (mm) α (deg)

SRSM 2.1 2.6 1.0 1.0 30.1 40.0 1.0
GP-SRS 2.3 2.5 1.2 1.7 33.2 31.1 2.8
MF-SRS 2.4 2.7 1.0 1.5 36.2 30.0 2.7

References
1. O’Neill, B. Preventing passenger vehicle occupant injuries by vehicle design—A historical perspective from IIHS. Traffic Inj. Prev.

2009, 10, 113–126. [CrossRef]
2. Sacks, J.; Welch, W.J.; Mitchell, T.J.; Wynn, H.P. Design and Analysis of Computer Experiments. Stat. Sci. 1989, 4, 409–423.

[CrossRef]
3. Bartz-Beielstein, T.; Zaefferer, M. Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 2017,

55, 154–167. [CrossRef]
4. Khatouri, H.; Benamara, T.; Breitkopf, P.; Demange, J. Metamodeling techniques for CPU-intensive simulation-based design

optimization: A survey. Adv. Model. Simul. Eng. Sci. 2022, 9, 1. [CrossRef]

136 4.3. Publication III



Appl. Sci. 2023, 13, 11452 28 of 29

5. Kleijnen, J.P.C. A Comment on Blanning’s “Metamodel for Sensitivity Analysis: The Regression Metamodel in Simulation”.
Interfaces 1975, 5, 21–23. [CrossRef]

6. Lualdi, P.; Sturm, R.; Siefkes, T. Exploration-oriented sampling strategies for global surrogate modeling: A comparison between
one-stage and adaptive methods. J. Comput. Sci. 2022, 60, 101603. [CrossRef]

7. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive Computation and Machine Learning; MIT:
Cambridge, MA, USA; London, UK, 2006.

8. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using
Designed Experiments, 4th ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2016.

9. Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021.
10. Gunn, S.R. Support Vector Machines for Classification and Regression; University of Southampton Institutional Repository: Southamp-

ton, UK, 1998.
11. Wang, T.; Li, M.; Qin, D.; Chen, J.; Wu, H. Crashworthiness Analysis and Multi-Objective Optimization for Concave I-Shaped

Honeycomb Structure. Appl. Sci. 2022, 12, 420. [CrossRef]
12. Pawlus, W.; Robbersmyr, K.G.; Karimi, H.R. Performance Evaluation of Feed Forward Neural Networks for Modeling a Vehicle to Pole

Central Collision; World Scientific and Engineering Academy and Society (WSEAS): Stevens Point, WI, USA, 2011.
13. Omar, T.; Eskandarian, A.; Bedewi, N. Vehicle crash modelling using recurrent neural networks. Math. Comput. Model. 1998,

28, 31–42. [CrossRef]
14. Fang, J.; Sun, G.; Qiu, N.; Kim, N.H.; Li, Q. On design optimization for structural crashworthiness and its state of the art. Struct.

Multidiscip. Optim. 2017, 55, 1091–1119. [CrossRef]
15. Duddeck, F. Multidisciplinary optimization of car bodies. Struct. Multidiscip. Optim. 2008, 35, 375–389. [CrossRef]
16. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence, 1st ed.; The MIT Press: Cambridge, UK, 1992.
17. Bäck, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Thomas

Bäck; Oxford University Press: Oxford, UK; New York, NY, USA, 1996.
18. Slowik, A.; Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 2020,

32, 12363–12379. [CrossRef]
19. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
20. Kurtaran, H.; Eskandarian, A.; Marzougui, D.; Bedewi, N.E. Crashworthiness design optimization using successive response

surface approximations. Comput. Mech. 2002, 29, 409–421. [CrossRef]
21. Stander, N.; Craig, K.J. On the robustness of a simple domain reduction scheme for simulation–based optimization. Eng. Comput.

2002, 19, 431–450. [CrossRef]
22. Liu, S.T.; Tong, Z.Q.; Tang, Z.L.; Zhang, Z.H. Design optimization of the S-frame to improve crashworthiness. Acta Mech. Sin.

2014, 30, 589–599. [CrossRef]
23. Naceur, H.; Guo, Y.Q.; Ben-Elechi, S. Response surface methodology for design of sheet forming parameters to control springback

effects. Comput. Struct. 2006, 84, 1651–1663. [CrossRef]
24. Acar, E.; Yilmaz, B.; Güler, M.A.; Altin, M. Multi-fidelity crashworthiness optimization of a bus bumper system under frontal

impact. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 493. [CrossRef]
25. Lönn, D.; Bergman, G.; Nilsson, L.; Simonsson, K. Experimental and finite element robustness studies of a bumper system

subjected to an offset impact loading. Int. J. Crashworthiness 2011, 16, 155–168. [CrossRef]
26. Aspenberg, D.; Jergeus, J.; Nilsson, L. Robust optimization of front members in a full frontal car impact. Eng. Optim. 2013,

45, 245–264. [CrossRef]
27. Nilsson, L.; Redhe, M. (Eds.) An Investigation of Structural Optimization in Crashworthiness Design Using a Stochastic Approach;

Livermore Software Corporation: Dearborn, MI, USA, 2004.
28. Redhe, M.; Giger, M.; Nilsson, L. An investigation of structural optimization in crashworthiness design using a stochastic

approach. Struct. Multidiscip. Optim. 2004, 27, 446–459. [CrossRef]
29. Stander, N.; Reichert, R.; Frank, T. Optimization of nonlinear dynamical problems using successive linear approximations. In

Proceedings of the 8th Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, USA, 6 September 2000.
[CrossRef]

30. Kennedy, M.C.; O’Hagan, A. Predicting the Output from a Complex Computer Code When Fast Approximations Are Available.
Biometrika 2000, 87, 1–13. [CrossRef]

31. Le Gratiet, L.; Garnier, J. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. Int. J.
Uncertain. Quantif. 2014, 4, 365–386. [CrossRef]

32. Duvenaud, D. Automatic Model Construction with Gaussian Processes. Ph.D. Thesis, Apollo—University of Cambridge
Repository, Cambridge, UK, 2014. [CrossRef]

33. Hagan, A.O. A Markov Property for Covariance Structures; University of Nottingham: Nottingham, UK, 1998.
34. Forrester, A.I.J.; Sóbester, A.; Keane, A.J. Engineering Design via Surrogate Modelling: A Practical Guide; J. Wiley: Chichester West

Sussex, UK; Hoboken, NJ, USA, 2008.
35. Perdikaris, P.; Karniadakis, G.E. Model inversion via multi-fidelity Bayesian optimization: A new paradigm for parameter

estimation in haemodynamics, and beyond. J. R. Soc. Interface 2016, 13. [CrossRef]

Chapter 4. Publications 137



Appl. Sci. 2023, 13, 11452 29 of 29

36. Perdikaris, P.; Raissi, M.; Damianou, A.; Lawrence, N.D.; Karniadakis, G.E. Nonlinear information fusion algorithms for
data-efficient multi-fidelity modelling. Proc. R. Soc. Math. Phys. Eng. Sci. 2017, 473, 20160751. [CrossRef]

37. van Dam, E.R.; Husslage, B.; den Hertog, D.; Melissen, H. Maximin Latin Hypercube Designs in Two Dimensions. Oper. Res.
2007, 55, 158–169. [CrossRef]

38. Crombecq, K.; Laermans, E.; Dhaene, T. Efficient space-filling and non-collapsing sequential design strategies for simulation-based
modeling. Eur. J. Oper. Res. 2011, 214, 683–696. [CrossRef]

39. van Dam, E.; den Hertog, D.; Husslage, B.; Rennen, G. Space-Filling Designs. 2015. Available online: https://www.
spacefillingdesigns.nl/ (accessed on 15 July 2023).

40. Viana, F.A.C.; Venter, G.; Balabanov, V. An algorithm for fast optimal Latin hypercube design of experiments. Int. J. Numer.
Methods Eng. 2010, 82, 135–156. [CrossRef]

41. Hao, P.; Feng, S.; Li, Y.; Wang, B.; Chen, H. Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model.
Struct. Multidiscip. Optim. 2020, 62, 353–373. [CrossRef]

42. Loeppky, J.L.; Sacks, J.; Welch, W.J. Choosing the Sample Size of a Computer Experiment: A Practical Guide. Technometrics 2009,
51, 366–376. [CrossRef]

43. Nguyen, V.; Rana, S.; Gupta, S.K.; Li, C.; Venkatesh, S. Budgeted Batch Bayesian Optimization. In Proceedings of the 2016 IEEE
16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 1107–1112. [CrossRef]

44. Gao, B.; Ren, Y.; Jiang, H.; Xiang, J. Sensitivity analysis-based variable screening and reliability optimisation for composite
fuselage frame crashworthiness design. Int. J. Crashworthiness 2019, 24, 380–388. [CrossRef]

45. Fiore, A.; Marano, G.C.; Greco, R.; Mastromarino, E. Structural optimization of hollow-section steel trusses by differential
evolution algorithm. Int. J. Steel Struct. 2016, 16, 411–423. [CrossRef]

46. Loja, M.; Mota Soares, C.M.; Barbosa, J.I. Optimization of magneto-electro-elastic composite structures using differential evolution.
Compos. Struct. 2014, 107, 276–287. [CrossRef]

47. Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the 1996 Biennial conference of the North
American Fuzzy Information Processing Society, Berkeley, CA, USA, 19–22 June 1996; Smith, M.H.E., Ed.; IEEE: New York, NY, USA,
1996; pp. 519–523. [CrossRef]

48. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. .:1008202821328 . [CrossRef]

49. Hansen, N.; Auger, A.; Ros, R.; Mersmann, O.; Tušar, T.; Brockhoff, D. COCO: A platform for comparing continuous optimizers
in a black-box setting. Optim. Methods Softw. 2021, 36, 114–144. [CrossRef]

50. Conn, A.R.; Gould, N.I.M.; Toint, P.L. Trust-Region Methods; MPS-SIAM Series on Optimization; SIAM: Philadelphia, PA,
USA, 2000. [CrossRef]

51. Querin, O.M.; Victoria, M.; Alonso, C.; Ansola, R.; Martí, P. Chapter 3—Discrete Method of Structural Optimization. In Topology
Design Methods for Structural Optimization [Electronic Resource]; Querin, O.M., Ed.; Academic Press: London, UK, 2017; pp. 27–46.
[CrossRef]

52. Forrester, A.I.; Sóbester, A.; Keane, A.J. Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. Math. Phys. Eng. Sci.
2007, 463, 3251–3269. [CrossRef]

53. van Rijn, S.; Schmitt, S. MF2: A Collection of Multi-Fidelity Benchmark Functions in Python. J. Open Source Softw. 2020, 5, 2049.
[CrossRef]

54. Xiong, S.; Qian, P.Z.G.; Wu, C.F.J. Sequential Design and Analysis of High-Accuracy and Low-Accuracy Computer Codes.
Technometrics 2013, 55, 37–46. [CrossRef]

55. Dong, H.; Song, B.; Wang, P.; Huang, S. Multi-fidelity information fusion based on prediction of kriging. Struct. Multidiscip.
Optim. 2015, 51, 1267–1280. [CrossRef]

56. Mortazavi Moghaddam, A.; Kheradpisheh, A.; Asgari, M. A basic design for automotive crash boxes using an efficient corrugated
conical tube. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2021, 235, 1835–1848. [CrossRef]

57. Xiang, Y.; Wang, M.; Yu, T.; Yang, L. Key Performance Indicators of Tubes and Foam-Filled Tubes Used as Energy Absorbers. Int.
J. Appl. Mech. 2015, 07, 1550060. [CrossRef]

58. Kröger, M. Methodische Auslegung und Erprobung von Fahrzeug-Crashstrukturen. Ph.D. Thesis, Hannover Universität,
Hannover, Germany, 2002. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

138 4.3. Publication III



Chapter 4. Publications 139

4.4 Publication IV

Application of physical and mathematical surrogate models to

optimize the crashworthiness of vehicle front structures

This conference paper reflects our contribution to the NAFEMS World Congress
2021, an international conference held virtually in October 2021, well known in the
field of engineering analysis, modeling and simulation. After a peer review process,
our submission was accepted for presentation. The presentation, extended abstract,
and recording of our paper are available online in the NAFEMS Resource Center.
The attached conference paper collects the main results of this presentation.

Research contribution

This paper focuses on the application of surrogate models in surrogate-based crash-
worthiness optimization. By analyzing a full-vehicle frontal impact, our work demon-
strates how physical surrogate models (obtained by simplifying the finite element
model) and mathematical surrogate models (response surface models) can be ef-
fectively used, leading to significant computational savings without compromising
accuracy.

Methods

In the paper, two model rrder reduction (MOR) techniques are employed: an auto-
mated approach for simplifying vehicle models and another for the simplification of
the structure of the barrier. Furthermore, the analyzed load case presents complex
mathematical resolution challenges as a mixed integer non-linear problem, due to
the mixed nature of the variables involved: continuous (thicknesses) and categorical
(material selection).

Results

The results of this study revealed a remarkable performance of our methodology.
The use of surrogate models resulted in an 82 % reduction in computational time,
and the surrogate-based optimization workflow achieved a 2.1-fold increase in SEA
over the baseline design. The mathematical model efficiently predicted occupant
load criterion (OLC), firewall intrusion, and SEA values using only a 100-sample
design of experiment for an 11-dimensional problem.
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Abstract

Exploiting the full potential of lightweight materials and weight reduction tech-
niques while preserving the high safety standards of a vehicle still remains one of
the major challenges in the field of crashworthiness design. Such a problem, already
challenging from a qualitative point of view, is also hard to be solved numerically
due to the computational costs related to crash simulations of full FEM vehicle
models. This factor represents also a real limitation in the field of optimization of
vehicle crash structures. It is especially challenging, if load cases are investigated,
which additionally involve complex impactor models such as deformable impact
barriers, which are required for the certification of vehicles. Only by the use of
simplification strategies and physical surrogate models the computational costs can
be reduced in a way to make crashworthiness problems for cars suitable for struc-
tural optimization. Additionally, the application of mathematical surrogate models
can efficiently improve the possibility to find suitable structural solutions in the
respect of given design requirements compared to conventional optimization ap-
proaches. In this paper, the Urban Modular Vehicle (UMV), i.e. a battery-driven
modular car concept developed by the German Aerospace Center (DLR) is investi-
gated to improve its crash performance in the event of a front crash using physical
and mathematical surrogate models. The NCAP - Mobile Progressive Deformable
Barrier (MPDB) crash load case is considered as frontal crash scenario. A phys-
ical surrogate model will be used to replace the detailed crushing behavior of the
MPDB model by means of kinematic descriptions. The finite element vehicle model
is also simplified in a way that structural components which are assumed to only
bear elastic deformations are replaced by kinematic numerical representations de-
scribing the substituted structures. Finally, a design optimization strategy based on
mathematical surrogate models is successfully applied to optimize the absorption
properties of the crash relevant vehicle structures. For the optimization appropriate
constraint functions are included to ensure that any applied structural change does
not undermine the safety requirements of the passengers. Only with these applied
simplification strategies optimization can be applied to such a complex crash load
case.
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1 Introduction

Improving the crash performance of a vehicle is a challenging task that requires navigating complex
trade-offs, especially between the safety and energy efficiency of the vehicle. These types of prob-
lems belong to the domain of crashworthiness optimization problems. Crashworthiness optimization
presents unique challenges. Characterized by highly dynamic impacts and large deformations, these
problems are inherently complex, often exhibit non-linear responses, and are often affected by noise
sources. A noteworthy aspect of these simulations is their time-consuming nature. Full vehicle finite
element analysis (FEA) simulations can take several hours or even days, depending on computa-
tional resources and model complexity. This time commitment underscores the daunting task of
crashworthiness optimization, which requires innovative and efficient methodologies.

In pursuit of this goal, the integration of physical and mathematical surrogate models could truly
improve the overall efficiency of vehicle crash performance. This paper delves into the intricacies of
crashworthiness design and presents a suitable surrogate-based optimization (SBO) approach based
on both physical and mathematical models. The approach relies on strategic modifications of both
materials and geometric features, while aiming to improve the lightweighting potential of the vehicle.

In the following sections, we explore the definition and advantages of surrogate models when applied
to SBO, analyze a real crash simulation scenario, and culminate in a synthesis of key findings and
future perspectives.

2 Surrogate models

To capture the essence of surrogate modeling, we provide an overview of the general modeling
process. As shown in Figure 1, the process unfolds from the real world or actual system, leading to
the creation of numerical models such as FEA models. By discretizing the physical structure into
a finite set of elements, a real-world scenario can be transformed into a detailed, computationally
manageable representation. These models are often referred to as "high-fidelity models" because
they are approximations, yet maintain a high degree of accuracy. However, their simulations can
be time-consuming, taking several hours or even days. In optimization contexts, there is often a
need to estimate simulation results multiple times, which is where surrogate models come in handy.
These models act as a "model of a model," providing further approximations that facilitate rapid
evaluation of crash responses.

Real system Numerical model Surrogate model

Figure 1: Overall system model representation: From left to right, the diagram depicts the real
system, followed by the numerical FEA model, and finally, the surrogate model (physical and math-
ematical).

In the next section, a distinction is made between physical and mathematical surrogate models and
their respective roles and benefits in the optimization process.

2.1 Physical surrogate models

Several strategies exist to reduce the computational complexity of numerical models. Model order
reduction (MOR) techniques are prominent among them [5]. In this work, as shown in Figure 2,

2
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we consider two different simplification approaches: one for vehicle models and another for barrier
models, which are extensively discussed in the works of Schäffer et al. [10, 11].

(a) Vehicle approach (b) Barrier approach

Figure 2: Two types of model order reduction techniques: (a) vehicle approach and (b) barrier
approach. Pictures retrieved from Schäffer et al. [11].

The vehicle simplification approach involves substituting the vehicle segments that undergo elastic
deformations with surrogate elements. This strategy allows for the removal of numerous finite
elements while maintaining the overall mass and inertia of the vehicle. Conversely, the barrier
model simplification is designed to replace the multiple layers of the honeycomb structure with
beam elements. This not only reduces the number of elements, but also improves the critical time
step of the model.

Both types of physical surrogate models are advantageous because they greatly reduce the compu-
tational burden of FEA models, assuming a reasonable level of approximation error. In addition,
these approaches are adjustable to different load cases. Above all, surrogate models facilitate efficient
response evaluation, which is essential for effective crashworthiness optimization.

2.2 Mathematical surrogate models

Mathematical surrogate models, often called metamodels, are analytical approximations that can
mimic the behavior of expensive-to-evaluate black-box functions. They are systems from which, for
given inputs, we can calculate the associated outputs, but the analytical relationship between them
remains unknown. Metamodels are very useful for predicting simulation results in a much faster
way.

Among mathematical surrogate models, Gaussian process (GP) is a well suited supervised technique
to mimic non-linear relationships of unknown functions when only a few samples are available. Given
a dataset of input/output pairs D = {xi, yi}n

i=1, let f : X ⊂ Rd → R let be the black-box function
of interest. The dataset D is generated by f according to the following relation: yi = f(xi), which
are the observations. To f is assigned a prior with mean µ(x) and covariance function k(x, x′, θ),
so that f(x) ∼ GP(µ(x), k(x, x′; θ)). Note that the prior represents our beliefs about the black-
box function before considering the observations. Since no information is known in advance, a
common assumption is that the mean is equal to zero, µ(x) = 0. We denote the covariance matrix
as Ki,j = k(xi, xj ; θ) where K ∈ Rn×n. To fit the Gaussian process to the observed values, the
hyperparameters enclosed in the vector θ must be properly tuned. We can obtain an optimal set of
hyperparameters by maximizing the log marginal likelihood as shown in Eq. (1):

log p(y|x, θ) = −1
2y⊤K−1y − 1

2 log |K| − N

2 log 2π (1)

3

142 4.4. Publication IV



NAFEMS World Congress 2021 - October 27, 2021

To obtain predictions on a generic test set of x∗ samples, we define Kn∗ = k(x, x∗; θ) as the matrix
of covariances evaluated on all pairs of training and test samples, and analogously K∗n = k(x∗, x; θ)
and K∗∗ = k(x∗, x∗; θ). By conditioning the joint Gaussian distribution on the observations, we
obtain the predictions f∗ by sampling the posterior as shown in Eq. (2):

f∗|x∗, x, y ∼ N (K∗N K−1y, K∗∗ − K∗N K−1KN∗) (2)

For a more thorough reading on Gaussian processes we refer the reader to the works of Rasmussen
& Williams [8] and Romor et al. [9].

3 Crash use case: Mobile Progressive Deformable Barrier (MPDB)

In order to demonstrate the effectiveness of surrogate models, we focused on a well-established
frontal crash load case, specifically the New Car Assessment Program (NCAP) - Mobile Progressive
Deformable Barrier (MPDB) scenario [14].

This scenario is a representative model of a head-on frontal collision, a common occurrence in real-
world traffic accidents. It involves a test in which a vehicle, in this case the Urban Modular Vehicle
(UMV) [7] - a battery-powered modular vehicle concept developed by our institute - is driven into
a deformable barrier at a speed of 50 km/h with a 50 % overlap. This barrier, whose FEA model
was developed by Livermore Software Technology Corporation (LSTC) [2], is attached to a 1400 kg
trolley that also moves at 50 km/h.

Figure 3: MPDB frontal crash test setup [1]

3.1 Simplification of the model

Starting with the initial high-fidelity FEA models, we applied the vehicle approach to the UMV
model. Following this procedure, we bisected the UMV model along its transverse axis, approxi-
mately at the midpoint of its wheelbase. For this process, we made use of the Automated Surrogate
Modeling for Vehicle Safety (ASMOS) software, a tool developed by our research group and de-
signed to automatically generate surrogate vehicle models [4]. We then applied the barrier approach
to simplify the model of the deformable barrier. Together, this adaptation resulted in a significant
reduction in simulation time, achieving an 82 % reduction when running on our high-performance
computing (HPC) cluster. An overview of the simplification process is shown in Figure 4.

3.2 Problem definition

In order to improve the crash performance of the front structure of the UVM, we set the Specific
Energy Absorption (SEA) as the objective function to be maximized. The SEA is calculated ac-
cording to Eq. (3) as the ratio of the total energy absorbed by p structural components to the sum
of their masses.

4
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Figure 4: Model simplification steps to generate the physical surrogate models.

SEA =
∑p

i=1 EAi∑p
i=1 mi

(3)

This optimization involves a total of eleven design variables (d = 11). Note that all components of
the front structure shown are made of shell elements. Referring to Figure 5, each variable t denotes
the thickness of these shell elements, while M refers to the material card selected to define the
material properties.

Figure 5: Front structure design variables.

The optimization process allows for variation of thickness within predefined ranges (continuous
variables) and selection from a set of materials (categorical variables). For this study, we consider
three aluminum alloys: AA 6016 (Ac-120), AA 5083, and AA 6014. We also consider five types of
cold-rolled steel: Mild, Bake Hardenable (BH), High Strength Low Alloy (HSLA), Dual Phase (DP),
and Complex Phase (CP) steels. These materials are not only commonly used in the automotive
industry [12], but also exhibit a wide range of material properties, allowing for a comprehensive
exploration of the design space to achieve our goal of maximizing SEA.

To ensure occupant safety, we define four constraint functions within the optimization problem. The
first is the Occupant Load Criterion (OLC), which measures the deceleration experienced by the
driver during a collision. This is quantified as shown in Eq. (4):

5
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OLC = vocc(t3) − vocc(t2)
t3 − t2

(4)

where vocc is the velocity of the occupant, and t1, t2, and t3 are the start of the collision, the
end of the free flight phase, and the end of the restraint phase, respectively. To limit the OLC
value and thus the severity of the collision, we refer to the NCAP Compatibility Assessment [3].
This assessment provides a "modifier" table for calculating penalty points; for example, an OLC
of approximately 37.5g corresponds to 1.8 penalty points (see figure 6a). As shown in Figure 6a,
an OLC value of less than 25g is required to completely avoid penalty points. Given the inherent
approximations in surrogate models, we conservatively set the threshold at 24g.

(a) General scoring rationale of the OLC criterion
(b) Firewall intrusion based on three measurement
points: S2, S3 and S4

Figure 6: Two types of model order reduction techniques: (a) vehicle approach and (b) barrier
approach. Pictures retrieved from Schäffer et al. [11].

Furthermore, we enforce three additional constraints, Intrs2, Intrs3 and Intrs4, to limit the firewall
intrusion at points corresponding to the driver’s knees and feet. The goal is to achieve at least a 20
% reduction in intrusion relative to the pre-optimized baseline model (see Eq. (5)).

g2(x) : Intrs2 < 67.1 mm

g3(x) : Intrs3 < 40.1 mm

g4(x) : Intrs4 < 36.5 mm

(5)

3.3 Optimization workflow

The optimization workflow used in our study follows the surrogate-based optimization process shown
in Figure 7.

The workflow begins with the sampling phase, where input values are varied to ensure thorough
exploration of the design space. With 11 design variables, we used an optimal Latin Hypercube
Design (LHD) [13] to obtain 100 samples, although the general recommendation is to sample ten
times the number of variables [6]. Categorical features are mapped into the continuous domain as
integers (label encoding) to avoid any potential curse of dimensionality issues with other techniques
such as one-hot encoding. The collected samples form the so-called design of experiment, which is
then used to train GP surrogate models. To evaluate the accuracy of these metamodels constructed
on different covariance functions, we employ a k-fold cross-validation approach, using the mean

6
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Figure 7: Overview of the optimization workflow.

squared error (MSE) as the error metric. The optimization is then performed on the selected
metamodels using Evolutionary Algorithms, which allow a global search for the optimal design. The
predicted optimal design is then verified by FEA simulation and the results are fed back into the
dataset. This iterative process is repeated until convergence is reached (no improvement is detected
in the last 5 iterations) or until a maximum of 20 iterations have been completed.

4 Results

In this section, we aim first to analyze the optimization results obtained using the physical surrogate
models and then to verify the results of the optimal design with the corresponding high-fidelity model,
namely the non-simplified FEA model of the UMV.

4.1 Optimization results

The convergence plot shown in Figure 8 provides a clear representation of the optimization process
for the SEA. The 100-sample design of experiment denotes the initial exploration phase, represented
by the orange region. Designs that did not meet the constraints are represented by red dots,
while feasible designs are represented by green dots. The plot illustrates the struggle to satisfy all
constraints during the initial sampling, but also reveals a rapid improvement in SEA values during
the early optimization stages. The final optimized design resulted in a remarkable improvement,
more than doubling the SEA value, which increased by 2.1 times compared to the baseline UMV
design, while simultaneously achieving a mass reduction of 9.1 kg.

Figure 8: SEA objective history.

7
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The comparison of response function values between the baseline and the optimal design model in
terms of SEA, OLC, and intrusion values is shown in Table 1.

4.2 Verification of surrogate predictions

To ensure that the optimization results of the simplified FEA model are consistent with the results of
the original high-fidelity model, we performed a verification simulation to compare the performance
of the improved design.

(a) Force in the X-direction

(b) Force in the Y-direction

Figure 9: Contact forces in longitudinal (X) and transverse (Y) directions.

Figures 9a and 9b show a strong correlation between the contact forces along the longitudinal
(X-axis) and transverse (Y-axis) directions of the vehicle. In addition, the energy balance, which
includes kinetic energy, internal energy, and the hourglass energy, further supports the consistency
between the two models, as shown in Appendix 11.

A visual comparison during various stages of the crash phase is presented in Figure 10, again vali-
dating the predictive accuracy of the surrogate model.

5 Conclusion and Outlook

The application of physical surrogate models in our research has demonstrated a significant reduction
in computational time, achieving an 82 % reduction while maintaining a high degree of correlation

Baseline Design Optimal Design
SEA [kJ/kg] 1.14 2.40
OLC [g] 24.02 23.63
Intrs2 [mm] 83.9 41.74
Intrs3 [mm] 50.04 24.39
Intrs4 [mm] 45.67 17.08

Table 1: Comparison of response function values between baseline and optimal design.
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Figure 10: Crash simulation at different time intervals: 40 ms, 50 ms, and 60 ms (from left to right).

with the original FEA model. This efficiency does not compromise the integrity of the results, as
evidenced by the remarkable improvement in SEA, which was 2.1 times higher in the optimized
design compared to the baseline, all while meeting the imposed safety constraints. In addition,
the use of surrogate mathematical models proved to be very effective, allowing the prediction of
complex functions with a limited number of samples. In our case, only 100 samples were needed for
an 11-dimensional problem, illustrating the potential of these models to predict complex non-linear
functions with a limited amount of samples.

Looking forward, we believe that the optimization approach outlined here has great potential for
broader crash applications. Its adaptability and effectiveness suggest that it could be applied to a
wide range of crashworthiness optimization problems, paving the way for more efficient and effective
design processes in automotive engineering and beyond.
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Appendix

A Complete optimization problem definition

max
x

SEA(x)

s.t. OLC(x) < 24g

Intrs2(x) < 67.1 mm

Intrs3(x) < 40.1 mm

Intrs4(x) < 36.5 mm

w.r.t. tBU ∈ [1.0 − 3.2] mm

tCB ∈ [1.0 − 3.5] mm

tF M ∈ [1.5 − 3.0] mm

tF MR ∈ [1.0 − 2.0] mm

tLB ∈ [1.0 − 3.8] mm

tLSV U ∈ [1.0 − 3.2] mm

tLSV UR ∈ [1.0 − 2.0] mm

MBU,CB ∈ [AA, CRS]
MF M ∈ [AA, CRS]
MLB ∈ [AA, CRS]
MLSV U ∈ [AA, CRS]

Where AA and CRS represent the sets of material cards for aluminum alloys and cold-rolled steels,
respectively. They are defined as follows:

AA = {AA6016, AA5083, AA6014}
CRS = {DX52D, CR210BH, CR210LA, CR330Y590T-DP, CR570Y780T-CP}
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B Further optimization results

The summary table of the comparison between design variables for the baseline model and the
optimal design is provide in Table 2.

Variable Baseline Design Optimal Design
tBU [mm] 1.75 2.0
tCB [mm] 1.75 2.0
tF M [mm] 2.0 1.5
tF MR [mm] 1.5 1.64
tLB [mm] 2.0 1.5
tLSV U [mm] 2.0 1.5
tLSV UR [mm] 1.5 1.77
MBU,CB [-] DX52D AA6014
MF M [-] AA5083 AA5083
MLB [-] DX52D AA6016
MLSV U [-] AA6016 AA6016

Table 2: Comparison of the design variable values for the baseline and optimal design.

C Energy balance

The energy balance, consisting of kinetic energy, internal energy, total energy, and hourglass energy,
is shown in Figures 11:

Figure 11: Energy balance comparison between the physical surrogate model and the high-fidelity
model.
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4.5 Publication V

Adaptive sampling strategies for crashworthiness applications

This publication is the result of a lecture presented at the "AI-assisted Crash Sim-
ulation & Optimization" event organized by the Automotive Solution Center for
Simulation (ASC) in June 2023. The presentation and recording of our session are
available online for ASC members. This article has been written to show some of
the key findings achieved and presented during this event.

Research contribution

Our study introduces the multi-query cross-validation voronoi (MQCVVor) method,
which improves global surrogate modeling in crashworthiness applications. This
approach addresses the challenges of adaptive sampling by seeking an ideal trade-off
between variable domain exploration and function feature exploitation, providing
an appealing solution to the common problems of under- and oversampling.

Methods

MQCVVor is an extension of the CVVor method. Our extension extends the capa-
bilities of the original method by handling multi-response systems and a multi-query
point system that allows parallel simulation evaluations. The exploration compo-
nent is based on the Voronoi algorithm, while the exploitation component is based
on a cross-validation approach.

Results

The MQCVVor method demonstrates superior accuracy and efficiency compared
to common space-filling static methods such as latin hypercube designs (LHD),
especially in small multi-response systems. MQCVVor and LHD were tested on a
dynamic compression problem of a crash-box. MQCVVor outperformed the LHD
method with maxmin criterion in both convergence speed and robustness, indicating
its potential as a valuable resource in complex engineering simulations.
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Abstract

In the context of surrogate metamodeling for crashworthiness applications, the im-
plementation of adaptive sampling strategies holds great potential for overcoming
the challenge of setting the optimal number of samples a priori. These adaptive
strategies offer a significant advantage by avoiding the common pitfalls of under-
and oversampling, making them attractive for expensive-to-evaluate functions such
as those commonly encountered in crashworthiness applications. Despite their po-
tential, most current research in this area relies predominantly on static sampling
strategies. Recognizing this gap, our work explores the adaptation of innovative
adaptive sampling methods specifically tailored to the needs of crashworthiness ap-
plications. In this context, we describe the Multi-Query Cross-Validation Voronoi
(MQCVVor) method. This approach extends the traditional CVVor technique by
integrating parallel processing, thus improving the efficiency and accuracy of surro-
gate models, especially for small scale multi-response systems. Our method demon-
strates a significant improvement over conventional static Latin Hypercube Design
(LHD) in terms of convergence speed and robustness. In addition to these results,
we briefly discuss the potential limitations of adaptive sampling strategies and lay
the groundwork for future research aimed at refining these techniques for more
complex scenarios.

1 Introduction

The pursuit of efficiency and accuracy in crashworthiness optimization often encounters the pro-
hibitive barrier of computational cost. Surrogate model (also known as metamodels or response sur-
face model), have emerged as a promising solution to this challenge. These models aim to emulate
the complex, non-linear functions characteristic of crashworthiness problems, where the analytical
relationship between inputs and outputs remains unknown. The effectiveness of these surrogate
models is highly dependent on the quality and quantity of the underlying data. A major concern,
however, is the cost associated with collecting such simulation data. It is of utmost importance to
minimize the time spent on response evaluation - a task that often takes several hours [5] - as this
aspect significantly overshadows the time required for training and evaluation of surrogate models.

A critical approach to improving the efficiency of this process is to employ ideal sampling strategies,
which aim to sample the domain according to specific optimality criteria. By carefully selecting
samples, the information gained from each simulation run can be maximized, thereby increasing
the overall efficiency. Traditionally, sampling strategies in crashworthiness applications are static,
meaning that all required samples are selected in a one-shot, initial phase prior to fitting the surrogate
models. Often referred to as space-filling or response-free strategies, these approaches aim to fully
explore the variable domain without regard to the output values of the function.

In contrast, adaptive sampling strategies provide a dynamic approach that adapts to the specific
characteristics of the function, such as gradients, peaks, and discontinuities. This adaptability allows
for a more judicious allocation of resources, leading to efficient results [1].
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Figure 1: One-dimensional damped sinusoidal function (such as f(x) = A−λ·x · cos(ωx)) sampled
using an adaptive sampling approach. The function is very simple and almost linear to approximate
on the left side, but very non-linear on the right side. Intuitively, more samples should be allocated
to the right side to compensate for this non-linearity.

The motivation for using adaptive strategies becomes clear when considering a function with varying
characteristics, such as the damped sinusoidal wave function shown in Figure 1. This function
exhibits nearly linear behavior on the left-hand side, while the right-hand side is characterized by
strong non-linearity. In such scenarios, a fixed budget of observations would be better utilized by
allocating more samples to capture the non-linear regions, since the linear portions require fewer
samples for accurate representation. In the area of computational experimental design, adaptive
sampling has been reported to be potentially more efficient than static sampling methods. This
efficiency is evidenced by its ability to reduce the number of samples needed to achieve a given level
of accuracy in surrogate models used to approximate black-box functions [4, 12].

Our study aims to identify an adaptive sampling strategy tailored for surrogate-based optimization
in crashworthiness applications. We plan to explore its potential limitations, develop solutions to
these problems, and test the approach with a crash simulation experiment.

2 Adaptive sampling for surrogate models

The main benefit of adaptive sampling lies in the sequential selection of samples, which effectively
addresses the issues of under- and oversampling that are common in static sampling techniques.
This sequential approach is balanced by a dual focus: exploration, which involves investigating
unexplored areas of the variable domain, and exploitation, which focuses on detailed examination of
areas with noteworthy features such as gradients, peaks, valleys, and discontinuities. To handle this
trade-off, different data sources can be used, depending on the adaptive strategy being considered.
Nevertheless, the availability of these sources depends on the type of surrogate models employed.
In surrogate-based optimiaztion for crashworthiness applicarions, Gaussian process (GP), support
vector regression (SVR), polynomial response function (PRF), and radial basis function (RBF) are
among the most commonly used metamodels [2]. GPs are widely preferred for their accuracy and
flexibility. However, their cubic training complexity (O(n3)) might become a limiting factor for
high-dimensional problems. This drives us to search for an adaptive sampling method that not
only minimizes the need for costly observations, but is also universally applicable across different
surrogate models. This requirement, together with the specific needs of crashworthiness applications,
which include prediction of nonlinear patterns, scalability, robust global metamodeling capability,
and computational efficiency, led us to a thorough examination of the existing literature, including
key findings from the reviews by Garud et al. [4] and Fugh et al. [3]. After careful cross-checking of

2

Chapter 4. Publications 153



ASC Simpulse Day - AI-assisted Crash Simulation & Optimization - June 13, 2023

this information, we identified the CVVor (Cross-Validation Voronoi) sampling method as a potential
optimal choice. We will explain and discuss CVVor in more detail in the following section.

3 Cross-Validation Voronoi sampling

In this section, we review the CVVor method originally introduced by Xu et al. [13] and analyze its
limitations. We then propose an extension of the CVVor method to adapt it to the requirements of
crashworthiness problems.

3.1 Original method and limitations

The CVVor sampling method aims to handle the trade-off between exploration and exploita-
tion by using the Voronoi algorithm and the Leave-One-Out Cross-Validation (LOOCV) method,
respectively. Consider a black-box function f : Rd → R in a d-dimensional problem, where
the initial exploration data set P = {p1, p2, ..., pn} and its corresponding output values y =
{f(p1), f(p2), ..., f(pn)} is given and consists of n = 5 · d pairs of input/output observations. A
surrogate model f̃ : Rd → R approximating the real function f is trained on the initial samples.

Figure 2: Main steps of the CVVor method: (a) The domain is partitioned into a set of Voronoi
cells. (b) The sensitive Voronoi cell Csenstive is identified by using Leave-One-Out cross-validation.
(c) A new sample pnew is selected to be the farthest away from psensitive within the sensitive cell
csenstive. Image adapted from Xu et al. [13].

The first step of the method to partition the domain into n Voronoi cells - i.e. the region consisting of
all points closer to that sample than to any other [12] – centering them on existing sample points, pi.
We denote these cells as C = {c1, c2, ..., cn}. Next, the LOOCV phase (exploitation step) identifies
the most sensitive Voronoi cell, csensitive. This involves temporarily excluding each sample point,
building a metamodel with the remaining points f̃P \pi

, and then evaluating the accuracy of the
model against the excluded point. By repeating this for all points, the method identifies the cell
where model improvement is most needed. The error of the point pi is calculated according to Eq.
(1):

ei
LOO = |f(pi) − f̃P \pi

(pi)| (1)

The final step (exploration step) is to strategically place a new sample point, pnew, within the
identified sensitive cell, maximizing the distance from the existing central point to explore less
sampled regions. For a clear visual understanding of the method, these three main steps of the
CVVor approach are illustrated in Figure 2.

Despite the attractive features of the CVVor method for handling the exploration-exploitation trade-
off, two practical limitations must be addressed for its effective application in crashworthiness studies:

• Single-response: While the Voronoi method is response function independent, the LOOCV
component is only applicable to single-objective problems without constraint functions. This

3
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scenario is rare in crashworthiness applications, which often require more complex multi-
constrained analyses.

• Single-query: The fine granularity of the method could hinder efficiency, especially when
parallel computing capabilities are available, such as on high-performance computing (HPC)
clusters.

In the next section, we propose an extension of the CVVor method to handle multi-response problems
and to implement a batch query point logic that allows for parallel computation of simulations.

3.2 Proposed extension

Let us now consider a multi-response system F consisting of t functions such as F = {f1, f2, ..., ft}.
Note that to keep the notation simple, f denotes a generic response function, not necessarily an
objective function. Thus, constraint functions are also included in this notation. Inspired by the
idea of the "most critical function" introduced by Liu et al. [6], we extend the CVVor approach to
address the first limitation. This extension can be visualized in Figure 3 and summarized in five
main steps:

f(x1, x2)

g1(x1, x2)

g2(x1, x2)

Figure 3: Detection of csensitive and pnew in a multi-response system consisting of an objective
function f1 and two constraint functions, g1 and g2, respectively.

• Since response functions can produce responses with orders of magnitude of difference, we
first normalize them based on the real responses collected. This can be done using the
MinMaxScaler approach shown in Eq. (2):

f̂j,norm(x) = f̂j(x) − min(yj)
max(yj) − min(yj) , j ∈ {1, 2, . . . , t} (2)

• We generate the starting n exploration designs according to the Latin Hypercube Transla-
tional Propagation (TPLHD) algorithm developed by Diana et al. [10] and the associated
Voronoi tessellation (i.e. the partition into Voronoi cells).

• According to the normalized generalized mean square cross-validation error (NGMSE), we
calculate the weights wj of the F functions based on their accuracy level (see Appendix A
for further details about NGSME):

wj = NGSMEj∑t
i=1 NGSMEi

, j ∈ {1, 2, . . . , t}

4
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The poorer the accuracy of a surrogate model f̂j , the greater its weight wj .

• Using these weights, we then rank the errors of the Voronoi cells according to the sum-
weighted approach shown in Eq. (3):

esys
i =

F∑

j=1
wj · ej

i , i ∈ {1, 2, . . . , n} (3)

• Finally, analogous to the original method, we pick pnew within csensitive (i.e. the cell with
the highest error esys

i ) that is furthest away from psensitive.

With such a differential weighting method, errors from less accurate surrogate models have a more
significant impact on the evaluation of cell errors, leading the algorithm to prioritize their improve-
ment. As a result, this adaptation not only preserves the integrity of well-performing models, but
also actively seeks to improve the performance of underperforming models.

To overcome the limitation of parallel processing, we now present the second part of the extension of
the original method. Let the number of simultaneous function evaluations be denoted by npar.This
extension can be effectively summarized in three steps, which are clearly illustrated in Figure 4.

(a) Find pnew (b) f̂(pnew) = f(pnew) (c) Retrain the metamodel f̂

Figure 4: Extension of the CVVor method to a multi-query approach enabling parallel simulations.

• First, a new point, pnew, is determined using the standard procedure described in the
original method.

• Instead of directly evaluating the function at pnew, we temporarily assume that the function
at this point is known and equal to the true function value, so we set f̃(pnew) = f(pnew).

• This assumption allows us to include pnew and f(pnew) provisionally in the dataset, allowing
the metamodel to be updated without the need for immediate function evaluation.

This process is repeated npar times, depending on the parallel execution capacity. While this tech-
nique does not guarantee that each new point will provide in-depth exploitation insights, the Voronoi
tessellation ensures that the sampling remains well distributed over the domain. Since the computa-
tional cost of evaluating one function and npar functions in parallel is comparable, this parallelized
method provides a superior amount of information.

In the following, we will refer to our proposed extension as Multi-Query CVVor (MQCVVor) for
ease of notation and explanation.

Example on analytic functions

In this section, our goal is to visually assess whether the performance of the proposed method is
in line with our expectations. For this purpose, we consider the multi-system already observed in
Figure 3, composed of the Peaks function, the Easom function and the Sphere function, representing

5
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Figure 5: From top to bottom: the surrogate models for the Peaks function, the Easom function,
and the Sphere function after ten iterations. The black dots represent the points from the initial
design of the experiment. The red dots are the adaptive points added by the MQCVVor method,
while the white dots represent the last three adaptive points added in the final iteration.

f , g1 and g2 respectively. For more details on these functions, we refer the reader to the work of
Molga et al. [7].

The results shown in Figure 5 are in line with our expectations. Besides the black points, which
represent the purely exploratory points of the initial dataset, the adaptive points - marked in red -
(with the last batch of three points marked in white) are mainly distributed to capture the gradients
in the center and in the upper right corner of the domain. These gradients are due to the Peaks
and Easom functions, respectively. The Sphere function, characterized by a uniform quadratic trend
throughout the domain, appears to have a neutral effect on the sample distribution.

Further comparisons on the use of a multi-query strategy applied to the same multi-response problem
show that, for example, using three parallel simulations instead of one can achieve the same accuracy
target with about 43 % less computational time (see Appendix B for more details).

4 Experiment

Finally, we test the presented approach on a crash application. The crash-box of the front structure
of the Urban Modular Vehicle (UMV) [8] - a battery-powered modular vehicle concept developed by
our institute (see Figure 6) - is investigated.

This structure is analyzed within the NCAP Full Width Rigid Barrier load case scenario [9], which
simulates a vehicle impacting a rigid barrier at 50 km/h. Our simplified finite element analysis
(FEA) model of the crash-box is divided into two parts with different thicknesses. Since the crash-
box, compressed by a rigid plate moving at the initial collision speed, is expected to absorb 30-40
% of the kinetic energy, we set the mass of the plate at 400 kg. In our multi-response system, we
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(a) UMV Basic (b) Front structure (c) Crash-box

Figure 6: Extension of the CVVor method to a multi-query approach enabling parallel simulations.

consider three functions of interest: the intrusion (or crushing length), the internal energy (absorbed
energy), and the total mass of the crash-box.

We compare our extension of the CVVor method to the maxmin Latin Hypercube Design (LHD), a
static sampling strategy that maximizes the minimum distance between points in the design space,
commonly used in crashworthiness optimization [11, 2]. Following the guidelines of Xu et al. [13]
we start with a data set of size n = 10. The iteration process stops when the accuracy improves
by 50 % compared to the accuracy measured on the initial dataset. Accuracy is measured by the
normalized root mean square error (NRMSE) among the three response functions (i.e., the surrogate
model with the worst accuracy). The NRMSE for the j-th response function is defined as shown in
Eq. (4):

NRMSEj =

√√√√1
q

q∑

i=1

(
fj(xi) − f̂j(xi)

max{yq,j} − min{yq,j}

)2

(4)

where q is the number of test points, and yq,j is the response vector calculate at these test points.
It is noted that, typically, test points are not available in crash applications. For this reason, we
use NGSME in the standard procedure based on cross-validation in our method. However, since
the FEA model under consideration is a simplified and computationally inexpensive model, we take
advantage of 100 test design points randomly distributed in the variable domain to more accurately
measure the effectiveness of the method.

5 Results

A preliminary visual analysis of the surrogate models shown in Figure 7 looks very promising. The
adaptive points (marked in white) seem to effectively identify the steep slopes of the internal energy
and the intrusion of the crash box. These are located at diagonally opposite angles of the variable
domain, leading to a splitting of the adaptive samples mainly in these two regions. The mass, as
expected for a perfectly linear function, does not seem to negatively interfere with the adaptive
sampling process.

As for the comparison between the convergence curves of the maxmin-LHD method and MQCVVor
shown in Figure 8, it is important to note that our adaptive method iteratively adds a batch of
3 samples to an existing design, whereas the maxmin-LHD method creates a new one-shot design
with three additional samples each time. Each test is repeated 25 times to account for the stochastic
components of the two methods. The results show that the MQCVVor method outperforms the LHD
method both in terms of convergence speed (reaching the target after 20 iterations) and robustness
(narrower confidence intervals).

7
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Figure 7: From top to bottom: the surrogate models for intrusion, internal energy, and mass of
the crash-box after seven iterations. The black dots represent the points from the initial design of
experiments, while the white dots are the points added adaptively by the MQCVVor method.

Figure 8: Comparison between the convergence curves of the MQCVVor method and maxmin-LHD.
Three new samples are added at each iteration. The test repeated 25 times to generate 95 %
confidence intervals

6 Conclusion and Outlook

In this study, we introduced the MQCVVor method as an extension of the existing CVVor ap-
proach, tailored to the specific needs of crashworthiness applications. By enabling parallel pro-
cessing, MQCVVor efficiently enhances the adaptive sampling capacity, ensuring more robust and
faster convergence compared to conventional methods. Our visual and quantitative analyses con-
firm that adaptive points are effectively placed within critical regions, improving model accuracy

8

Chapter 4. Publications 159



ASC Simpulse Day - AI-assisted Crash Simulation & Optimization - June 13, 2023

and robustness. Nevertheless, as the number of response functions increases, conflicting trade-offs
have emerged, suggesting potential limitations in the effectiveness of the method for large multi-
response systems. Future research will delve into these challenges and aim to identify the limits
of the applicability of this approach. The potential need for a purely exploratory strategy will be
explored in scenarios characterized by a larger number of response functions, where the complexity
may diminish the benefits of the current adaptive strategy.
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Appendix

A Normalized generalized mean square cross-validation error

If no test points are available, the surrogate model accuracy can be assessed by the normalized
generalized mean square cross validation error (NGMSE) as shown in Eq. (5) and Eq. (6):

NGMSEj =

√√√√ 1
n

n∑

i=1
(ej

i )2 (5)

ej
i =

∣∣fj(xi) − f̃j,P \pi
(xi)

∣∣
max(yj) − min(yj) (6)

where ej
i is the normalized CV error of the i-th sampled point calculated by the j-th metamodel.

B Further results

In the multi-response system considered in Figure 5, with an NRSME set to 0.03, it is observed that
by using npar parallel simulations, the same objective can be achieved in 20 iterations (Figure 9a)
instead of 35 (Figure 9b), resulting in a saving of about 43 % in computational time.

(a) One query point per iteration. (b) Three query point per iteration

Figure 9: Convergence plots of the MQCVVor method for the multi-system shown in Figure 5 with
varying query points per iteration.
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Chapter 5

Discussion

In this chapter, we will delve into a detailed analysis of the key findings reported in
the publications collected in Chapter 4. This discussion will be undertaken keeping
in mind the pre-defined objectives of the thesis and following the three core pillars
outlined at the beginning of Chapter 3. Our focus will be on critically evaluating how
these findings contribute to our understanding and advancement in the field. In the
latter part of this chapter, we will also provide useful user guidelines and explain
decision trees implemented in CS-Opt to facilitate autonomous decision making.
In addition, the Appendix A provides an overview of the software architecture of
CS-Opt, breaking it down into its constituent modules from an implementation
perspective.

5.1 Sampling

In all five publications, we consistently applied normalization of continuous vari-
ables to a unit domain, leading to its integration as a default in CS-Opt due to its
clear advantages. Similarly, the transformation of target values proved to be essen-
tial for proper model fitting and metamodel evaluation. For discrete variables, we
found logarithmic encoding to be effective in balancing ranking issues and "curse
of dimensionality" concerns. In the specific case of Publication IV, label encoding
was chosen to manage the complexity of numerous encoded variables. As shown in
Figure 5.1, further tests on the simplified crash-box analyzed in the Publication V
experiments indicate that the convergence of both one-hot encoding and logarithmic
encoding appears to be more robust.

Regarding pre-fitting practices for surrogate models, we acknowledge the benefits
of global sensitivity analysis and outlier detection. However, the applicability of
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Figure 5.1: Convergence curve about the mass of the simplified crash-box using
label encoding (a), one-hot encoding (b), and logarithmic encoding (c).

these methods may vary depending on the specific problem. Our suggestion is to
give users control over their application, especially because of the potential risks
associated with automatic data exclusion and variable discarding. As a result, these
tools are available to those with more experience, but are not part of the default
CS-Opt decision process unless specifically requested by the user.

Each of the three sampling strategy categories discussed in this work is suitable
for our surrogate-based crashworthiness optimization methodology. As highlighted
in Chapter 3, selecting a specific sampling strategy is contingent on the particular
problem being addressed. Drawing on insights from Publication I and Publication
V, we provide an overview of decision factors and key considerations that guide the
selection of the most appropriate sampling strategy:

• The minimum number of samples for one-shot strategies depends strongly on
the number of variables. Jones et al. [125] and Loeppky et al. [134] suggest
that the 10d rule is an interesting and reasonable guideline up to about 10-15
variables, especially when applied to GPs. When using sequential adaptive
strategies, Xu et al. [135] recommend starting with an initial static dataset of
5d observations.
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• One-stage sampling methods are well suited for parallel computing in HPC
environments and are independent of the number of response functions.

• Pre-optimized LHD and its extension to TPLHD are arguably the preferred
one-stage sampling methods for crashworthiness applications. They have ex-
cellent space-filling and projective properties and are scalable to high-dimensional
problems.

• Sequential sampling methods are valuable for enriching existing datasets. They
can also be successfully combined with one-shot designs to iteratively enrich
a space-filling DoE until certain qualitative criteria are met.

• Among the sequential space-filling strategies, MIPT-α consistently delivered
optimal and robust results. The method we proposed guarantees an ideal
balance between space-filling and projective properties.

• MqPLHS has shown excellent scalability as the number of variables increases.
Therefore, we recommend it as a sequential space-filling approach for medium
to large numbers of variables (d ≥ 15).

• Adaptive methods are valid for a limited number of response functions. Based
on our findings, we discourage the use of sequential adaptive sampling strate-
gies for systems of four or more response functions. Indeed, combining po-
tentially interesting regions of different response functions sharing the same
variable domain leads to complex trade-offs. Thus, there is a tendency to use
response-free sampling approaches for multi-response problems with numerous
crash response functions.

• Adaptive sampling strategies may not scale well when the number of variables
increases significantly. Beyond 10-15 variables, the complexity and computa-
tional cost of adaptively identifying and refining regions of interest can become
prohibitive.

• Adaptive methods are sensitive to noise and are more suitable for use cases
dominated by bending (less irregularity in response functions).

To summarize, once the crash problem is mathematically formulated, an initial
decision about the type of sampling is based primarily on the number of response
functions, the number of variables, and any information about the problem at hand.
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Low-dimensional problems with few response functions tend to favor adaptive sam-
pling strategies, while highly multi-response and high-dimensional problems require
exploration-oriented strategies. For these reasons, space-filling strategies, while ap-
parently less attractive than sequential adaptive strategies, still play a crucial role
in this application domain.

5.2 Surrogate models

Gaussian processes are the focal point of this work and have been successfully em-
ployed in all five publications to approximate a wide range of functions, from highly
non-linear, multimodal, and noisy functions to simpler convex, linear, and smooth
functions. The covariance function database we outlined appears robust enough to
encompass all cases analyzed in the publications, including both benchmark and
crash response functions. Their flexibility, predictive performance with a relatively
small number of observations, and their ability to estimate uncertainty definitely
make them the default surrogate model in CS-Opt. However, careful handling is re-
quired during the training phase and during the automated identification of covari-
ance functions. The risk of generating distorted models or encountering overfitting
is rather high. In crashworthiness optimization, where test samples are too costly
to be generated in large numbers, there are fewer ways to assess the true predictive
performance of meta-models. Cross-validation alone does not guard against these
problems, especially when the number of folds (k) is small. These concerns were the
main motivation for the development of the hybrid loss in Publication II. When com-
bined with LOOCV, it provides a considerably more robust approach that protects
against the generation of subpar surrogate models and is therefore set by default in
CS-Opt. This hybrid approach, when combined with global search strategies such
as evolutionary algorithms, provides enhanced protection against the problem of
getting trapped in local minima of the log marginal likelihood, an issue analyzed in
Publication II.

As highlighted in Chapter 3, given the high cost of a function evaluation, we
believe that 15 minutes is a reasonable time investment to ensure models with su-
perior predictive performance. If training estimates indicate longer durations, the
model evaluation strategy shifts from LOOCV to k-fold CV with k = 10. If training
and model evaluation times are still impractical, we switch to using support vector
regression. This allows us to retain most of the composite kernels defined in the
kernel database (except for anisotropic kernels). SVRs with a variety of different
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kernels have been tested primarily in Publication I, and they seem to be an effective
backup plan in case GPs are not feasible. This ensures that we continue to achieve
high-quality modeling results without the computational burden associated (O(n3))
with GP models.

Finally, a first test for non-linear autoregressive GP models was successfully per-
formed in Publication III. Although more research is needed, multi-fidelity modeling
has shown great potential for efficient and accurate prediction. The results are very
promising, likely exceeding our expectations, and make this extension to multiple
data sources highly attractive for further improving the efficiency and accuracy of
the optimization process.

5.3 Optimization strategies

In our extensive exploration of optimization strategies used in crashworthiness op-
timization, a multifaceted approach has emerged as the main focus. The direct use
of optimization methods on surrogate models has been employed in most of our ap-
plications, but particularly emphasised in Publication III and Publication IV. The
robust combination of a global search method, specifically the Differential Evolu-
tion (DE) algorithm, integrated with the local, gradient-based L-BFGS-B method,
yielded consistently convincing results. The effectiveness of this strategy was further
confirmed when compared to other evolutionary strategies, such as CMA-ES and
GA, over several test functions for optimizations described in Molga [136]. Our re-
sults were consistent with the key findings of Duddeck [18], who asserted that within
direct surrogate model optimization, the choice of optimization algorithm plays a
secondary role compared to the accuracy of the metamodel itself.

Choosing an optimization strategy for crashworthiness optimization depends
strongly on the characteristics of the problem. Our guidelines, derived from the nu-
merical results presented in Publication III and IV, as well as our experience, suggest
that for bending-dominated problems, such as side impact, EGO strategies are gen-
erally effective. However, for frontal or rear impact scenarios, their effectiveness
decreases due to the higher multimodality and considerable noise in the responses.
In these scenarios, SSM approaches are more favorable because they cope with the
unpredictable nature of these problems by focusing on local variations and providing
more precise solutions. Our adaptive approach, as implemented in the MF-SRS, has
shown significant improvements in effectiveness and efficiency over the disconnected
polynomial response surfaces used by Stander et al. [49], Redhe et al. [36] and
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Kutaran et al. [62].

In scenarios where specific problem details are not available, the two-stage meta-
model optimization method has emerged as a valuable default choice within CS-Opt.
This method has proven effective for a wide range of crashworthiness problems, mak-
ing it particularly suitable for refining already optimized designs, a typical goal in
industrial settings. In particular, even a frontal crash scenario in Publication III
yielded robust results by using this approach.

It is important to note that our backup strategies regarding the direct use of
global search strategies, while considered, were never actually used in the results
presented in the five publications. This likely underscores the advances in surrogate
model selection and tuning strategies that have expanded the scope of surrogate-
based optimization, mitigating the need for global search strategies.

The strategy for handling parallel simulations, while simple, has proven to be
effective, as evidenced by the results obtained with MQCVVor in Publication V.
In addition, the variable relaxation method coupled with label encoding, as used
in Publication IV, yielded outstanding results given the complexity of the crash
scenario and the potential material combinations in the 11-dimensional problem.
However, this approach should be used with caution due to its inherent instability.
Further results from the simplified crash-box shown in Publication V indicate that
a MINLP solution approach using the branch and bound approach may yield more
stable results, as shown in Figure 5.2. Therefore, we recommend this method as the
default approach when external discrete variable management software is available.
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Figure 5.2: Comparison of the convergence of the continuous relaxation approach
(a) and the B&B approach applied to the optimization of the simplified crash-box
from Publication V. Both strategies employ the one-hot encoding method.
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Finally, among the convergence criteria we used, the ARFT method has shown
robustness, matching the fluctuating responses of convergence curves in crash ap-
plications. Nevertheless, we emphasize the importance of setting a maximum iter-
ation limit. As observed in Publications III and IV, the convergence curve tends
to progress rapidly in the initial steps. Therefore, unless specified by the user, we
believe that a reasonable empirical guideline is to consider a maximum of 10 % of
the design size or 10 iterations, whichever is greater, as the upper limit.

5.4 Decision trees

In our efforts to break down the CS-Opt decision-making process into something
more manageable and understandable, we employ the use of decision trees. The
trees presented in the following sections are primarily the result of empirical deci-
sions based on the findings of our tests. This approach aligns well with George Box’s
opening quote, which reminds us of the pragmatic nature of scientific inquiry and
application. We do not claim to offer a one-size-fits-all method that works univer-
sally, regardless of the problem at hand. Instead, our goal is to provide practical
and useful tools for optimally approaching the complex resolution of crashworthiness
problems.

Numerous multi-
response system?

Sequential
adaptive
sampling

Number of
samples known

in advance?

High dimensional
problem?

TPLHD +
MIPT-α

TPLHD +
MqPLHS

TPLHD

f + g ≤ 3 f + g > 3

no yes

d ≤ 15 d > 15

Figure 5.3: Decision tree of sampling methods.

As shown in Figure 5.3, the first step in the sampling decision tree concerns the
selection of an adaptive or space-filling method for sampling strategies. For multi-
response problems with up to three response functions, we recommend an adaptive
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sampling strategy such as MQCVVor, starting with a base of 5d samples. For prob-
lems with more than three response functions, we recommend using optimal Latin
Hypercube Designs (LHDs) through TPLHD (if optimal LHDs are not available in
our database), starting with a design of 10d observations. If user-defined infill point
criteria are present, CS-Opt performs sequential space-filling observation augmen-
tations. For problems with fewer than 15 variables, the MIPT-α method is used,
while MqPLHS is employed for larger variable numbers.

Continuous
variables only?

Mixed variables?

B&B Did B&B con-
vergence before
reaching nlimit?

Optimization
completed

Fix discrete
variables and
continuous
fine-tuning

Continuous
domain

optimization
methods

no yes

no (discrete only) yes

test ≤ tth test > tth

Figure 5.4: Decision tree of optimization methods.

As shown in Figure 5.4, if a problem involves only continuous variables, it is pre-
processed using common normalization methods, followed by the application of an
optimization method appropriate for the continuous variable domain (e.g., TSMO,
EGO, or SSM). For problems involving discrete variables, whether in mixed-variable
scenarios or discrete-only, we strongly recommend the B&B approach if a MINLP
solver is available. For mixed-variable problems, if the iteration limit has not yet
been reached, we favor a double-loop approach to achieve qualitatively better results.
In this process, the discrete variables are optimized first, fixed at optimal values af-
ter the first loop, and then the remaining continuous variables are optimized in the
second loop.

If no specific information on the crash load scenario is provided, CS-Opt will
by default solve the problem by applying the TSMO approach (see Figure 5.5). In
cases where the crash problem is perceived by the user as bending-dominated, such
as side impacts, the software will use the EGO approach. In contrast, for problems
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dominated by more complex physics, such as high-speed frontal collisions, CS-Opt
prefers the sequential methods discussed in Publication III, such as MF-SRS or
GP-SRS.

Impact type
known in
advance?

TSMO Frontal/rear
high-speed
impact?

EGO SSM

no yes

no
(bending dominated)

yes
(compression dominated)

Figure 5.5: Decision tree of type of dynamic impact information.

The diagram shown in Figure 5.6 is rather self-explanatory and illustrates how
the choice of surrogate models (GP or SVR) and metamodel assessment methods
(LOOCV or k-fold CV) is made based on a time budget, tth.

GP fit and LOOCV
too time consuming?

GP and
LOOCV

GP fit and k-
fold CV too

time consuming?

GP and
k-fold CV

SVR fit and
LOOCV too

time consuming?

SVR and
LOOCV

SVR and
k-fold

test ≤ tth test > tth

test ≤ tth test > tth

test ≤ tth test > tth

Figure 5.6: Decision tree of the fitting and accuracy assessment process.

This time budget depends on the computing power available on the machines
that train the surrogate models and is adjustable by the user. As fars as k-fold CV
is concerned, k = 10 is often seen as a good balance, providing a test error estimate
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that is neither too biased nor too variable. Thus, this is the default choice in CS-Opt
when LOOCV is not feasible, but we remind the reader that users are free to set
both the number of folds k and the error metric used in the CV approach. On our
servers, a threshold of 15 minutes seems to be a reasonable time investment to ensure
a robust metamodel choice. If even the estimated time of the most time-efficient
method, test, exceeds tth, the process will still start, but will stop after tth using the
best results obtained so far. A warning is then issued to the user.



Chapter 6

Conclusion and outlook

In the continuously evolving field of automotive passive safety, engineers are increas-
ingly challenged to meet higher safety requirements while simultaneously optimizing
energy efficiency. This dual challenge has made crashworthiness optimization a focal
point of contemporary engineering efforts. The complexity of this task cannot be
underestimated, as it involves navigating multiple, often conflicting requirements
that must be addressed within an industrially feasible timeframe. This is critical to
ensuring that the product development process remains agile and responsive.

The challenges associated with crashworthiness optimization are diverse. A core
aspect of such problems is their black-box nature. Typically, they involve only known
inputs and outputs, with no gradient information available. This lack of closed-form
analysis requires a more sophisticated approach to effectively model and solve these
optimization problems, since very little information is known in advance. Among
the challenges are time-consuming simulations, highly non-linear and multimodal
problem functions, multi-constraint systems, and the possible presence of noise per-
turbations. In addition, these problems often involve medium to large numbers of
variables, different crash scenarios, and diverse types of design variables.

Addressing these challenges requires the development of logical and sound ap-
proaches that can handle the inherent complexity of crash optimization. These
approaches must be able to take as many autonomous decisions as possible in se-
lecting the most appropriate optimization strategies for the problem at hand. While
significant progress has been made in this area in recent years, current methods of-
ten remain rather inefficient, relying heavily on hundreds of numerical simulations.
There is a noticeable over-reliance on costly global search strategies among engi-
neers, coupled with a degree of skepticism toward surrogate models and data-driven
processes.
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As we move forward, there is a clear need for a shift to more efficient, model-
driven methodologies that can harness the power of surrogate-based optimization.
We believe that our work has contributed significantly to the understanding of
the literature on crashworthiness optimization. We analyzed existing methods and
approaches, determined their effectiveness, and identified areas for improvement.
Our research extended to improving these aspects, not only confirming effective
approaches, but also actively refining them.

The culmination of our research efforts is the CS-Opt framework, a record of our
achievements in advancing crashworthiness optimization. This framework embodies
the potential and applicability of innovative model-driven methods to adequately
address the complex challenges of crashworthiness optimization. In fact, CS-Opt
is designed to address the inherent trade-offs in crashworthiness optimization in
an efficient and adaptive manner. Our approach is tailored to make the best use of
available information and to guide users through the complexities of crashworthiness
optimization. At the same time, CS-Opt is flexible enough to accommodate both
novice and experienced users. As a result, our framework provides a comprehensive
package of solutions that seamlessly aligns with our original goals.

Within our optimization framework, we achieved significant results. In par-
ticular, our development of novel sequential space-filling and adaptive algorithms
has advanced active learning approaches. We found that these adaptive sampling
methods consistently outperformed single-stage methods, not only in terms of op-
timality criteria such as space-filling and projective properties, but also in terms
of metamodel accuracy in most tests. A key aspect of our approach was to avoid
common Gaussian fitting problems through a metaheuristic hybrid loss approach.
This proved to be highly effective, reducing the number of iterations required to
achieve a given accuracy target by 3 % to 55 % compared to conventional logarith-
mic marginal likelihood methods. To further extend our approach, we integrated
various sources of information to improve the predictions. In particular, the MF-SRS
method achieved an impressive 14.1 % improvement in the optimal value of specific
energy absorption over the original successive response surface method. This gain in
efficiency is remarkable given its ability to achieve optimal values with less compu-
tational effort. A particularly significant achievement in our work was the effective
handling of categorical features, as exemplified by the full-vehicle frontal crash op-
timization problem. In this 11-dimensional problem, which included 4 categorical
variables, our framework successfully managed to more than double the specific en-
ergy absorption compared to the baseline design with only 120 simulations. This
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was achieved while satisfying stringent occupant load criteria and firewall intrusion
constraints.

6.1 Critical review

Although we believe that our work has contributed valuable insights to the field,
we would like to highlight areas that require critical evaluation and improvement to
guide future research efforts. One promising but still emerging area of research that
could enhance our approach is the automation of the composition of Gaussian pro-
cess covariance functions. Although there is no consensus in the scientific community
about the feasibility of this method, we remain optimistic about its potential. We
believe that it is viable to effectively extract and learn patterns from data structures,
providing a dynamic alternative to the more rigid database approach. An example
of this is the use of tree-search approaches in time series analysis, as demonstrated
by Duvenaud [111].

Another topic that deserves further investigation is the process of material selec-
tion, particularly its dependence on joining techniques. It is important to recognize
that not all automotive structural components are compatible with a single joining
method. For example, while certain materials may be weldable within the same
material class, they may not be suitable for welding with other components. An
example of this is the pairing of high-strength steel with aluminum, which typically
requires alternative joining techniques such as riveting or bonding. This requires a
careful approach that considers the material pairing along with its specific joining
requirements.

Addressing high-dimensional problems, especially those where the number of
dimensions exceeds is greater than thirty (d > 30), poses a significant challenge to
the presented approach. The main obstacle in these situations is the cubic time
complexity associated with Gaussian processes, which can make computations im-
practically time-consuming or resource-intensive as dimensionality increases. To
mitigate this problem, one possible solution is to test existing approximation meth-
ods for large datasets, as outlined by Rasmussen and Williams [102], but also to
explore alternative methods.

Our study to date has focused primarily on static functions, which, while ef-
fective in many scenarios, have certain limitations when predicting time-dependent
signals, such as the measured contact force over time. This limitation is due to the
need to extract specific scalar values at certain points of interest, such as maxima,
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minima, the end of a simulation, or at given time inputs. While useful, these ex-
tractions can oversimplify the rich, time-varying nature of certain phenomena. To
address this, extending our methodology to time-dependent signals and dynamic
processes represents a significant opportunity for improvement.

6.2 Future research directions

Extending our approach to include Gaussian process kernels specifically designed
for categorical features is a promising direction for future research. One such ker-
nel is based on the Hamming distance as proposed by Couto [137]. This kernel
effectively handles categorical data by measuring similarity based on the number
of matching categories, providing a refined approach to modeling complex systems
where categorical variables play a significant role.

Next, the field of multi-fidelity modeling is growing rapidly with new models
being developed in the last five years. Our work has explored only one type of
non-linear hierarchical model, but this approach is not limited to hierarchical mod-
els. In fact, there are numerous other multi-fidelity frameworks that can effectively
integrate data from different sources, increasing the overall predictive power and
efficiency of the optimization process.

Non-stationary kernels, which allow the properties of Gaussian processes to
change over the input space, represent another exciting frontier; these kernels are
particularly adept at modeling discontinuities and could significantly improve our
ability to handle real-world problems where conditions change over the input space
(e.g., modeling sharp acceleration peaks).

Our approach could be further improved by implementing a logic of transfer
learning through multi-task Bayesian optimization [138]. This novel method builds a
multi-task Gaussian process model to capture dependencies between different tasks,
and uses this information to more effectively guide the exploration of solution spaces.
In addition, transfer learning can be applied to learn from similar response functions
in previous crash safety optimizations, thereby refining and speeding up future anal-
yses.

Extending our methodology to predict time-dependent functions and dynamic
processes could be beneficial. Moving beyond static scalar points to predicting entire
curves would be a significant advance, allowing us to capture the full spectrum of
dynamic behavior in crashworthiness scenarios.

Fitting Gaussian processes to large data sets is another important prospect for
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future research. Possible methods include sparse Gaussian processes, which use a
subset of the data to infer the properties of the entire data set, thereby reducing the
computational requirements. Another approach is the use of inducing points, which
effectively summarize the information of a larger dataset, allowing faster computa-
tion without significant loss of accuracy. In addition, dimensionality reduction can
be further extended with techniques such as principal component analysis (PCA)
and t-distributed stochastic neighbor embedding (t-SNE) to reduce the feature space
into a more manageable representation.

Finally, integrating optimization under uncertainty (OUU) approaches could
ensure more robust and reliable solutions, albeit potentially at the expense of some
solution quality. Current algorithms often push solutions close to the limits of
feasibility, raising reliability concerns.



178 6.2. Future research directions



Bibliography

[1] Ruth Heuss, Nicolai Müller, Wolff van Sintern, Anne Starke, and Andreas Tschiesner.
Lightweight, heavy impact. McKinsey & Company.

[2] Kosuke Nishino. Development of fuel economy regulations and impact on automakers. Mitsui
Global Strategic Studies Institute Monthly Report.

[3] Brian O’Neill. Preventing passenger vehicle occupant injuries by vehicle design–a historical
perspective from iihs. Traffic injury prevention, 10(2):113–126, 2009.

[4] World Health Organization. Global status report on road safety: Supporting a decade of
action, 2013.

[5] Guofa Li, Yuan Liao, Qiangqiang Guo, Caixiong Shen, and Weijian Lai. Traffic crash char-
acteristics in shenzhen, china from 2014 to 2016. International journal of environmental
research and public health, 18(3), 2021.

[6] Alan A. Luo. Recent advances in light metals and manufacturing for automotive applications.
CIM Journal, 12(3):79–87, 2021.

[7] Alan I. Taub, Paul E. Krajewski, Alan A. Luo, and John N. Owens. The evolution of
technology for materials processing over the last 50 years: The automotive example. JOM,
59(2):48–57, 2007.

[8] Nina Busarac, Dragan Adamovic, Nenad Grujovic, and Fatima Zivic. Lightweight materials
for automobiles. IOP Conference Series: Materials Science and Engineering, 1271(1):012010,
2022.

[9] Wen Zhang and Jun Xu. Advanced lightweight materials for automobiles: A review. Mate-
rials & Design, 221:110994, 2022.

[10] Qiang Liu, Yongzhou Lin, Zhijian Zong, Guangyong Sun, and Qing Li. Lightweight design of
carbon twill weave fabric composite body structure for electric vehicle. Composite Structures,
97:231–238, 2013.

[11] Jianfeng Wang, Chengyang Shi, Na Yang, Haonan Sun, Yiqun Liu, and Baoyu Song.
Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sand-
wich structures with aluminum honeycomb cores for vehicle body. Composite Structures,
184:1189–1196, 2018.

179



180 Bibliography

[12] Yongfeng Pu, Fangwu Ma, Junyuan Zhang, and Meng Yang. Optimal lightweight material
selection for automobile applications considering multi-perspective indices. IEEE Access,
6:8591–8598, 2018.

[13] Richard Roth, Joel Clark, and Ashish Kelkar. Automobile bodies: Can aluminum be an
economical alternative to steel? JOM, 53(8):28–32, 2001.

[14] Sai Aditya Pradeep, Rakesh K. Iyer, Hakan Kazan, and Srikanth Pilla. 30 - automotive
applications of plastics: Past, present, and future. In Myer Kutz, editor, Applied plastics
engineering handbook, pages 651–673. Elsevier, Amsterdam Netherlands and Boston MA,
2017.

[15] Paul Du Bois, Clifford C. Chou, Bahig B. Fileta, Tawfik B. Khalil, Albert I. King, Hikmat F.
Mahmood, Harold J. Mertz, and Jac Wismans. Vehicle Crashworthiness and Occupant
Protection. American Iron and Steel Institute, Southfield, Michigan, 2004.

[16] Jorge A. C. Ambrósio, Manuel F. O. Seabra Pereira, Fernando Pina Silva, editor. Crashwor-
thiness of Transportation Systems: Structural Impact and Occupant Protection. NATO ASI
Series. Springer Netherlands, Dordrecht, 1997.

[17] Marcel Koch, Steffen Mattern, and Robert D. Bitsche. Facing future challenges in crash
simulation engineering – model organization, quality and engineering. In Proceedings of the
15th International LS-DYNA Users Conference, Detroit, 2018. June 10-12.

[18] Fabian Duddeck. Multidisciplinary optimization of car bodies. Structural and Multidisci-
plinary Optimization, 35(4):375–389, 2008.

[19] Karlheinz Volz and Fabian. Duddeck. Crash optimization of car bodies in the concept stage
of vehicle development. In K.J. Bathe, editor, Third MIT Conference on Computational
Fluid and Solid Mechanics, 2005. June 10-12.

[20] Karlheinz Holger Volz. Physikalisch begründete Ersatzmodelle für die Crashoptimierung von
Karosseriestrukturen in frühen Projektphasen: Zugl.: München, Techn. Univ., Diss., 2011,
volume 1 of Schriftenreihe des Fachgebiets für Computational Mechanics. Shaker, Aachen,
2011.

[21] Fabian Duddeck, Stephan Hunkeler, Pablo Lozano, Erich Wehrle, and Duo Zeng. Topology
optimization for crashworthiness of thin-walled structures under axial impact using hybrid
cellular automata. Structural and Multidisciplinary Optimization, 54(3):415–428, 2016.

[22] Roberto R. Mayer, Nobuhiro Kikuchi, and Richard A. Scott. Application of topological
optimization techniques to structural crashworthiness. International Journal for Numerical
Methods in Engineering), 39(8):1383–1403, 1996.

[23] Jianguang Fang, Guangyong Sun, Na Qiu, Nam H. Kim, and Qing Li. On design optimization
for structural crashworthiness and its state of the art. Structural and Multidisciplinary
Optimization, 55(3):1091–1119, 2017.



Bibliography 181

[24] Alireza Mortazavi Moghaddam, Atefeh Kheradpisheh, and Masoud Asgari. A basic design for
automotive crash boxes using an efficient corrugated conical tube. Proceedings of the Institu-
tion of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(7):1835–1848,
2021.

[25] Yanfei Xiang, Min Wang, Tongxi Yu, and Liming Yang. Key performance indicators of tubes
and foam-filled tubes used as energy absorbers. International Journal of Applied Mechanics,
07(04):1550060, 2015.

[26] M. Shakeri, R. Mirzaeifar, and S. Salehghaffari. New insights into the collapsing of cylindrical
thin-walled tubes under axial impact load. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 221(8):869–885, 2007.

[27] Tso-Liang Teng, Peng-Hsiang Chang, Cho-Chung Liang, and Da-An Fung. Application
of crash pulse on the car crashworthiness design. Advances in Mechanical Engineering,
9(9):168781401770009, 2017.

[28] Arve G. Hanssen, Magnus. Langseth, and Odd S. Hopperstad. Optimum design for energy
absorption of square aluminium columns with aluminium foam filler. International Journal
of Mechanical Sciences, 43(1):153–176, 2001.

[29] Heung-Soo Kim. New extruded multi-cell aluminum profile for maximum crash energy ab-
sorption and weight efficiency. Thin-Walled Structures, 40(4):311–327, 2002.

[30] Weigang Chen. Optimisation for minimum weight of foam-filled tubes under large twisting
rotation. International Journal of Crashworthiness, 6(2):223–242, 2001.

[31] A tutorial on bayesian optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning.

[32] Sander van Rijn and Sebastian Schmitt. Mf2: A collection of multi-fidelity benchmark
functions in python. Journal of Open Source Software, 5(52):2049, 2020.

[33] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brock-
hoff. Coco: a platform for comparing continuous optimizers in a black-box setting. Opti-
mization Methods and Software, 36(1):114–144, 2021.

[34] Momin Jamil and Xin She Yang. A literature survey of benchmark functions for global
optimisation problems. International Journal of Mathematical Modelling and Numerical
Optimisation, 4(2):150, 2013.

[35] Hongyi Xu, Monica T. Majcher, Ching-Hung Chuang, Yan Fu, and Ren-Jye Yang. Compar-
ative benchmark studies of response surface model-based optimization and direct multidis-
ciplinary design optimization. In SAE Technical Paper Series, SAE Technical Paper Series.
SAE International400 Commonwealth Drive, Warrendale, PA, United States, 2014.

[36] M. Redhe, M. Giger, and L. Nilsson. An investigation of structural optimization in crashwor-
thiness design using a stochastic approach. Structural and Multidisciplinary Optimization,
27(6):446–459, 2004.



182 Bibliography

[37] R. J. Yang, L. Tseng, L. Nagy, and J. Cheng. Feasibility study of crash optimization. In
ASME 1994 Design Technical Conferences collocated with the ASME 1994 International
Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual
Database Symposium, pages 549–556. ASME, 1994.

[38] Nicholas Zabaras, Shankar Ganapathysubramanian, and Qing Li. A continuum sensitivity
method for the design of multi-stage metal forming processes. International Journal of
Mechanical Sciences, 45(2):325–358, 2003.

[39] Hans-Georg Beyer. The theory of evolution strategies. Natural computing series. Springer,
Berlin and London, 2011.

[40] Tim Rzesnitzek, Heiner Müllerschön, Frank C. Günther, and Michal. Wozniak. Two-stage
stochastic and deterministic optimization. In 1st Dynamore Users’ Forum, Bad Mergentheim.
DYNAmore GmbH, 2002.

[41] Alexander I. J. Forrester, András Sóbester, and A. J. Keane. Engineering design via surrogate
modelling: A practical guide. J. Wiley, Chichester West Sussex England and Hoboken NJ,
2008.

[42] L. Gu, R. J. Yang, C. H. Tho, M. Makowskit, O. Faruquet, and Y. Li. Optimisation and
robustness for crashworthiness of side impact. International Journal of Vehicle Design,
26(4):348, 2001.

[43] Ren-Jye Yang, A. Akkerman, D. F. Anderson, O. M. Faruque, and Lei Gu. Robustness
optimization for vehicular crash simulations. Computing in Science & Engineering, 2(6):8–
13, 2000.

[44] Douglas C. Montgomery. Design and analysis of experiments. Wiley, Hoboken NJ, tenth
edition edition, 2020.

[45] Yong Zhang, Guangyong Sun, Guangyao Li, Zhen Luo, and Qing Li. Optimization of foam-
filled bitubal structures for crashworthiness criteria. Materials & Design, 38:99–109, 2012.

[46] Jerome Sacks, William J. Welch, Toby J. Mitchell, and Henry P. Wynn. Design and analysis
of computer experiments. Statistical Science, 4(4), 1989.

[47] T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen. Metamodels for computer-based
engineering design: Survey and recommendations. Engineering with Computers, 17(2):129–
150, 2001.

[48] Christopher M. Bishop. Neural networks for pattern recognition. Clarendon Press and Oxford
University Press, Oxford and New York, 1995.

[49] Nielen Stander, Willem Roux, Mathias Giger, Marcus Redhe, Nelya Fedorova, and Johan
Haarhoff. A comparison of metamodeling techniques for crashworthiness optimization. In
Multidisciplinary Analysis Optimization Conferences, 2004.



Bibliography 183

[50] R. Jin, W. Chen, and T. W. Simpson. Comparative studies of metamodelling techniques
under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1):1–13,
2001.

[51] H. Fang, M. Rais-Rohani, Z. Liu, and M. F. Horstemeyer. A comparative study of meta-
modeling methods for multiobjective crashworthiness optimization. Computers & Structures,
83(25-26):2121–2136, 2005.

[52] P. Zhu, Y. Zhang, and G-L Chen. Metamodel-based lightweight design of an automotive
front-body structure using robust optimization. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, 223(9):1133–1147, 2009.

[53] J. Forsberg and L. Nilsson. Evaluation of response surface methodologies used in crashwor-
thiness optimization. International Journal of Impact Engineering, 32(5):759–777, 2006.

[54] Hu Wang, G. Y. Li, and Enying Li. Time-based metamodeling technique for vehicle crash-
worthiness optimization. Computer Methods in Applied Mechanics and Engineering, 199(37-
40):2497–2509, 2010.

[55] J. Paz, J. Díaz, L. Romera, and M. Costas. Crushing analysis and multi-objective crashwor-
thiness optimization of gfrp honeycomb-filled energy absorption devices. Finite Elements in
Analysis and Design, 91:30–39, 2014.

[56] Xueguan Song, Guangyong Sun, Guangyao Li, Weizhao Gao, and Qing Li. Crashworthiness
optimization of foam-filled tapered thin-walled structure using multiple surrogate models.
Structural and Multidisciplinary Optimization, 47(2):221–231, 2013.

[57] R. J. Yang, N. Wang, C. H. Tho, J. P. Bobineau, and B. P. Wang. Metamodeling development
for vehicle frontal impact simulation. Journal of Mechanical Design, 127(5):1014–1020, 2005.

[58] Alexander I.J. Forrester and Andy J. Keane. Recent advances in surrogate-based optimiza-
tion. Progress in Aerospace Sciences, 45(1-3):50–79, 2009.

[59] Matthias Schonlau. Computer experiments and global optimization. PhD thesis, University
of Waterloo, 1997.

[60] Sang-Hoon Lee, Heon-Young Kim, and Soo-Ik Oh. Cylindrical tube optimization using
response surface method based on stochastic process. Journal of Materials Processing Tech-
nology, 130-131:490–496, 2002.

[61] Ralf Blumhardt. Numerische Optimierung des Crashverhaltens von Fahrzeugstrukturen und
-komponenten. Dissertation, Technische Universität München, Aachen, 2002.

[62] H. Kurtaran, A. Eskandarian, D. Marzougui, and N. E. Bedewi. Crashworthiness design
optimization using successive response surface approximations. Computational Mechanics,
29(4-5):409–421, 2002.

[63] Shu-Tian Liu, Ze-Qi Tong, Zhi-Liang Tang, and Zong-Hua Zhang. Design optimization of
the s-frame to improve crashworthiness. Acta Mechanica Sinica, 30(4):589–599, 2014.



184 Bibliography

[64] K. J. Craig, Nielen Stander, D. A. Dooge, and S. Varadappa. Automotive crashworthi-
ness design using response surface–based variable screening and optimization. Engineering
Computations, 22(1):38–61, 2005.

[65] Cho-Chung Liang and Giang-Nam Le. Bus rollover crashworthiness under european stan-
dard: an optimal analysis of superstructure strength using successive response surface
method. International Journal of Crashworthiness, 14(6):623–639, 2009.

[66] G. Gary Wang. Adaptive response surface method using inherited latin hypercube design
points. Journal of Mechanical Design, 125(2):210–220, 2003.

[67] H. Naceur, Y. Q. Guo, and S. Ben-Elechi. Response surface methodology for design of sheet
forming parameters to control springback effects. Computers & Structures, 84(26-27):1651–
1663, 2006.

[68] Xingtao Liao, Qing Li, Xujing Yang, Wei Li, and Weigang Zhang. A two-stage multi-
objective optimisation of vehicle crashworthiness under frontal impact. International Journal
of Crashworthiness, 13(3):279–288, 2008.

[69] Cezary Bojanowski and Ronald F. Kulak. Multi-objective optimisation and sensitivity anal-
ysis of a paratransit bus structure for rollover and side impact tests. International Journal
of Crashworthiness, 16(6):665–676, 2011.

[70] David Aspenberg, Johan Jergeus, and Larsgunnar Nilsson. Robust optimization of front
members in a full frontal car impact. Engineering Optimization, 45(3):245–264, 2013.

[71] Fengxiang Xu, Guangyong Sun, Guangyao Li, and Qing Li. Crashworthiness design of
multi-component tailor-welded blank (twb) structures. Structural and Multidisciplinary Op-
timization, 48(3):653–667, 2013.

[72] Ruiyi Su, Liangjin Gui, and Zijie Fan. Multi-objective optimization for bus body with
strength and rollover safety constraints based on surrogate models. Structural and Multidis-
ciplinary Optimization, 44(3):431–441, 2011.

[73] A. Olsson, G. Sandberg, and O. Dahlblom. On latin hypercube sampling for structural
reliability analysis. Structural Safety, 25(1):47–68, 2003.

[74] Dawei Gao, Nan Zhang, and Jinzhi Feng. Multi-objective optimization of crashworthiness
for mini-bus body structures. Advances in Mechanical Engineering, 9(7):168781401771185,
2017.

[75] Tushar Goel, Nielen Stander, and Yih-Yih Lin. Efficient resource allocation for genetic
algorithm based multi-objective optimization with 1,000 simulations. Structural and Multi-
disciplinary Optimization, 41(3):421–432, 2010.

[76] David Lönn, Greger Bergman, Larsgunnar Nilsson, and Kjell Simonsson. Experimental and
finite element robustness studies of a bumper system subjected to an offset impact loading.
International Journal of Crashworthiness, 16(2):155–168, 2011.



Bibliography 185

[77] Massimiliano Avalle and Giorgio Chiandussi. Optimisation of a vehicle energy absorbing
steel component with experimental validation. International Journal of Impact Engineering,
34(4):843–858, 2007.

[78] Erdem Acar, Burak Yilmaz, Mehmet A. Güler, and Murat Altin. Multi-fidelity crashwor-
thiness optimization of a bus bumper system under frontal impact. Journal of the Brazilian
Society of Mechanical Sciences and Engineering, 42(9):1–17, 2020.

[79] Gyung-Jin Park, editor. Analytic Design Methods for Design Practice. Springer, London,
2007.

[80] R. Timothy Marler and Jasbir S. Arora. The weighted sum method for multi-objective
optimization: new insights. Structural and Multidisciplinary Optimization, 41(6):853–862,
2010.

[81] S. Andrew Martins, Joaquim R. R. A.; Ning. Engineering design optimization. Cambridge
University Press, Cambridge, 2022.

[82] Carlo R. Raquel and Prospero C. Naval. An effective use of crowding distance in multiobjec-
tive particle swarm optimization. In Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’05, pages 257–264, New York, NY, USA, 2005.
Association for Computing Machinery.

[83] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[84] Nestor V. Queipo, Raphael T. Haftka, Wei Shyy, Tushar Goel, Rajkumar Vaidyanathan, and
P. Kevin Tucker. Surrogate-based analysis and optimization. Progress in Aerospace Sciences,
41(1):1–28, 2005.

[85] Xin-She Yang and Slawomir Koziel. Computational optimization, methods and algorithms,
volume 356 of Studies in computational intelligence. Springer, New York, 2011.

[86] A. J. Keane and P. B. Nair. Computational approaches for aerospace design: The pursuit of
excellence. Wiley, Chichester England and Hoboken N.J., 2005.

[87] Haitao Liu, Yew-Soon Ong, and Jianfei Cai. A survey of adaptive sampling for global
metamodeling in support of simulation-based complex engineering design. Structural and
Multidisciplinary Optimization, 57(1):393–416, 2018.

[88] Jan N. Fuhg, Amélie Fau, and Udo Nackenhorst. State-of-the-art and comparative review of
adaptive sampling methods for kriging. Archives of Computational Methods in Engineering,
28(4):2689–2747, 2021.

[89] G. Gary Wang and S. Shan. Review of metamodeling techniques in support of engineering
design optimization. Journal of Mechanical Design, 129(4):370–380, 2007.



186 Bibliography

[90] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for select-
ing values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239, 1979.

[91] I.M Sobol’. On the distribution of points in a cube and the approximate evaluation of
integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86–112, 1967.

[92] J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik, 2(1):84–90, 1960.

[93] Felipe A. C. Viana, Timothy W. Simpson, Vladimir Balabanov, and Vasilli Toropov. Special
section on multidisciplinary design optimization: Metamodeling in multidisciplinary design
optimization: How far have we really come? AIAA Journal, 52(4):670–690, 2014.

[94] Edwin R. van Dam, Bart Husslage, Dick den Hertog, and Hans Melissen. Maximin latin
hypercube designs in two dimensions. Operations Research, 55(1):158–169, 2007.

[95] A. Grosso, A.R.M.J.U. Jamali, and M. Locatelli. Finding maximin latin hypercube designs
by iterated local search heuristics. European Journal of Operational Research, 197(2):541–
547, 2009.

[96] Felipe A. C. Viana, Gerhard Venter, and Vladimir Balabanov. An algorithm for fast optimal
latin hypercube design of experiments. International Journal for Numerical Methods in
Engineering, 82(2):135–156, 2010.

[97] Burr Settles. Active learning literature survey.

[98] A. Farhang-Mehr and S. Azarm. Bayesian meta–modelling of engineering design simula-
tions: a sequential approach with adaptation to irregularities in the response behaviour.
International Journal for Numerical Methods in Engineering, 62(15):2104–2126, 2005.

[99] K. Crombecq, E. Laermans, and T. Dhaene. Efficient space-filling and non-collapsing se-
quential design strategies for simulation-based modeling. European Journal of Operational
Research, 214(3):683–696, 2011.

[100] Razi Sheikholeslami and Saman Razavi. Progressive latin hypercube sampling: An effi-
cient approach for robust sampling-based analysis of environmental models. Environmental
Modelling & Software, 93:109–126, 2017.

[101] Nikolaos V. Sahinidis. Mixed-integer nonlinear programming 2018. Optimization and Engi-
neering, 20(2):301–306, 2019.

[102] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press, Cambridge Mass., 2006.

[103] Pau Rodríguez, Miguel A. Bautista, Jordi Gonzàlez, and Sergio Escalera. Beyond one-hot
encoding: Lower dimensional target embedding. Image and Vision Computing, 75:21–31,
2018.



Bibliography 187

[104] Sikha Bagui, Debarghya Nandi, Subhash Bagui, and Robert Jamie White. Machine learn-
ing and deep learning for phishing email classification using one-hot encoding. Journal of
Computer Science, 17(7):610–623, 2021.

[105] Juan Pablo Vielma and George L. Nemhauser. Modeling disjunctive constraints with a
logarithmic number of binary variables and constraints. Mathematical Programming, 128(1-
2):49–72, 2011.

[106] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Deb-
ora Gatelli, Michaela Saisana, Stefano Tarantola. Global sensitivity analysis: The primer.
John Wiley, Chichester, England and Hoboken, NJ, 2008.

[107] Simon Mößner. Multi-fidelity structural design for pedestrian safety with particular reference
to the FlexPLI. Dissertation, Technische Universität München and Shaker Verlag, Düren,
2019.

[108] Paas, Michel H. J. W. and Hessel C. van Dijk. Multidisciplinary design optimization of body
exterior structures. In Kai-Uwe Bletzinger, Sierk Fiebig, Kurt Maute, Axel Schumacher, and
Thomas Vietor, editors, Advances in Structural and Multidisciplinary Optimization, pages
17–30, Cham, 2018. Springer International Publishing and Imprint: Springer.

[109] Marco Riani, Anthony C. Atkinson, and Andrea Cerioli. Finding an unknown number of mul-
tivariate outliers. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
71(2):447–466, 2009.

[110] Ilya Arsenyev. Efficient surrogate-based robust design optimization method: Multi-
disciplinary design for aero-turbine components. Phd thesis, Shaker Verlag, München, 2018.

[111] David Duvenaud. Automatic model construction with Gaussian processes. PhD thesis, Apollo
- University of Cambridge Repository, 2014.

[112] David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin
Ghahramani. Structure discovery in nonparametric regression through compositional kernel
search.

[113] Tinkle Chugh, Alma Rahat, and Pramudita Satria Palar. Trading-off data fit and complexity
in training gaussian processes with multiple kernels. In Giuseppe Nicosia, Panos Pardalos,
Renato Umeton, Giovanni Giuffrida, and Vincenzo Sciacca, editors, Machine Learning, Op-
timization, and Data Science, pages 579–591, Cham, 2020. Springer.

[114] David K. Duvenaud, Hannes Nickisch, and Carl Rasmussen. Additive gaussian processes. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 24. Curran Associates, Inc, 2011.

[115] Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. J. Mach. Learn.
Res., 7:2651–2667, 2006.



188 Bibliography

[116] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The elements of statistical learning:
Data mining, inference, and prediction. Springer series in statistics. Springer, New York NY,
2nd ed. edition, 2009.

[117] Felipe A. C. Viana, Raphael T. Haftka, and Valder Steffen. Multiple surrogates: how cross-
validation errors can help us to obtain the best predictor. Structural and Multidisciplinary
Optimization, 39(4):439–457, 2009.

[118] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics
and Computing, 14(3):199–222, 2004.

[119] M. C. Kennedy and A. O’Hagan. Predicting the output from a complex computer code when
fast approximations are available. Biometrika, 87(1):1–13, 2000.

[120] P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence, and G. E. Karniadakis. Nonlin-
ear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings.
Mathematical, physical, and engineering sciences, 473(2198):20160751, 2017.

[121] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359,
1997.

[122] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b.
ACM Transactions on Mathematical Software, 23(4):550–560, 1997.

[123] A. R. Conn, Nicholas I. M. Gould, and Ph L. Toint. Trust-region methods. MPS-SIAM series
on optimization. Society for Industrial and Applied Mathematics, Philadelphia PA, 2000.

[124] J. Močkus. On bayesian methods for seeking the extremum. In Optimization techniques,
pages 400–404, CHAM, 1975. Springer.

[125] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

[126] James M. Parr, Carren M. E. Holden, Alexander I. J. Forrester, and Andy J. Keane. Review
of efficient surrogate infill sampling criteria with constraint handling. In 2nd International
Conference on Engineering Optimization, 2010.

[127] Daniel James Lizotte. Practical bayesian optimization. Phd, University of Alberta, 2008.

[128] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is well-suited to
parallelize optimization. Computational Intelligence in Expensive Optimization Problems,
2:131–162, 2010.

[129] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations Research,
14(4):699–719, 1966.



Bibliography 189

[130] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Constraint integer
programming: A new approach to integrate cp and mip. In Laurent Perron and Michael A.
Trick, editors, Integration of AI and OR techniques in constraint programming for combi-
natorial optimization problems, LNCS sublibrary. SL 1, Theoretical computer science and
general issues, pages 6–20, Berlin and New York, 2008. Springer.

[131] Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[132] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität
Berlin, 2007.

[133] Melanie Mitchell. An introduction to genetic algorithms. A Bradford book. MIT, Cambridge,
Mass. and London, 7. print edition, 1998.

[134] Jason L. Loeppky, Jerome Sacks, and William J. Welch. Choosing the sample size of a
computer experiment: A practical guide. Technometrics, 51(4):366–376, 2009.

[135] Shengli Xu, Haitao Liu, Xiaofang Wang, and Xiaomo Jiang. A robust error-pursuing se-
quential sampling approach for global metamodeling based on voronoi diagram and cross
validation. Journal of Mechanical Design, 136(7), 2014.

[136] Marcin Molga and Czesław Smutnicki. Test functions for optimization needs. 2005.

[137] Julia Couto. Kernel k-means for categorical data. In A. Fazel Famili, Ad Feelders, Joost N.
Kok, José M. Pena, and Arno Siebes, editors, Advances in Intelligent Data Analysis VI,
Lecture Notes in Computer Science, pages 46–56, Berlin Heidelberg, 2005. Springer-Verlag
GmbH.

[138] Kevin Swersky, Jasper Snoek, and Ryan P. Adams. Multi-task bayesian optimization. Ad-
vances in Neural Information Processing Systems, 26, 2013.



Appendix A

CS-Opt architecture

CS-Opt Surrogate
models

SVR

Isotropic
kernels

GP

Anisotro.
kernels

Isotropic
kernels

Fit
model

LML

MH-HL

CV

Optimization
methods

TSBO

GP-SRS
MF-SRS

B&B

Design of
experiment

MIPT-α
MqPLHS

FqPLHS

MQCVVor

TPLHD
opti-LHD

Sobol

Halton

Post-
processor

Reporting
features

Visualization
Tools

Export
features

Pre-
processor

Encoder

Label
encoderl One-hot

encoder

Logarith.
encoder

Scaler

Pre-
fitting

practices

Solver
process
chain

Parallel
job dis-
patcher

HPC
sync-

manager

Data
handling

Figure A.1: CS-Opt Architecture

190



Appendix A. CS-Opt architecture 191

The CS-Opt software framework is designed with a modular architecture con-
sisting of six main modules, each tailored to streamline the optimization workflow:

• Design of experiment: This module integrates both one-stage and sequen-
tial sampling techniques, as well as space-filling and adaptive methods, which
are instrumental in laying the foundation for the optimization process. It also
provides access to a database of optimal LHDs for immediate retrieval and
use.

• Pre-processor: Equipped with a range of data encoding strategies, such as
label and one-hot encodings, this component prepares input variables for sub-
sequent optimization. It also includes functions for normalizing and standard-
izing continuous variables, as well as tools for optional pre-fitting procedures.

• Post-processor: A robust visualization toolkit coupled with post-processing
capabilities enables detailed examination of optimization results. It provides
functionality to export results and generate comprehensive reports to elaborate
on findings.

• Solver process chain: This element orchestrates the interaction between
high-performance computing (HPC) solvers and the optimization algorithms,
facilitating efficient computation. It includes a suite of functions for automatic
identification of input variables, output management, and creation and, if
necessary, deletion of obsolete files.

• Surrogate models: The surrogate modeling facet includes GP and SVR,
complete with hyperparameter tuning and predictive performance validation
techniques. A comprehensive database of covariance functions is also embed-
ded in this module.

• Optimization methods: This area is fortified with robust optimization al-
gorithms capable of effectively navigating continuous, mixed, and constrained
domain problem spaces. It includes both global search strategies and gradient-
based techniques, reflecting a comprehensive approach to finding and verifying
optimal solutions.
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