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The widespread adoption of Artificial Intelligence (AI)-based software technologies support-
ing Unmanned Aircraft Systems (UASs) demands new validation methods to ensure that these
systems operate safely and reliably. This paper investigates the role of eXplainable AI (XAI)
and, in particular, of rule-based models in monitoring the performance of a deep learning-based
human detector from aerial images. Starting from several image attributes extracted from
the images and information about the performance of the detection model, decision rules are
extracted to map the image attributes onto the performance quality. Besides shedding light on
the logic of the humans detection successes and failures, these rules can serve as a performance
monitor at runtime, by triggering alerts in case input images do not satisfy them. The obtained
rules have been adopted to filter out inputs associated with bad performance, showing improved
precision and recall with respect to the original model, thus opening the road to promising
future developments.

I. Introduction

Thanks to the fast-paced rising of sensor technologies and Artificial Intelligence (AI), Unmanned Aircraft Systems
(UAS) are finding application in several fields, including urban traffic management[1]], environmental monitoring [2],
video surveillance [3]], smart agriculture [4] and many others [S]. One of the most investigated tasks is object detection,
which leverages the boosting of advanced Al algorithms and infrastructures, and in particular of Deep Neural Networks
(DNN), to come up with models characterized by very high-performance capabilities and relatively low computational
costs [6].

While being a key enabler for UAS, Al also brings up new fundamental challenges, residing in its verification
and validation, ensuring that the autonomous decisions made by the Al models do not cause harm to humans or
damage to the surrounding environment. The Al safety assurance problem is indeed part of a wider, multi-faceted, and
multi-disciplinary paradigm, being referred to as Trustworthy Al (TAI), and recently governed by institutions such as the
European Commission Ethics Guidelines [7]] or most recent regulations (see, e.g., the EU Al Act [8]]). Focusing on
avionics, field regulations also arise in the community such as the European Union Aviation Safety Agency (EASA)
[9-11]] and others [12]].

Such certification processes pose many challenges, especially when humans are involved, e.g., in emergency medicine
scenarios [13]], search and rescue [14] or dropping goods, since failures of Al-guided detection systems might result in
severe harms to people. Despite reaching promising results, DNN-based human detection models have a black-box
nature, preventing the possibility of understanding why the model generated its outcomes and, subsequently, analyzing
the reasons for correct results and failures. In this context, and in compliance with TAI principle of transparency, the
branch of eXplainable AI (XAI) comes to help, offering a set of techniques to either design intrinsically interpretable
models or to provide explanations to black-boxes [15]].

A. Contribution
In an attempt to address these issues, this paper investigates the innovative use of rule-based classifiers as a
transparent validation tool of a deep learning (DL) model for human detection in aerial images. More specifically, the
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objective is to obtain a set of interpretable if-then rules characterizing the space of image features associated with a
good or bad performance of that model.

Besides shedding light on the logic of the human detection successes and failures, these rules can then serve as a
performance monitor at runtime, by triggering alerts in case input images do not satisfy them. This can help identify
corner cases of human detection, where the performance of the model is no longer guaranteed. For example, see Figure
[1] where unusual light conditions like darkening hinder a correct model performance.

(a) Image from HERIDAL dataset with correct human detection (b) Darkened and noisy version of the same image: the person on the
left is not detected

Fig. 1 Examples of an image from HERIDAL dataset [16], where the AI performs well (left) or fails (right).
Green boxes symbolize ground truth, magenta boxes symbolize predictions

The overall idea of our approach is shown in Figure 2] The green arrow highlights the main concept of this paper,
that is, combining well-established methodologies from object detection and XAl, and making them collaborative, in the
sense that the latter can serve as a monitoring and improvement tool for the first. When dealing with high-dimensional
data like images, however, it is not trivial to individuate a representative set of features with good discriminant ability
between classes. Therefore, we started working on the feature extraction and selection phase and individuated a set of
variables useful to train a rule-based classifier that has satisfying performance. This is our starting point, and the next
investigations will be devoted to verifying the viability of the proposed approach. In the following, we describe the
use case of reference, the main methodological aspects of rule-based classification, some preliminary results, and the
challenges we will be trying to address through further experimentation.

I1. Related Work
Over the last years, using DL-based methods to improve the perception capabilities of UASs received more and
more attention [3[17, [18]. A problem arises as the current aviation certification processes cannot be directly applied to
the data-driven learning processes of DL. Regulatory bodies like the EASA and the Federal Aviation Authority (FAA)
have recognized this problem and are actively investigating new certification avenues [10} 1T} 19, 20].
As a result, some of the new objectives in the EASA guidelines require some form of monitoring for the inputs
of the machine learning component. Originally coming from the automotive domain [21H23]], in this context EASA
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Fig. 2 Flowchart of the proposed idea. A deep learning-based human detection model is applied to images
recorded from a UAS. Image properties extracted from the images, combined with information on good or bad
detection performance, are fed to a XAl classifier, generating a set of rules for monitoring

introduced the concept of operational design the main (ODD). The idea of the ODD is to define "Operating conditions
under which a given AI/ML constituent is specifically designed to function as intended" [11]]. Such operating conditions
can be: time of day of the operation, weather, illumination, or brightness of an image [24]]. The idea of the ODD is
to ensure that all input images are inside of the allowed range of the operating conditions in that the Al constituent
is specified to work correctly. However, the characterization of the ODD can be quite complex [25]. The upcoming
process standards EUROCAE ED 324 / SAE ARP 6983 will give more guidance on the development and certification of
Al A partially compliant concept is shown in [26], e.g. detailing ODD definition and and data design.

Furthermore, there is the concept of Out-of-Distribution (OOD) for input images of machine learning models. The
idea is again to ensure inputs, but looking at the distributions of specific parameters for the training data [27, 28]. For
example, such a parameter could be the brightness of the image or the altitude of the UAS [29]. Then, the distribution of
the brightness of training images is analyzed and new input is compared to this distribution. Still, there are arguments
that, even looking at the distributions of parameters, is not sufficient for input monitoring [30].

Another approach to improve the trustworthiness of DL systems is using XAI techniques [31}32]. XAI literature
is commonly categorized into two broad ways of performing explainability: on the one hand, post-hoc techniques
[33]] provide some form of interpretation (e.g., via rules, feature importance plots, saliency maps, etc.) to black-box
predictions; on the other hand, interpretable-by-design techniques aim at training fully transparent models [[15} 34].

II1. Use case definition

A. Dataset

In this work, we consider a dataset D = {(x;, b;)|i = 1,..., N} composed of N = 1924 annotated images x; each
containing M; bounding boxes b; = {(x;;, yij, wij, hij)|j = 1,..., M;} of humans. As a basis, the publicly available
PeopleOnGrass dataset [35]] is used. It contains images of humans on mostly grassy areas taken from various angles and
altitudes. We subsample the dataset to contain images of humans taken at altitudes between 4 and 70 m similar to [29]].
Furthermore, we center-crop the images to be of size 2160x2160 pixels and resize them to 1080x1080 pixels to reduce
the computational load of the object detection model. Samples of images from the dataset are shown in Figure 3]
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Fig. 3 Examples of images taken from the PeopleOnGrass dataset [35]. Images are resized as described in

Section El

B. Human detection model

We first build a human detection system based on a very well-established YOLOV7 [36] object detection model A,
by using 750 images for training, 749 for validation, and the remaining 425 for testing. The model is trained for 300
epochs with a batch size of 16 using the standard training hyperparameters as recommended in the used implementation.
For evaluation, the model with the best result on the validation dataset is used. This model performed sufficiently well,
achieving the following values of mean Average Precision at an Intersection over Union threshold of 0.5 (mAP@0.5):
0.91 on the training dataset, 0.85 on the validation set, and 0.86 on the test data.

C. Classification problem definition

Given the trained human detection model, the next step is to define: i) binary labels y; for each image in D,
expressing whether h performs correctly or not; ii) a set of features able to properly describe the images of the dataset,
which is required for rule-based classification.

Concerning the label definition, we decided to take the most cautious approach and set

ey

_ )1 if all people are well detected through £,
= 0 otherwise.

Therefore, we consider the performance of the model correct when all M; humans present in the image x; are correctly
recognized by the model 4.

Feature extraction from the images involves computing several numerical indicators to put into evidence useful
characteristics of the images. In our case, we extracted common image characteristics such as brightness, saturation,
entropy, sharpness, and edges. Furthermore, we used the Python library Athec [37], which provides capabilities to
calculate a wide range of color information through statistics (e.g., mean, median, standard deviations, quartiles, etc.) in
several color spaces like RGB, HSV, HSL and L*a*b. Overall, we extract a set of Ny = 208 features in total, which
compose feature vectors z; € RN/ associated to image x;. Therefore, a binary classification dataset is now defined as

Dy ={(zs;,y)li=1,...,N},

being suitable for studying the performance of model 4 through rule-based classification, whose fundamentals are given
in the next Section.

IV. Rule-based classification

A. Notation
Rule-based classifiers belong to the XAl branch of interpretability by design, describing machine learning models
that provide their decisions through sets of interpretable rules, i.e., rulesets R = {rk}sz’ |- Each rule ry is expressed



in the form [38]: if premise then consequence. The premise part is a logical conjunct of conditions on the input
features, i.e., formally:
N
premise(ry) = /\ Ciy
ir=lg

Each rule has a set of Ny conditions c;,, each referring to a variable z; and corresponds to an interval that can be
bounded, only lower-bounded or only upper-bounded:

1. z Jj > lik

2. lik < Zj < Uj,

3. 2 j < Ui,
where [;, and u;, are proper numerical thresholds learned by the classifier. The consequence part expresses the target
class y1 € {0, 1} predicted by the rule.

The Logic Learning Machine (LLM) [39] is an example of a classification model of this kind, and the one we
consider in this work. The next Section will thus provide the fundamentals of this method.

B. Logic Learning Machine

In short LLM, it is a rule-based classifier, designed as an evolution of Switching Neural Networks [40] by Rulex
Innovation Lab{"] The rule learning process follows three steps: 1) a discretization of the feature space and a mapping
to a Boolean lattice; 2) the identification of groups of points (called implicants) in the Boolean space, associated to the
output classes, through a technique called shadow clustering [41]]; 3) a rule generation phase, where if-then rules are
retrieved from the implicants clusters by converting them to the original space, and eventually combined into a set of
intelligible rules. The LLM rule generation thus follows an aggregate-and-conquer approach, resulting in rules that can
overlap, i.e., the same sample may cover multiple rules.

C. Rule evaluation

The predictive ability of each rule rj of the model can be evaluated by two metrics, namely the covering C(ry) and
error E (ry), commonly known as True Positive Rate and False Positive Rate of the rule, respectively. They are defined
as follows:

_ TP(ry)
Clre) = TP(r) + FN(ry) 2)
E(r) = ——2re) 3)

TN(rk) + FP(Vk)

where TP(ry) and FP(ry) are defined as the number of images that correctly or wrongly satisfy rule ry, while TN (rg)
and FN (ry) represent the number of samples correctly or wrongly not satisfy ry, respectively. The combination of
these metrics gives the rule relevance:

R(rg) = C(ri) - (1 = E(rk)). “)

Overall, covering and relevance, can thus be considered as good metrics to evaluate how well a rule can generalize to
unseen data, by measuring the portion of points correctly covered by the rule.

D. Class label assignment

Once those rules are generated, they can be used to make inference on unseen points Z, thus assigning a label ¥ to
them. For the LLM, this stage is performed as follows. Consider the set of rules Rzy , verified by Z and predicting label y,
and let R be the set of all rules of the model predicting class y. Then, label J is assigned to Z by solving the following
problem:

&)

¥ = argmax
y

ZreRg R(r)
(ZrGRY R(r))

Hence, rule relevance also has an important role in determining the inference results. Also, considering Eq. [5] the LLM
model can be evaluated as any machine learning method, such as using a confusion matrix or other related metrics.

*https://www.rulex.ai/
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V. Results
The LLM rule generation model is applied to dataset 9, by maintaining the same train/test/validation split used for
the human detection phase. Also, a y? independence test was carried out to determine the statistical significance of the
rules. However, in analyzing and validating the first results, a problem linked to the high-dimensionality of the dataset
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Fig. 4 Correlation matrix after feature selection via Pearson’s correlation coefficient (threshold 0.5).

emerged. Indeed, while performing sufficiently well, with TPR = 0.89 and FNR = 0.11, on the target class y = 1 (i.e.,
correct human detection), we noticed that rules were often very long (i.e., with a high number of conditions) and, most
importantly, not stable at random shuffles of the input samples. For this reason, we investigate the impact of a feature
selection process.

A. Feature Selection

Pearson’s correlation was computed among all 208 features, resulting in many pairs of features having absolute
correlation values over 0.5. We thus performed a feature filtering by dropping all these features and keeping only the 13
variables with an absolute correlation coefficient < 0.5 between each other, as displayed in Figured It can be observed
that the correlation analysis preserves main features like brightness, saturation, entropy, edges, saliency_consistency,
but also less intuitive ones such as orange, Lab_a_max, Lab_b_min.

B. Obtained Rules

After training the LLM model on the restricted set of features, we interestingly observed that, despite the drop
of many variables, the overall performance did not significantly change, achieving a set of 12 rules (after statistical
validation test) that scored TPR = 0.86, TNR = 0.70, FNR = 0.14, and FPR = 0.30 on the test data. And, in this
case, these rules (at least those with larger covering) were approximately the same when randomly shuffling the rows of
the training data.



Table 1 Performance comparison of the DL-based human detection model applied to all the original images
versus the same model applied on the subset of images selected via rules.

#images #detections Precision Recall mAP@0.5 mAP@0.5:0.95

Original 750 2651 0.96 0.90 0.91 0.55
Training  Rule-based filtering 527 1671 0.97 0.97 0.98 0.61
Original 749 2675 0.94 0.86 0.85 0.45
Validation  Rule-based filtering 511 1591 0.97 0.96 0.96 0.54
Original 425 1511 0.95 0.86 0.86 0.46
Test Rule-based filtering 278 893 0.97 0.96 0.96 0.54

An example of two top-covering rules predicting correct human detections (y = 1) is given below:

1. if (brightness < 0.551633 A

saturation > 0.195213 A

0.178954 < edges < 0.916329 A

Lab_a_max < 165 A

Lab_ b _min > 79 A

dof _inner < 1.668798 A

sharp_block_kurtosis > -0.996393) then y = 1, C = 0.46, E = 0.04
2. if (0 .219320 < saturation < 0.537747 A

entropy < 0.942299 A

0.772010 < edges < 0.910104) theny = 1,C =0.41, E =0.05

The covering values over 40% denote that, for the class y = 1, the LLM managed to individuate good descriptors of the
class.

C. Human detection after rules application

All rules obtained have been used to filter the inputs of the DL model, by selecting only those images that satisfied
the rules predicting the correct prediction class y = 1. This resulted in removing a portion of about 30-35% of the
original images. The human detection model was then tested on this subset, and its performance in terms of precision,
recall, mAP@0.5, and mAP@0.5:0.95 was calculated and compared to the performance on the original images. Table
shows the obtained results, for all training, validation, and test data.

We can observe how the filtering effectively improves the quality of the human detection, since larger values are
registered for each of the considered metrics. Notably, recall increases by 7-10 percent points in all data portions, which
means reducing the rate of people not being correctly detected, by avoiding to use the model on those images that most
probably lead to missed detections. The metric mAP@0.5 also considerably improves, suggesting a better ability in
recognizing people and correctly locate them, reducing false positives and negatives, which is also reflected in the good
balance achieved between precision and recall. Finally, the detection task becomes more challenging when evaluating
the mAP with IoU thresholds in the [0.5,0.95] interval: nevertheless, rule-based filtering still manages to significantly
improve the original performance.

VI. Conclusions and Future Work

In this paper, we proposed the innovative application of a XAl model as a performance monitoring tool for a
DL-based people detector fed with aerial images of humans. In our concept (see[l.A)), generated rules serve as an input
montior for the DL model. The generated rules have been applied as a filter for model inputs, revealing that such a
rule-guided image selection effectively improves the detection quality.

This is, however, just a starting point for a fully trustworthy-by-design solution. The effectiveness and generalizability
of such an approach, in fact, requires a much deeper investigation, as rules themselves arise from a machine learning
model that, even though interpretable, is subject to uncertainty that needs to be handled before being able to use the
rules in practice. So, how to avoid that the errors of rule generation further propagate and reflect in the human detection



performance monitoring? Moreover, DNN-based object detection tasks often involve long training processes by using
images from different sources, either real or even synthetic. And rule generation from real versus synthetic data is a
matter of discussion around the kind of knowledge one can derive from rules, e.g., if rules on real versus synthetic data
do not match, would the latter have to be considered ‘wrong’? Or would it mean that new plausible factors are being
discovered? Leveraging on the first performance evaluation carried out in this paper, future research will thus attempt to
answer such questions.
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