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This paper deals with LiDAR-based pose estimation of a known, non-cooperative 

spacecraft in mission scenarios requiring close-proximity robotics operations, like On-Orbit 

Servicing and Active Debris Removal. Attention is focused on classical methods, which today 

are still relevant in the space domain, being the only solution for safety-critical real-time 

applications that is space-qualifiable with recognized standards. In this work, different 

classical algorithms for global pose estimation are compared. We study variants of methods, 

both known and new ones, which support RANSAC search by guiding point correspondences 

between measured and model point clouds, using point-normal structures as local features 

(FPFH) or as non-local primitives (PPF). We also compare these methods to Fast Global 

Registration (FGR) which treats global registration as a robust optimization problem without 

assigning hard correspondences. For all the approaches, after the global pose initialization, 

the estimate is refined using the point-to-plane Iterative Closest Point (ICP) algorithm. The 

pose estimation pipeline also includes additional evaluation steps to resolve pose ambiguities. 

All methods are tested using a dataset of synthetic partial and sparse point clouds obtained 

with a LiDAR data simulator. The methods based on point correspondences outperform FGR 

by a large margin. Excluding FGR, they are all promising candidates for the considered 

application with some slight differences in speed and accuracy. 

I. Introduction 

Spacecraft pose estimation is the problem of computing the set of parameters that describe the relative position 

and attitude of an active satellite with respect to another space object. The execution of this task requires advanced 

algorithmic and technological solutions to enable accurate relative navigation and robotics operations in the frame of 
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space missions like On-Orbit Servicing (OOS) [1] and Active Debris Removal (ADR) [2], which foresee autonomous 

maneuvers of a chaser spacecraft in close-proximity to a designated target. If such a space target is non-cooperative 

(neither equipped with a dedicated communication link nor with easily recognizable artificial markers), the pose 

estimation task must rely on processing data acquired by active or passive Electro-Optical (EO) sensors [3]. For the 

common case that the target has a known geometry, model-based pose estimation is then the best option. Many 

research efforts are currently dedicated to the design and development of vision-based pose estimation techniques 

relying on either monocular or stereo cameras [4, 5], justified by the relatively small size, weight, and low power 

consumption of passive imaging sensors. Nevertheless, active Light Detection and Ranging (LiDAR) systems are 

being typically used in conjunction with cameras, or as main relative navigation sensors, and demonstrated by the 

recent success of the Mission Extension Vehicle missions [6]. Indeed, LiDAR systems present advantages in terms of 

operative range, direct depth observability and robustness against unfavorable illumination conditions. This motivates 

the focus of this study on the design of robust, accurate, and fast LiDAR-based pose estimation algorithms. 

To accurately estimate the spacecraft relative state during close-proximity operations, a LiDAR-based pose 

estimation system shall be able to execute two main functions: pose initialization, in which an initial pose 

measurement is obtained from processing exclusively a LiDAR point cloud in the absence of a priori information; 

pose tracking, in which the pose parameters are updated starting from an initial guess corresponding to the relative 

state estimate at a previous time instant. In both cases, the pose estimation task can be handled as a registration problem 

in which one has to look for the set of rotational and translational parameters providing the best alignment between 

the measured point cloud (data points) and the one associated to the target geometry (model points). Thus, pose 

initialization and tracking methods are typically referred to as global and local registration approaches, respectively. 

The pose initialization task is more complex and more demanding in terms of computational burden due to the need 

to search for the best solution within the entire 6 Degree of-Freedom (DOF) pose space; it gets even more challenging 

when dealing with targets having an almost symmetric shape with only minor symmetry breakers that are not well 

represented in the LiDAR data, which can cause pose ambiguity issues. 

Hence, this paper focuses on global registration methods, and specifically on those that rely on establishing local 

point-wise correspondences between the data point cloud and a model point cloud. 

A. Related Work 

Within the classical, not learning-based, approaches, global pose estimation can be based on features that are 

extracted on a local or a global scale of the given point cloud. Object pose can also be inferred from computing and 

evaluating multiple alignments through matching elementary data and model point constellations. A brief overview 

of common methods is provided hereinafter. 

Previously developed local feature-based methods include: Geometric Hashing (GH) [7], Polygonal Aspect 

Hashing [8] and Congruent Tetrahedron Align (CTA) [9], which are based on the use of hash tables built by means of 

an intense offline pre-processing phase to allow for a quick online search of matches between geometric primitives. 

A prominent example of local feature descriptor is given by the Point Feature Histogram (PFH) [10, 11] which exploits 

information contained in pairs of points with their normal vectors within a k-neighborhood to effectively describe the 

local geometry of a point cloud. This concept has been made suitable for applications in a space scenario by the 

introduction of the Fast Point Feature Histogram (FPFH) [12], namely a faster version of the PFH descriptor with a 

very good discriminative power. Local descriptors like the FPFH do not provide directly a pose information (unlike 

the so-called global descriptors), therefore the feature extraction process shall be followed by alignment techniques 

such as the Sample Consensus Initial Alignment (SAC-IA) [12] or the Fast Global Registration (FGR) [13] algorithms. 

The former is an algorithm based on Random Sample Consensus (RANSAC) that iteratively selects at least three 

points from the model and acquired point clouds based on the similarity between the relative descriptors, computes 

the transformation matrix and evaluates the quality of the alignment through a specific error metric. FGR instead 

solves an optimization process by minimizing the distances between model and measured point cloud 

correspondences.  

Regarding global feature-based methods, commonly used approaches include Template Matching (TM) 

techniques, which calculate the pose through matching between the point cloud acquired online and a database of 

templates which can either be built online, as in the case of the 3 DOF TM [14] and the 1 DOF TM [15], or offline as 

in the case of the 2 DOF TM [16]. Another option is to rely on global descriptors such as the Viewpoint Feature 

Histogram (VFH) [17], the Clustered VFH (CVFH) [18], or the Oriented, Unique and Repeatable CVFH (OUR-

CVFH) [19], which are extensions of PFH and FPFH that exploit extrinsic information such as the sensor viewpoint 

to describe globally the point cloud. An alternative to feature histograms is represented by the Basis Point Set (BPS) 
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[20], where the point cloud is encoded as a fixed-length feature vector of the minimal distances from each basis point 

in a fixed set.  

An approach using pairs of points with their local normal vectors, commonly referred to as Point Pair Features 

(PPF), has been used widely outside the space domain [21-23]. The point pairs are sampled non-locally across the 

surface of the data and the model point clouds. Pose hypotheses are computed through rigid alignment of each data 

pair with each model pair that has a similar geometric configuration, enforced through indexing into a hash table. The 

search process is commonly run in a RANSAC style, with selection of the result by maximizing a match score of the 

model to the data. As an alternative, clustering of pose hypotheses in an adapted parameter space was used [24], where 

the PPF has been referred to as a surflet pair (the term surflet emphasizing the local linear surface approximation). 

Likewise, the pose hypotheses can be computed simply from triples of distributed points [24, 25]. 

Beyond the classical methods, today there is increasing interest toward machine learning-based approaches, 

especially using deep learning, to directly estimate the satellite pose from a LiDAR point cloud after a training process 

relying on a realistic LiDAR simulator [26-28]. These methods are mostly adaptations of the ones used for ground 

applications. Generally, deep learning-based methods can be regarded as state of the art for pose estimation from any 

visual data. However, their use in the space domain is not yet common practice, mainly due to the lack of space-

qualified GPU hardware solutions and of accepted and consolidated software standards for qualification. This hinders 

especially safety-critical and real-time operations like a robotic capture. Indeed, even in the most recent handbooks 

for the use of machine learning methods in space software [29], classical methods are still recommended to be used 

as a redundant software system or to take over safety-critical tasks. 

B. Problem Statement and Outline 

The advantage of detecting and using local correspondences between data and model for pose estimation is a high 

level of robustness for model deviations on a large scale, e.g., in point clouds degraded through sensory artefacts. 

Unlike for representations through global features, some isolated similarities of data to model can be enough to find a 

good alignment that can reach a high match score. However, it all depends on a good selection of potential point 

correspondences, as the huge number of possible correspondences would otherwise be prohibitive. 

The point matching task is particularly challenging when dealing with sparse or very noisy point clouds; it is under-

constrained for space targets characterized by planes or axes of symmetry, or by approximate symmetry, such as rocket 

bodies or spacecraft launch interfaces (typically approached for docking/berthing purposes), or indeed the satellite 

model that we consider in this study. 

We investigate four different techniques for selecting good point correspondences. For two of them we introduce 

strong constraints for candidate points in order to increase the rate of correct matches within the reduced point sets. 

These are (i) a Label-based method which collects offline FPFH statistics for local geometric structures on the satellite 

model, and then finds online the data points with similar FPFH statistics; (ii) a Persistence-Analysis-based (PA-based) 

method, which uses the so-called Persistence Analysis [11] to identify the points with the most distinctive FPFHs in 

the point clouds. The third technique is rather the opposite in that it does not constrain the candidate points but only 

enforces minimal geometric similarity: (iii) a PPF-based method matching pairs of points and their normal vector 

with similar configuration from data and model [21-23]. Finally, we investigate (iv) a FPFH-based method matching 

points based on FPFH similarity, using the implementation in the Open3D library (there simply called RANSAC) 

[30]. The proposed point matching techniques are integrated within a complete pose estimation architecture with a 

RANSAC-style search followed by the point-to-plane Iterative Closest Point (ICP) algorithm [31] for pose refinement 

and processing steps to distinguish between ambiguous pose solutions as well as reject unreliable estimates. 

We compare these methods for pose estimation using point correspondences to FGR [13], which treats it as a 

robust global optimization problem without assigning hard point correspondences, where we also use the 

implementation from Open3D. 

Performance assessment is carried out using a dataset of synthetic point clouds obtained from LiDAR simulations 

of the client satellite of OOS-SIM (On-Orbit Servicing Simulator for Capture) at the German Aerospace Center 

Robotics and Mechatronics (DLR-RM) laboratory [32]. This dataset is split into a training part and a testing part. The 

former is used for offline processing, i.e., for setting up components of each method; the latter is used for online 

processing, i.e., for evaluation. Note that the level of training and computational complexity of the trained methods is 

much below the scale of modern learning-based approaches, deep learning in particular. 

The paper is organized as follows. Section II describes in detail the investigated pose estimation architectures and 

their point matching methodologies. Section III presents and discusses the achieved results. Finally, Section IV 

concludes with a summary and outlook to future research directions. 
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II. Methodologies 

 In this Section we describe the methods used in this paper for estimating the pose of an uncooperative known space 

target.  

 In first place, we present a set of four methods, both known (PPF-based, FPFH-based) and our own compositions 

(Label-based, PA-based), which rely on point correspondences. These methods use a global pose estimation principle 

based on the RANSAC algorithm, due to its well-known advantages of robustly handling noisy data and outliers 

commonly encountered in real-world scenarios. RANSAC operates by iteratively selecting random subsets of the 

input data, hypothesizing a model based on these subsets, and evaluating the model's agreement with the entire dataset. 

This process involves distinguishing inliers, which conform to the hypothesized model within a predefined tolerance, 

from outliers, which do not. By maximizing the number of inliers across multiple iterations, RANSAC identifies the 

model that best represents the underlying data structure while rejecting outliers effectively [33]. 

 In second place, we briefly introduce in this Section also the FGR [13] method, which treats the registration as a 

robust global optimization and to which we compare the RANSAC-based methods. 

 Finally, we describe the post-processing steps which follow and are the same for all the five pose initialization 

methods, consisting in the pose refinement via ICP and in the rejection of unreliable estimates due to pose ambiguities 

induced by poor conditioning in the sensory data. 

 To describe the alignment process, we  refer to two point sets, the data points, which are measured by a LiDAR 

sensor and expressed in the Sensor Reference Frame (SRF), and the model points, expressed in the Target Reference 

Frame (TRF), which is a body-fixed frame of the target satellite. 

 It is also worth mentioning that the Label-based, PA-based and PPF-based RANSAC  make use of Hash Tables 

(HT) for enhancing the point correspondences search. HTs are data structures built offline for the purpose of storing 

data in a way that makes their retrieval quick and efficient. Therefore, the general scheme for these three algorithms 

(shown in Fig. 1) is based on two main steps listed below. 

 

 

Fig. 1 Pose Estimation Architecture Block Diagram. 

• Offline Hash Tables generation. A training dataset composed by simulated scans and ground truth poses 

is used to generate HTs, which store triplets of points or surflet pairs (the term we mostly use for PPF) - 

depending on the method considered - in buckets, localized by specific hash codes depending on the 

properties they exhibit. It is worth highlighting that HTs are not built directly from a complete and 

uniform point cloud of the target, as this choice may lead to practically unfeasible triplets (or pairs). 

Instead, we make use of the training dataset scans to include in the HT only the point triplets or 

respectively surflet pairs coherent with the partial views of a LiDAR sensor.  

• Online Hash-Table-based matching and pose estimation. The measured point cloud is processed and the 

HTs are searched for correspondences, in an iterative process, until a good match is found. The pose first 

guess is computed by aligning the corresponding points and relying on a pre-computed KDTree of the 

model point cloud for the alignment quality evaluation. 
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A. Global pose estimation methods 

In this subsection, the five pose initialization strategies analyzed are described. 

1. Label-based RANSAC 

The Label-based RANSAC method relies on the decomposition of the geometry under study into labeled geometric 

primitives (e.g., toroid, plane, edge, cylinder or sphere ). The key idea of this approach is to compare the FPFH-based 

signatures, computed from the training dataset for each defined geometrical class, with the FPFHs of the measured 

point cloud, computed online. Indeed, this restrains the correspondence determination problem.  

Fig. 2 shows a block diagram detailing the offline pre-processing phase of the Label-based RANSAC method. 

 

Fig. 2 Label-based RANSAC Offline Block Diagram. 

Satellite geometries often present flat surfaces. When a point cloud is completely planar, there is no use in deriving 

the FPFH signature of its points and the planarity can be quickly checked based on normal unit vectors’ variance, even 

before the FPFH computation. Therefore, for the construction of the HTs, a classification of the point clouds of the 

training dataset is first carried out by the Point cloud classifier block in Fig. 2, distinguishing between Complex 

Structure (CS) and Flat Structure (FS) scans. Specifically, while for CS scans, point and local normal information can 

be used to describe the shape of the target surface, FS scans do not show local normal variations; hence they can be 

treated in a separate HT. Clearly, in a similar way, the Point cloud classifier shall be applied to the measured point 

cloud in the online phase to decide which HT must be used for pose estimation. The distinction between a CS scan 

and an FS scan is performed by evaluating the variance over the entire point cloud of the set of normal unit vectors 

computed using the implementation in [30]. A low variance indicates aligned directions of the local normal unit 

vectors, therefore a geometrically simple point cloud. Specifically, the parameter used to distinguish between these 

scans is the sum of the variances of the normal components 𝜏𝜎𝑁
, which is compared to a threshold value 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒

: if 

𝜏𝜎𝑁
< 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒

, the point cloud is classified as an FS scan, otherwise as a CS scan. 

All the resulting CS scans are sent in input to a Labelling block which classifies the points into geometrical classes 

using the knowledge of the ground truth pose parameters. Hence, for each class a FPFH-based signature is computed 

as the mean FPFH value. This information is crucial in the online phase for extracting candidate points from the data 

point cloud. 

After labelling, the points of the CS scans are converted in TRF, using the knowledge of the ground truth pose 

parameters, and adopted to build the corresponding HT (𝐇𝐓𝐂𝐒). The 𝐇𝐓𝐂𝐒 is a two-level HT that associates two hash 

codes to each stored point triplet. These hash codes are defined by the corresponding hash keys as follows. 

 

• The first hash code is a triplet of integer numbers, 𝒈ℎ𝑎𝑠ℎ, whose value is set using as key, 𝒈𝑘𝑒𝑦 , the label 

of points (e.g., 𝒈𝑘𝑒𝑦 = [𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟, 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟, 𝑒𝑑𝑔𝑒] →  𝒈ℎ𝑎𝑠ℎ = [1, 1, 0]).  

• The second hash code is a triplet of integer numbers, 𝒅ℎ𝑎𝑠ℎ. The values of 𝒅ℎ𝑎𝑠ℎ  are obtained using as 

keys the inter-point distances of the considered point triplet, 𝒅𝑘𝑒𝑦 . Specifically, the hash function 

converting the key into the corresponding code is shown in Eq. (1), where 𝑚 is the number of buckets 
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composing the HT and 𝐷 is the maximum distance between pairs of points (i.e. the target satellite 

maximum dimension). 

 𝒅ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (
𝑚 ∗ 𝒅𝑘𝑒𝑦(𝑖)

𝐷
) , 𝑖 = 1,2,3 (1) 

The value assigned to 𝑚 strongly affects the number of triplets stored in a single bucket, since it determines the 

resolution with which point distances are sampled. Therefore, it plays an important role in the online pose estimation 

process. A high 𝑚 results in a finer classification of point triplets, given the high sampling resolution of the inter-point 

distances 𝒅𝑘𝑒𝑦, thus getting a low number of triplets in a single bucket, but with a good chance that these are good 

matches for alignment, and vice versa in the case of low 𝑚. Therefore, choosing an appropriate 𝑚 is crucial to have a 

good balance between computational efficiency and accuracy. 

The 𝐇𝐓𝐂𝐒 is then filled performing the following operations 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 times. At each cycle, a triplet of points is 

randomly extracted and 𝒅𝑘𝑒𝑦  is computed: if the 𝒅𝑘𝑒𝑦 components are all larger than a threshold (𝑑𝑡ℎ𝑟𝑒), the triplet is 

kept, otherwise it is discarded. Indeed, this approach is essential to avoid storing triplets of points that are excessively 

close to each other, which would result in larger pose errors, making the hashing inefficient. For all the retained 

triplets, the tuple of points is stored in the HT three times in order to account for any possible order of points in the 

triplet. This operation is used to avoid the case in which, after extracting the triplet in the online phase, its 

correspondent is not found being saved in the HT considering a different order. 

Regarding the FS scans, the corresponding HT (𝐇𝐓𝐅𝐒) is built with the following procedure. All the FS scans are 

expressed in TRF using the corresponding ground truth pose and merged into a single set. At this point, the same 

approach described for the generation of 𝐇𝐓𝐂𝐒 is adopted. The only difference is that a triplet is only identified by the 

second hash code 𝒅ℎ𝑎𝑠ℎ defined according to Eq. (1). 

 Finally, another offline operation is the construction of a KDTree structure of the model point cloud downsampled 

with voxel size 𝑣𝑠𝑖𝑧𝑒. Downsampling indeed allows a reduction of the online computational time during the pose 

refinement. Of course, for this operation, also the measured point clouds need to be downsampled online, with the 

same voxel size. 

Fig. 3 shows a block diagram detailing the online phase of the Label-based RANSAC method. 

 

Fig. 3 Label-based RANSAC Online Block Diagram. 

Once the measured point cloud is acquired, it is classified as a CS or FS scan. While all the points belonging to a 

FS scan are part of the set of candidates (𝑲) used for the 𝐇𝐓𝐅𝐒 lookup, an additional processing step is required to 

obtain 𝑲 from a CS scan. The points FPFHs are computed and compared with the FPFH-based signature computed 

offline. This comparison requires two steps. 
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• k-Nearest Neighbour (NN) retrieval. The FPFHs calculated for each point of the measured point cloud are 

organized according to a KDTree structure. For each class, the 𝑘𝐹𝑃𝐹𝐻  NNs to the corresponding FPFH-based 

signature are found. While this approach would result in 2𝑘𝐹𝑃𝐹𝐻  points composing the set of candidates 𝑲, 

an additional filter is applied to keep only the points with distance from the FPFH-based signature of that 

class smaller than a threshold (𝑑𝐹𝑃𝐹𝐻). 

• Reciprocity Test. All the candidate points from the previous steps are compared to the FPFH-based signatures 

of all the geometry classes identified for the target satellite, to check that the minimum FPFH-based distance 

is relative to the identified class. This check avoids selecting candidate points from different geometrical 

elements, especially in cases in which points belonging to the identified class are not in the sensor field of 

view. 

The best values of the above-introduced tuning parameters for the candidates’ selection process (i. e. , 𝑘𝐹𝑃𝐹𝐻  and 

𝑑𝐹𝑃𝐹𝐻) have been selected through an analysis based on Precision-Recall curves, not presented here for brevity. Fig. 

4 shows a block diagram describing the HT lookup phase of the Label-based RANSAC method. 

 

Fig. 4 HT lookup. This diagram is representative of both the CS and FS cases. 

Once the set 𝑲 of SRF candidate points is obtained from the measured point cloud, an iterative procedure is started 

to search for correspondences between measured and model points. At each iteration a random triplet of points is 

extracted and, after a check on their minimum inter-point distance being larger than 𝑑𝑡ℎ𝑟𝑒, the hash codes 𝒈ℎ𝑎𝑠ℎ  and 

𝒅ℎ𝑎𝑠ℎ (only 𝒅ℎ𝑎𝑠ℎ in the FS case) are computed and used to access the corresponding HT bucket. In general, each 

bucket may contain N different triplets of points in TRF, where each triplet represents a candidate match to the triplet 

of candidate points from the measured point cloud.  

For each of the 𝑁 potential associations, a pose guess is computed using the Singular Value Decomposition (SVD) 

method formally described in Ref. [34]. The quality of this pose guess is then computed by evaluating the number of 

inliers downstream of the alignment. The inliers percentage is computed leveraging the KDTree of the model point 

cloud to efficiently find the NNs between model and aligned data point cloud. Specifically, a NN association between 

data and model points is considered correct if their Euclidean distance is lower than a certain threshold 𝑑𝑖𝑛,𝑡ℎ𝑟𝑒. In this 

way, the percentage of inliers 𝑖𝑛% is computed as shown in Eq. (2): 

 𝑖𝑛% =
#𝑖𝑛𝑙𝑖𝑒𝑟𝑠

#𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
∗ 100  (2) 

The iterative procedure stops as soon as a threshold representing the minimum desired percentage of inliers 

(𝑖𝑛%,𝑡ℎ𝑟𝑒) is reached. 
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2. PA-based RANSAC 

The PA-based RANSAC method, uses the Persistence Analysis technique to identify the points with the most 

distinctive FPFHs in the point clouds. Referring to [12], Persistence Analysis is performed in two main steps. 

• Search for unique points. After computing the FPFH for each point in the cloud, the mean of all FPFHs is 

computed (𝜇 – histogram). Then, the distance between the FPFH of each point and the 𝜇 – histogram is 

calculated, using the Kullback-Leibler (KL) Divergence as distance metric [10, 11]. The distribution can be 

approximated by a Gaussian one, and the points whose FPFH fall outside the 𝜇 ± 𝛽𝜎 interval, where 𝜇 and 𝜎 

are respectively the mean and standard deviation of the above distribution and 𝛽 is a tuning parameter that 

controls the width of the interval, are called unique. 

• Search for persistent points. The previous step is repeated considering spheres of different radius for the FPFH 

computation. The points which are always unique as the radius varies are called persistent.  

The offline phase of the PA-based RANSAC method is very similar to that of the Label-based RANSAC method: 

it differs for the fact that, by not performing the subdivision into geometric primitives, the only inputs are the training 

dataset and the model point cloud, while the outputs are 𝐇𝐓𝐂𝐒, 𝐇𝐓𝐅𝐒 and the KDTree of the model point cloud. Of 

course, the 𝐇𝐓𝐂𝐒 construction procedure is slightly different, being based on PA: the CS scans of the training dataset, 

expressed in TRF, are first extracted. Then, PA is applied to the resulting dataset to find the set of persistent points to 

be used for constructing a single-level HT. The procedure for filling the HT is very similar to the one used for the 

Label-based RANSAC method, with the only difference that now the point triplets are associated with one single hash 

code 𝒅ℎ𝑎𝑠ℎ, computed with Eq. (1). 

The online phase of the PA-based RANSAC method is also very similar to that already seen for the Label-based 

RANSAC method: if the measured point cloud is classified as CS scan, PA is applied to extract the set of candidates 

𝑲 to be used for the HT lookup, finally leading to the pose guess using the same procedure adopted for the Label-

based RANSAC approach. 

3. PPF-based RANSAC 

The PPF-based RANSAC method only exploits the information contained in pairs of points with their local normal 

vectors to identify correspondences [21-23]. The online phase of this algorithm is the simplest among the proposed 

HT-based algorithms: after classifying the training scans as CS or FS, they are used to lookup 𝐇𝐓𝐂𝐒 and 𝐇𝐓𝐅𝐒 without 

any kind of feature extraction. The inputs and outputs are exactly the same as the PA-based RANSAC method. 

An additional reference system, called Local Reference Frame (LRF) is used to obtain the hash keys to be 

associated with the surflet pairs. The unit vectors corresponding to the LRF axes are defined as in Eq. (3): 

 �̂� =
𝒏1

‖𝒏1‖
, �̂� =

𝒏1 × 𝒏2

‖𝒏1 × 𝒏2‖
, �̂� = �̂� × �̂� (3) 

where 𝒏1 and 𝒏2 are respectively the normals in the first and second point of the surflet, 𝒑1and 𝒑2. The LRF is 

assumed to be centered in 𝒑1. A simplified representation of the LRF is shown in Fig. 5. 

  

Fig. 5 Graphical representation of a surflet and the defined LRF. 
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The 𝐇𝐓𝐂𝐒 built for the PPF-based RANSAC method has a single level that associates a hash code to each of the 

stored surflets. So, it relies on surflets associated with a 4D key containing three distance information and one angular 

information, as detailed below. 

• The three distance informations are the three coordinates of the relative position vector between 𝒑1 and 

𝒑2, expressed in LRF (𝒅𝐿𝑅𝐹). 

• The angular information is the angle 𝛼 between the two normals. 

Since the relative distance vector in SRF and the rotation matrix from SRF to LRF are known, the relative distance 

vector is simply transformed into the LRF. The formulas shown in Eq. (4) are used: 

 𝑹𝑆𝑅𝐹→𝐿𝑅𝐹 = [�̂� �̂� �̂�]𝑇     →      𝒅𝐿𝑅𝐹 = 𝑹𝑆𝑅𝐹→𝐿𝑅𝐹  𝒅𝑆𝑅𝐹  (4) 

Once the key 𝒔𝑘𝑒𝑦 = [𝒅𝐿𝑅𝐹 ; 𝛼] is defined, the hash code is generated using the hash function reported in Eq. (5) 

and Eq. (6): 

  𝒔ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (
𝑚∗𝒅𝐿𝑅𝐹(𝑖)

𝐷
) ,  𝑖 = 1, 2, 3 (5) 

 
 𝒔ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (

𝑚𝑎∗𝛼

𝐴
) , 

 𝑖 = 4 (6) 

 where 𝑚 is the number of buckets for the coordinates, 𝐷 is the maximum distance between point pairs, 𝑚𝑎 is the 

number of buckets for the angles, 𝛼 is the angle between the respective normals and 𝐴 is the upper bound of the 

allowed angles. Surflets are generated from the CS scans of the training dataset, expressed in TRF. 

To build 𝐇𝐓𝐂𝐒, the following sequence of operations is performed for 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 : one of these scans is randomly 

selected and a surflet is randomly taken. At this point, a condition is imposed on the angle between the surflet normals, 

which must satisfy the condition 𝛼𝑚𝑖𝑛 < 𝛼 < 𝛼𝑚𝑎𝑥 . The main reason behind this condition is that when 𝛼 is 0° or 

180°, the unit vector �̂�, which is computed as the cross product between the two normal, would be zero. Moreover, 

this generally represents an unfavorable condition for recognition: an 𝛼 around 90° would be preferable, for example, 

indicating that the two points in the surflet belong to two orthogonal planes and not to the same plane. If the angle 

condition is not satisfied, the cycle starts again; if it is satisfied, another condition is set on the Euclidean distance 𝑑 

between the two points of the surflet: 𝑑 > 𝑑𝑡ℎ𝑟𝑒 . If this condition is also satisfied, 𝒅𝐿𝑅𝐹  is computed. Once the key 

𝒔𝑘𝑒𝑦  is obtained, the hash code 𝒔ℎ𝑎𝑠ℎ is generated through Eq. (5) and Eq. (6) and, finally, the surflet is stored in the 

bucket localized by the computed hash code, two times in order to account for the order of points and normals in the 

surflet. Given the above-mentioned problems in handling surflets with parallel normal unit vectors, the FS scan case 

is managed using point triplets rather than surflet pairs, as done for the Label-based RANSAC and PA-based RANSAC 

methods. 

The online phase of the PPF-based RANSAC method is very similar to that of the Label and PA-based RANSAC 

methods, with the exception that, as already anticipated, there are no feature extraction steps: therefore, if the point 

cloud is classified as a CS scan, the entire point cloud constitutes the set 𝑲 that enters the HT lookup phase. 

During the HT lookup, a surflet is randomly taken from the measured point cloud and, if the conditions set offline 

are satisfied, 𝒔𝑘𝑒𝑦  and its hash code 𝒔ℎ𝑎𝑠ℎ are generated, again using the hash function defined in Eq. (5) and Eq. (6). 

The search in the bucket corresponding to the obtained hash code generally provides 𝑁 surflets, each of which is tested 

for pose estimation, whose goodness is evaluated by estimating 𝑖𝑛%. If 𝑖𝑛% > 𝑖𝑛%,𝑡ℎ𝑟𝑒, the initial pose guess has been 

obtained, otherwise another of the 𝑁 surflets is selected; if none of the 𝑁 surflets provides a good pose, the cycle 

restarts with the random selection of another surflet from the measured point cloud. The HT lookup phase in case of 

FS scans is the same as in the previous subsections. 

The alignment algorithm used for the PPF-based RANSAC method is different to the one adopted by Label-based 

and PA-based RANSAC methods. Specifically, the surflet expressed in SRF and the corresponding one expressed in 

TRF are aligned using an ad-hoc algorithm that separately solves the rotation and translation problems. 
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4. FPFH-based RANSAC 

We compare the three HT-based methods described above with another RANSAC-based algorithm, which is 

already fully implemented in Open3D and that we name  FPFH-based RANSAC [30]. The pre-processing procedure 

consists in downsampling of the model and the measured point clouds and in estimating the normal vectors and FPFHs 

for each point of both downsampled point clouds. Then, the FPFH-based RANSAC iteratively extracts 𝑛 points from 

the model point cloud, subsequently identifying the set of corresponding points in the measured point cloud by 

searching for NNs in the FPFH space. For a quick search, Open3D provides algorithms to filter the good matches, 

based on the distances between correspondences in the two point clouds, on the similarity between the lengths of 

segments built starting from pairs of corresponding points, and on the orientation of the relative normal unit vectors.  

5. FGR 

Concerning the FGR technique, we again rely on the existing implementation of Open3D [30]. FGR adopts a 

process that does not rely on the iterative calculation of correspondences; therefore, this algorithm does not follow a 

RANSAC-based approach. First, point clouds are downsampled, and FPFHs are computed. Then, the key idea is to 

first establish a set of correspondences 𝑲 between the data and model point clouds. Specifically, three main steps are 

performed that aim at determining 𝑲 based on the similarity between FPFH, through NN retrieval, and on the 

"compatibility" between tuples of correspondences, through the comparison of the lengths of segments obtained from 

pairs of points identified on the two point clouds. Once 𝑲 is obtained, an optimization process of an objective follows 

based on these correspondences (see Ref. [13]). 

B. Post-processing 

This subsection describes the steps that follow the pose initialization: once the pose has been obtained through one 

of the global pose estimation algorithms, a pose refinement step follows through the Point-to-Plane (P2L) ICP [35] 

and some ambiguity reduction checks are performed to correct any incorrect poses due to potential symmetries in the 

geometry of the reference satellite.  

Downstream of the ICP algorithm, checks are implemented to increase the robustness of the proposed methodology 

against the possibility to get incorrect pose solutions. Consider, for instance, a target that has large planar surface 

regions. The percentage of inliers required to exit the HT lookup phase could then be reached with an incorrect pose, 

if the measured point cloud is mainly restricted to one of the satellite planes. Indeed, a version of the true satellite pose 

that is flipped about this plane has an inlier count almost as larger as the correct pose, a small difference being due 

only to the small share of points that were measured off plane. Therefore, the 𝑻𝐼𝐶𝑃 transformation, that is the pose 

solution produced by the ICP-based pose refinement step expressed as a 4x4 roto-translation matrix from SRF to TRF, 

could correspond either to the desired transformation from SRF to TRF (𝑻𝑆𝑅𝐹→𝑇𝑅𝐹) or to a transformation from SRF 

to a Flipped Target Reference Frame (FTRF). Therefore, two possible pose solutions can be investigated, which are 

shown in Eq. (7) and Eq. (8): 

 𝑻𝑆𝑅𝐹→𝑇𝑅𝐹1
= 𝑻𝐼𝐶𝑃 (7) 

 𝑻𝑆𝑅𝐹→𝑇𝑅𝐹2
= 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹𝑻𝐼𝐶𝑃 (8) 

where 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 is a matrix dependent on the target reference geometry. In subsection III.A the analyzed flip cases 

and the 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 matrices to correctly manage them are explained. Given these two possible solutions, the 

percentage of inliers is calculated for both cases, and the matrix corresponding to the case with the highest percentage 

of inliers is selected as the final one. 

III. Experiments 

In this Section, we introduce the reference geometry used to conduct the analyses and present the performance 

results of the algorithms. For the sake of completeness, the settings of the tuning parameters characterizing the offline 

and online phases of the proposed and implemented methods are reported in the Appendix. 

A. Scenario 
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To test the algorithms, we consider the OOS-SIM Client Satellite shown in Fig. 6 (a), which has an approximate 

6-fold rotational symmetry of the structure, broken only by minor elements. It also has many large planar regions. 

This geometry adds complexity to the pose estimation problem. 

 

Fig. 6 a) CAD model of the OOS-SIM Client Satellite and TRF representation. b-d) Examples of the point 

clouds handled for pose estimation. b) CS scan; c) FS scan, upper plane; d) FS scan, lower plane. 

For the offline phase and to test the algorithms, a 1000 point cloud dataset is used, generated by simulating two 

Velodyne™ VLP-16 scanning LiDARs, rotated by 90° with respect to each other. Random samples are drawn with a 

pointing constraint according to which the target is in the Field of View (FOV) of both sensors, by varying the relative 

position (between 1 𝑚 and 2 𝑚 distance) and the relative attitude of the target. The attitude, in particular, is generated 

in such a way as to uniformly cover SO(3) [36]. The resulting point clouds appear to be partial, sparse and non-

uniform, but are unaffected by data artifacts such as noise and outliers. Some examples are given in Fig. 6 (b-d). Of 

these 1000 scans, an 80% is used as training dataset while the remaining 20% is used as testing for algorithms’ 

performance assessment. 

 For the implementation of the Label-based RANSAC method presented in Section II, in particular, a segmentation 

of the reference geometry into the following geometric primitives has been used: toroid, handles, planes, edges, 

cylinder and sphere. The decomposition of the geometry applied to the Client Satellite is shown in Fig. 7. 

 

Fig. 7 Target decomposition into geometric primitives. 

From preliminary tests we found that cylinder and edge points are the most recognizable through the computation 

of the FPFH. Hence, the point matching and pose estimation tasks are only executed based on points belonging to 

these categories. 

Finally, regarding the flip checks, we show in Fig. 8 the considered flip cases.  
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Fig. 8 Flips implemented. a) Flip check performed for all scans. b) FS Flip check: upper plane; c) FS Flip 

check: lower plane. 

 Given our Client Satellite geometry, two different types of flip checks are performed:  one applied to both CS and 

FS scans  (a), and an additional check for FS scans only (b, c), which is performed before (a). The latter flip check 

type addresses the case in which the corresponding planes match, but with opposite normal orientation. Therefore, to 

detect such a case, a comparison is made between the direction of corresponding normal vectors. If the median angle 

between corresponding normals is greater than 90°, it is highly likely that the FS scan is upside down, and therefore 

it is necessary to apply, downstream of 𝑻𝐼𝐶𝑃, a 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 transformation to flip the measured point cloud. Since the 

FS scan considered (upper or lower) is not known a priori, the transformations related to both cases (b, c) are applied 

and the best one in terms of number of inliers is selected. 

B. Evaluation metrics 

In this subsection, the error metrics for evaluating the performance of the algorithms are defined. Given the quasi-

symmetric geometry of the satellite under study, for the method evaluation we consider the symmetric variant of the 

estimated pose which minimizes the error. Let 𝑻 be the pose ground truth and �̂� be the estimated pose, within the set 

of equivalent poses by symmetry, with the smallest error. The Average Distance of model points for Distinguishable 

(ADD) and for Indistinguishable (ADI) points are computed [28, 37], given a complete uniform model point cloud 

ℳ, which are defined in Eq. (9): 

 𝐴𝐷𝐷 = avg
𝒙∈ℳ

‖ 𝑻𝒙 − �̂�𝒙‖ ,  𝐴𝐷𝐼 = avg
𝒙1∈ℳ

 min
𝒙2∈ℳ

‖ 𝑻𝒙1 − �̂�𝒙2‖ (9) 

 Furthermore, for each testing sample, the translational and rotational errors are computed as shown in Eq. (10): 

 𝑡𝑒𝑟𝑟 = ‖𝒕 − �̂�‖ ,  𝜙𝑒𝑟𝑟 = 2 arccos|〈𝒒, �̂�∗〉| (10) 

where 𝒕, 𝒒 are the translational and rotational components of 𝑻, while �̂�, �̂� are the translational and rotational 

components of �̂�. These error metrics are used to compute the Success Rate (SR), which is defined as the percentage 

of correctly estimated poses, as shown in Eq. (11): 

 𝑆𝑅 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠

# 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100 (11) 

A pose is considered correctly estimated if 𝜙𝑒𝑟𝑟 < 5° and 𝑡𝑒𝑟𝑟 < 5 𝑐𝑚 are simultaneously satisfied. Finally, the 

computational time of the online phase is measured from the acquisition of the LiDAR point cloud to the pose 

refinement. The simulations are conducted on a machine equipped with an Intel(R) Core(TM) i9-14900K CPU @ 

3.20 GHz and 64 GB DDR5 RAM. 
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Fig. 9 Comparison results between the algorithms. The metrics compared are ADD, ADI (top 4 plots), 

rotational error and translational error (bottom 4 plots), without post-processing (left column) and with post-

processing (right column) 
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C. Results 

This subsection presents the results of the conducted tests and discusses the achieved performance based on the 

metrics defined in the previous subsection. 

The compared methods are the Label-based RANSAC, PA-based RANSAC, PPF-based RANSAC and the 

Open3D FPFH-based RANSAC and FGR, appropriately modified by integrating the already existing architectures 

with the post-processing block (ICP + flip checks) also used for the HT-based algorithms. 

Fig. 9 shows the performance comparison between these 5 methods both without and with the post processing 

steps included into the algorithmic pipeline. The top 4 plots show the percentage of samples of the testing dataset 

whose ADD/ADI, normalized with respect to the maximum size of the satellite, considered equal to 1.2 𝑚, falls below 

a certain threshold. The bottom 4 plots show the performance of the algorithms in terms of rotational and translational 

error 𝜙𝑒𝑟𝑟 and 𝑡𝑒𝑟𝑟, in ADD/ADI style, thus showing the percentage of samples of the testing dataset whose 

rotational/translational error falls below a certain angle/distance. For all the 8 plots the [min., max.] limits of the 

horizontal axis are set to [0, 𝑝], with 𝑝 such that 96% of the samples of the testing dataset are reached with the worst 

RANSAC-based method. 

From the shown plots, first, it can be noted that FGR provides a poor accuracy compared to all the other techniques, 

proving inadequate for the type of problem studied. The reason for this difference may be the greater generality of the 

problem addressed, compared to the conditions tested in [13], in which the performance of FGR was evaluated on 

partially overlapping surfaces. 

As for the RANSAC-based algorithms, the plots in the left column show a slight overall superiority of FPFH-

based RANSAC. Furthermore, in the ADD plot a jump in the percentage of samples when the ADD threshold gets 

slightly higher than 0.5 can be observed; this caused by the flipped poses whose samples are included when this 

threshold on ADD is exceeded. This behavior is also visible in the plots of the translational and rotational errors 

without post-processing; in particular, in the one of the rotational errors it is observed right before 180°, confirming 

the previous observation. 

On the other hand, the plots in the right column clearly show the significant improvement in the accuracy of the 

results due to the post-processing, thus proving that our methods represent promising alternatives, to be further studied 

with noisy data.  

Moreover, assuming that for 𝜙𝑒𝑟𝑟 < 5° and 𝑡𝑒𝑟𝑟 < 5 𝑐𝑚 the pose is correctly estimated, the simulations performed 

resulted in a SR of 98%, 98.5%, 98.5% and 98.5%, for FPFH-based RANSAC, Label-based RANSAC, PA-based 

RANSAC and PPF-based RANSAC, respectively, further confirming the validity of our alternatives.   

 

Finally, the computational times for both cases without and with post-processing are reported in Table 1. 

Table 1 Time Performance. 

Method 

Computational Time  

without Post-Processing [s] 

Computational Time  

with Post-Processing [s] 

Mean Median Mean Median 

FPFH-based RANSAC 0.0965 0.0950 0.2511 0.2060 

Label-based RANSAC 0.3062 0.2136 0.4610 0.3309 

PA-based RANSAC 0.4441 0.3693 0.5331 0.4357 

PPF-based RANSAC 0.1098 0.1084 0.2420 0.1776 

FGR 0.0237 0.0230 0.2295 0.1670 

 

 From Table 1, it can be observed that our Label-based and PA-based RANSAC compositions are less performant 

than FPFH-based RANSAC and PPF-based RANSAC, which instead have comparable computational times. It is 

important to underline that our HT implementations are not optimized, unlike FPFH-based RANSAC, whose 

implementation comes from the Open3D library. Therefore, this comparison is to be considered as preliminary. 

IV. Conclusion 

We have compared four variants of global satellite pose estimation which are based on RANSAC with point 

correspondences on realistic simulations of LiDAR data. All these variants are promising methods for solving the task 
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in the context of orbital servicing missions. Two of these variants, Label-based RANSAC and PA-based RANSAC, 

are our own compositions. A slight advantage in accuracy and speed was observed for FPFH-based RANSAC. The 

speed measurements, however, are just preliminary as not all methods currently have an optimized implementation. 

A further comparison to FGR, which treats pose estimation as a global optimization without hard point 

correspondences, has shown this method to be far inferior and inadequate for the task. 

Moreover, we have demonstrated a significant improvement in accuracy through postprocessing the results of 

global pose estimation with ICP-based refinement and checks for flip errors caused by pose ambiguities present in the 

LiDAR data under certain conditions. 

Future research should consolidate and extend our present results through improvements in data realism or even 

on real LiDAR data, including different sensor characteristics, and with additional satellite models. In addition, 

optimized implementations on space hardware are required for confirming the applicability of the studied methods in 

the context of real orbital missions. 

Appendix 

Table 2 shows the tuning parameters used for the construction of the HTs. 

Table 2 Tuning Parameters Selected for HTs Construction. 

HT 𝒏𝒄𝒚𝒄𝒍𝒆𝒔 
Hash Function Parameters Filtering Parameters 

𝒎 𝑫 [𝒎] 𝒎𝒂 𝑨 [𝒅𝒆𝒈] 𝒅𝒕𝒉𝒓𝒆 [𝒎] 𝜶𝒎𝒊𝒏 [𝒅𝒆𝒈] 𝜶𝒎𝒂𝒙 [𝒅𝒆𝒈] 

Label 𝑯𝑻𝑪𝑺 5e6 100 1.2 N/A N/A 0.025 N/A N/A 

PA 𝑯𝑻𝑪𝑺 5e6 100 1.2 N/A N/A 0.025 N/A N/A 

PPF 𝑯𝑻𝑪𝑺 5e6 100 1.2 40 170 0.025 10 170 

𝑯𝑻𝑭𝑺 1e6 100 1.2 N/A N/A 0.05 N/A N/A 

The algorithms, developed in Python environment, use the open-source Open3D library for 3D data processing 

operations, including normal and FPFH estimation. Specifically, they are computed using a neighbourhood of points 

defined by two tuning parameters, which are the search radius 𝑟 and the maximum number of nearest neighbours 

𝑚𝑎𝑥𝑛𝑛 [30]. Table 3 shows the tuning parameters used for normal, FPFH estimation and online extraction of the set 

𝑲, respectively, which are the result of a preliminary optimization analysis. 

Table 3 HT-based Normal, FPFH Estimation and Feature Extraction Tuning Parameters. 

Label-based 

RANSAC 

method 

Normals FPFH 
Cylinder Points 

Extraction 

Edge Points 

Extraction 

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒅𝑭𝑷𝑭𝑯 𝒌𝑭𝑷𝑭𝑯 𝒅𝑭𝑷𝑭𝑯 𝒌𝑭𝑷𝑭𝑯 

0.07 40 0.07 100 55 190 50 180 

PA-based 

RANSAC 

method 

Normals FPFH Persistence Analysis 

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝜷 𝒓𝒊 [𝒎] 𝒎𝒂𝒙𝒏𝒏 

0.07 40 0.07 100 1 0.05, 0.07, 0.1 100 

PPF-based 

RANSAC 

method 

Normals FPFH 

No Feature Extraction Step 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 

0.07 40 N/A N/A 

The performance of the developed HT-based algorithms is compared to FPFH-based RANSAC and FGR 

techniques as implemented in the Open3D library, but integrating them with the same post-processing procedure 

performed for the HT-based methods. Table 4 shows the tuning parameters used for normal and FPFH estimation for 

FPFH-based RANSAC and FGR. 
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Table 4 FPFH-based RANSAC and FGR Normal and FPFH Estimation Tuning Parameters. 

Method 
Normals FPFH 

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 

FPFH-based RANSAC 0.07 40 0.07 100 

FGR 0.1 40 0.1 100 

Regarding point cloud classification, for the HT-based methods 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.1 has been set to distinguish CS scans 

from FS scans, while for FPFH-based RANSAC and FGR algorithms, 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.25 has been set since the workflow 

reported in [30] involves the implementation of point cloud downsampling before estimating the normal unit vectors, 

which therefore alters the threshold value to be considered. The value of voxel size set for point cloud downsampling 

is equal to 0.025 𝑚 and is selected in such a way as to classify as FS scan and CS scan the exact same samples 

classified using the threshold of 0.1 𝑚 on the non-downsampled testing dataset. For completeness of the analyses, 

simulations have also been performed without downsampling of the point clouds (and therefore with the same 

threshold adopted for the HT-based methods), indeed demonstrating the greater effectiveness of FPFH-based 

RANSAC and FGR with downsampling, not presented here for brevity. 

Table 5 shows, finally, for the HT-based algorithms, the values of the online alignment tuning parameters, selected 

following an iterative process to identify the optimum ones. 

Table 5 Online Phase Tuning Parameters Adopted. 

Method 
Alignment Evaluation ICP 

𝒗𝒔𝒊𝒛𝒆 [m] 𝒅𝒊𝒏,𝒕𝒉𝒓𝒆 [m] 𝒊𝒏%,𝒕𝒉𝒓𝒆,𝑪𝑺 [%] 𝒊𝒏%,𝒕𝒉𝒓𝒆,𝑭𝑺 [%] 𝒊𝒄𝒑𝒕𝒉𝒓𝒆 [m] 𝒏𝒊𝒕,𝒎𝒂𝒙 𝒊𝒄𝒑𝒄𝒐𝒏𝒗 [m] 

HT-based 0.025 0.05 80 90 0.05 100 10−6 

The parameters 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐶𝑆 and 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐹𝑆 represent the percentages of inliers to be satisfied for the pose to be 

considered good, for CS and FS scans respectively (this threshold is indicated generically in Section II as 𝑖𝑛%,𝑡ℎ𝑟𝑒), 

while 𝑖𝑐𝑝𝑡ℎ𝑟𝑒  and 𝑖𝑐𝑝𝑐𝑜𝑛𝑣  are the distance threshold set for the execution of the ICP and a convergence parameter 

given by the difference between the Root Mean Square Error (RMSE) of two consecutive iterations, respectively. 

Regarding FPFH-based RANSAC, instead, the number of points used to compute the initial pose guess is set equal 

to 3; the input parameters of the CorrespondenceCheckerBasedOnDistance and 

CorrespondenceCheckerBasedOnEdgeLength functions [30] are set equal to 0.05 𝑚 and 0.9 respectively and, finally, 

the convergence criteria of the algorithm, which are the maximum number of iterations and the confidence probability, 

are set to 100000 and 0.999, respectively; finally, for FGR, the only input parameter required by the Open3D function 

is the maximum correspondence distance, set equal to 0.05 𝑚. The same values of 𝑖𝑐𝑝𝑡ℎ𝑟𝑒 , 𝑛𝑖𝑡,𝑚𝑎𝑥 and 𝑖𝑐𝑝𝑐𝑜𝑛𝑣 are 

used. 
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