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Abstract—Assistance systems play an important role in the
proceeding transition of surface vessels towards highly automated
operations. Particularly when navigating through congested areas
like harbors, exact knowledge of distances to nearby obstacles is
essential for collision avoidance. This paper applies a combined
filtering and clustering approach in order to utilize 1D FMCW
radar data for distance estimation to nearby obstacles in the
harbor environment. The data processing aims at clearing the
raw sensor data from unwanted signals caused by environmental
influences like rain or waves and determines a reliable distance
from the relevant signals. We evaluate our approach using sea
trial data from a research vessel, comparing processed radar
distances with a DGPS-based ground truth. The study assesses
the performance of three density-based clustering algorithms –
DBSCAN, HDBSCAN, and OPTICS – in this context.

All of these algorithms show a good performance for processing
the 1D FMCW data for our use case, enabling a reliable
distance determination to a static obstacle. OPTICS performs
slightly better in terms of eliminating disturbing signals than the
remaining two algorithms. The processing times of all algorithms
were found to be sufficient for online application of the proposed
approach.

Index Terms—FMCW radar, sea trial, clustering, automated
shipping, collision avoidance

I. INTRODUCTION

The maritime industry is on the way of transitioning from
manual navigation to highly automated ships. The Interna-
tional Maritime Organization’s (IMO) framework [1] defines
four levels of automation, ranging from semi-automated to
fully autonomous. A Maritime Autonomous Surface Ship
(MASS) at the highest level (Level 4) requires no human
intervention for navigation [2].

The increasing stages of automation require enhanced sen-
sor and assistive technologies since awareness of other parti-
cipants and static obstacles is indispensable for safe operation,
especially in congested waterways. In this context, several
challenges for sensor readings have to be mastered that are
unique or more pronounced in the maritime environment with
respect to other domains. Ship movements, characterized by
six degrees of freedom, can lead to distortions in sensor data.
Additionally, common maritime conditions include reflections
from waves on the water surface which can create deceptive
signals, a problem emphasized in [3]. Heavy rainfall or fog, an
issue also faced by the automotive and aviation domains, can
further complicate environment perception. These factors can
result in the incorrect identification of nearby objects, leading

to false alarms in assessing collision risks. In the face of
these challenges and potential technical failures, it is advisable
to rely on redundant sensor systems for collision avoidance
in automated navigation. Common technologies employed in
collision avoidance systems for Maritime Autonomous Surface
Ships include Cameras (e.g. [4]) and Light Detection and
Ranging (LiDAR, e.g. [5], [6]), along with nautical radars. Due
to their resolution and operating range, the latter are not well-
suited for object detection in short distances. Instead, they are
employed for ship to ship collision avoidance, as proposed e.g.
by [7]. For this reason, 1-dimensional Frequency-Modulated
Continuous-Wave (1D FMCW) radars appear as a viable
solution for complementing collision avoidance technologies
with a short-range solution capable of operating in limited
visibility conditions.

Since this kind of sensors is applied in the industrial [8], [9]
and aviation sectors [10], they are available as serial products
and offer a good cost effectiveness, which suggests benefits
also from an application in the maritime domain.

Due to the above-mentioned environmental influences, data
processing of raw distances measured by the 1D FMCW radar
sensors is crucial for eliminating disturbing signals. Therefore,
this contribution aims at comparing the performance of three
density-based clustering algorithms in utilizing 1D FMCW
radar data for distance estimation to port infrastructure. The
distance values are evaluated against a DGPS-based ground
truth. The processing time of the proposed approach is also
considered.

The data processing has been tested in sea trials with radar
sensors mounted on a research boat, as depicted in Fig. 1.
The maneuver performed included a head-on approach to the

Fig. 1. 1D FMCW radar sensor mounted at the bow of our research boat.
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Fig. 2. Schematic illustration of the sea trial maneuver used for evaluating
the data processing of the 1D FMCW radar data. The image is explained in
detail in Sect. IV in the context of our evaluation methodology.

quay, followed by a 90◦ starboard turn and finally a phase
were the vessel was moving parallel to the quay. The executed
maneuver is illustrated in Fig. 2, which will be explained in
detail in Sect. IV that is dedicated to the methodology of our
evaluation. The use case for the evaluation was derived in the
context of the AMISIA1 project, which aims at developing a
concept for a highly automated hopper dredger. The maneuver
is prototypical for a hopper dredger that has to maintain the
harbor area and therefore operates in close distance to the quay
wall.

II. STATE OF THE ART

Radars have been used for a long time to improve safety
in the automotive domain [11]. They are applied for ex-
ample in park assist, blind spot assist and adaptive cruise
control systems. While in the beginning the main task was
to support humans in their decision-making process, radar-
based assistance systems have been further developed into
fully automated systems. This technology is not only employed
to protect the passengers of the car from accidents but also
vulnerable road users like pedestrians or cyclists [12].

In this context, applying a density-based clustering algo-
rithm is a common means to group signal detections together
to form objects. One clustering algorithm that has been applied
to process radar data in several studies in the Automotive
Domain (e.g. [13], [14], [15]) is Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) [16]. The core
principle of DBSCAN is to group closely packed data points
into clusters while labeling outliers as noise. It operates
based on two primary input parameters: ϵ, which defines the
neighborhood radius around each data point, and min samples,
specifying the minimum number of points required in the
neighbourhood of a core point. If there is a lower number of
points within the search radius, the corresponding data points
are classified as noise.

Its capability of noise removal qualifies DBSCAN for
applications in scenarios with high noise, as evidenced by Lim
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et al. [13], who effectively employed DBSCAN in adaptive
cruise control systems. Scheiner et al. [14] filter their radar
data in a first processing step by density and radial velocity.
Then, they apply a slightly modified version of DBSCAN
which eliminates extraneous radar reflections.

Among the general caveats of DBSCAN is its sensitivity to
the choice of ϵ and min samples. Since ϵ imposes a global
density threshold, the algorithm is not suited to detect clusters
of varying densities. Hierarchical DBSCAN (HDBSCAN) [17]
aims at overcoming this issue by providing a hierarchical
clustering approach. It performs density based clustering over
a range of ϵ values and returns the cluster distribution that
is most consistent over varying ϵ. Therefore, it has a better
ability to form clusters in data sets of varying densities. This is
particularly beneficial in radar applications where signals from
targets with different geometries and reflectivity at varying
distances from the sensor have to be clustered. As an additional
parameter with respect to DBSCAN, a min cluster size can be
defined for HDBSCAN, which is the minimum total number
of data points required to form a cluster.

Another density-based clustering technique is Ordering
Points To Identify the Clustering Structure (OPTICS) [18].
Like HDBSCAN, it does not use a single ϵ parameter. Instead,
OPTICS sorts the data points based on their reachability dis-
tance within the data space. Similar to HDBSCAN, OPTICS
can identify clusters with different densities and shapes.

III. PROCESSING OF OUR 1D FMCW RADAR DATA

To the best of our knowledge, none of the radar data
processing approaches presented in Sect. II have been applied
to 1D FMCW radar data in the maritime environment. Based
on the mentioned studies, a combined filtering and clustering
approach was selected with the aim to utilize 1D FMCW
radar data for distance estimation in the maritime environment.
The main objective of the data processing is first eliminating
irrelevant signals and then determining a reliable distance to
a static obstacle from the remaining measurements.

DBSCAN is the density-based clustering algorithm that
is most frequently applied in radar data processing in the
literature. As mentioned above, HDBSCAN and OPTICS are
expected to better cope with clusters of varying densities,
which are likely to occur in a dynamic environment. Therefore,
the performance of DBSCAN, HDBSCAN and OPTICS in
processing our radar data is compared. All three algorithms
have the capability of outlier removal, which means that sea
clutter and scattered signals can be classified as noise and
filtered out. Also, they don’t require a priori knowledge of the
number of clusters, which is necessary for other algorithms,
such as K-means clustering. Since the radar sensors have to
detect objects in a changing field of view, the number of
clusters is not known in advance.

Fig. 3 gives a schematic overview over the processing
steps involved, which are explained in detail in the following
sections. Data points recorded during a time interval of 1 s
are considered in each processing step, i.e. 10 radar measure-
ments are processed together since the sensors conduct 10
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Fig. 3. Activity diagram of our data processing approach.

Fig. 4. Radar reflections recorded during rain. The signal amplitude is color-
coded. Raindrops cause a high number of near-distance detections. The signals
with higher intensities are reflected by the quay. The data set is shown again
in Fig. 5 in greater detail, particularly the points with high amplitudes.

measurements per second. The reason for this is to accumulate
more data points as input for the processing. Obstacles can
be expected to reflect signals continuously over this small
time interval of 1 s while scattered signals can be less con-
sistent over time. According to the Guidelines for Autonomus
Shipping by Bureau Veritas [19], the maximum recommended
data transmission latency for Remote Control, Radar Images
and Telemetry is 1 s. Thus, the time range over which 1D
FMCW radar data are accumulated for processing in our work
complies with this recommendation.

Regardless of the accumulation, new processed data are
available every 0.1 s. Raw data are collected in a queue
covering 1 s and every time new raw data are available, the data
with the least recent timestamp are omitted from the queue
while new data are added.

A. Data Filtering

Prior to clustering, our applied approach includes a two-step
data filtering. In the initial filtering step, a lower threshold on
the signal amplitude A and an upper limit on the radial velocity
vrad is set. All data points passing these criteria, i.e. for which

A > Amin ∧ vrad < vrad,max (1)

are then in a second step filtered according to their number of
neighboring points N within a certain radius rsearch, i.e.

N(rsearch) > Nmin (2)

This combined filtering and clustering approach is adopted
from [14] with some modifications, e.g. adding the signal
amplitude criterion. The latter aims at filtering out signals from
targets with a low reflectivity like raindrops. Fig. 4 shows radar
distances plotted over time for an example data set recorded
during rain. Data are recorded by the sensor mounted at the
side of our research boat (see Fig. 2). The reflections from
the quay wall appear in the second half of the plot at a

distance of ∼ 7m and have higher signal amplitudes than the
near-distance rain reflections, which makes them identifiable
as the green and yellow data points. The figure also shows
that the data point density is lower in many cases for the
disturbing rain signals than for relevant signals. This motivates
the density-based filtering. The idea behind the maximum
radial velocity threshold is that our work focuses on collision
risk assessment with static port infrastructure. Thus, radial
velocities of relevant objects are constrained by the speed of
the research boat.

B. Data Clustering
After filtering, density-based clustering is applied to the

radar distances. As mentioned before, the performance of
DBSCAN, HDBSCAN and OPTICS is compared. Only the
spatial distance of data points is considered in forming the
clusters, i.e. the temporal distance is disregarded. As stated
above, data accumulated over 1 s is processed together. Since
chances are high that there is more than one obstacle in the
field of view (FOV) of a radar sensor, the two largest clusters
formed are considered in each processing step. An overall
distance is calculated for both of them as a weighted mean
value. Finally, the distance to the closer cluster between the
largest two is selected as the final radar distance since it is
more relevant for collision avoidance. To calculate the average
distance of a cluster, each member target is weighted by a
factor that includes its signal amplitude Ai, the distance value
di itself and the time difference between present time t1 and
time of the respective measurement ti. The equation for the
weighting factor is

w =

N∑
i=1

(c1Ai + c2/di + c3/(ti − t1 + 0.1)) (3)

where N is the number of data points in the respective
processing step, i.e. the number of data points recorded within
the time interval [t1−1 s, t1]. t1 is the time for which an overall
distance value is to be determined. A factor of 0.1 is added
to the denominator to shift the root. The coefficients ci were
selected empirically, and are listed in Table I. The ideas behind
those three factors are that signals with stronger amplitudes
have the highest probability to correspond to actual obstacles.
Further, closer distances imply a higher collision risk. And
last but not least, the most recent measurement is weighted
stronger than older ones to reduce the error introduced by
processing data in aggregations of 1 s in case the distance
changes considerably over this time interval.

IV. EVALUATION

A. Ground truth reference and metrics
The final radar distances were compared to a DGPS-based

ground truth in order to assess whether our data processing



Table I
COEFFICIENTS FOR THE WEIGHTING FACTOR OF THE AVERAGE CLUSTER

DISTANCE CALCULATION (SEE EQ. 3).

coefficient c1 c2 c3
value 1 1000 0.5

yields a valid distance.
To get a general overview of the data processing perfor-

mance across all data sets, obtaining one single evaluation
index per data set is beneficial. Therefore, the mean deviation
from ground truth for all processed distance values of a
specific maneuver was calculated, i.e.

|dfinal − dGPS| =
Nclustered∑
i=1

|dfinal,i − dGPS,i|
Nclustered

(4)

Here, Nclustered is the total number of distance values ob-
tained for a data set after filtering and clustering, dfinal,i the
i-th radar distance value resulting from data processing and
dGPS,i the DGPS based ground truth distance of the boat to
the quay wall at the time of the radar measurement resulting
in dfinal,i.

Besides matching the ground truth distance, another key
aspect of the data processing is to provide one single distance
value for each time step where a relevant obstacle is in the
FOV of the sensor. Selecting the parameters for filtering and
clustering too restrictively can result in a small number of
clusters. This implies large time intervals during which no
final distance value is obtained although there is an obstacle
nearby. This would render the processed data unusable for
collision risk estimation. Therefore, a second evaluation metric
introduced is the data point frequency,

νDP = Ndata points/∆t (5)

where ∆t is inserted in 1
10 seconds since this is the data

point frequency of the raw radar data.
Both evaluation metrics were compared for the raw dis-

tances, filtered distances and those resulting from data pro-
cessing.

B. Experimental setup

Our study utilized RMS 1000 FMWC radar sensors from
SICK, configured with a horizontal opening angle of ±10◦.
Their vertical opening angle is fixed to ±4◦. The operating
range is specified to be between 0.4 m and 100 m and the fre-
quency is modulated linearly between 61 GHz and 61.5 GHz.
One measurement cycle takes 100 ms, thus 10 measurements
are completed each second. The output which forms the basis
for our data processing consists of radar targets characterized
by a distance, radial velocity and signal amplitude. Given the
fact that 1D radar sensors are utilized, information on the
azimuth angle of the target is not available.

Besides rain, also wind speed influences the quality of the
radar data as an environmental factor since wind causes waves
and therefore increases the probability for detecting radar
reflections from the water surface. For this reason, wind speed

during sea trials was measured with a wind sensor mounted
on top of our research boat.

In order to calculate the ground truth, the quay wall’s
position was sourced from electronic nautical charts provided
by the Bundesamt für Seeschifffahrt und Hydrographie (BSH),
accessed through a SevenCs WMS chart server. The posi-
tion of the research boat is determined via differential GPS
measurements using a Saab R5 Navigation system. All radar
and position data were recorded with timestamps which is an
important precondition for assigning the correct ground truth
to each final radar distance value.

Distance offsets corresponding to the position differences
between the radar sensors and the DGPS were considered
when comparing dGPS and dfinal, as illustrated in Fig. 2.
Values were derived from the mechanical drawing of our
research boat.

Since both radar distance and DGPS position measurements
are subject to uncertainties, it is important to consider their
accuracy in order to interpret the ground truth deviations
in a meaningful way. The systematic uncertainty of a sin-
gle radar measurement is 0.1 m according to manufacturer
specifications. Additionally, the radar sensors were operated
with a horizontal opening angle of ±10◦. This results in an
uncertainty of ≈ 0.015d for a measured distance d. When the
sensor is facing a plane object oriented perpendicular to its
line of sight at a given distance d, the distance for a detection
at angle ±10◦ is ≈ 0.015d larger than the one at 0◦. Thus,
e.g. at a distance of 10 m, which is roughly the point where
the port side turn was performed during the maneuvers (see
Sect. IV-C), the distance uncertainty induced by the horizontal
opening angle of the sensor is ≈ 0.15m. If the sensor does not
face the quay wall perpendicularly, the uncertainty is larger.
In this case, the comparison to the DGPS-based ground truth
is not valid since the DGPS-based distance is by definition the
shortest way between boat and quay wall, i.e. the perpendicular
case.

In addition to uncertainties in the radar distance measure-
ments, those of the DGPS-based ship position have to be
considered. The DGPS data used by us provide error estimates
in longitude, ∆λ, and in latitude, ∆ϕ, for each position
measurement. The overall position error was calculated as√
(∆λ)2 + (∆ϕ)2. A maximum of ≈ 0.5m was found for

all data sets under consideration.
The overall uncertainty range is the sum of all aforemen-

tioned contributions and can therefore be estimated as 0.75 m.
An unknown factor in this consideration is the accuracy of the
quay wall position that was extracted from the BSH nautical
charts. The quay wall used for the evaluation more closely
resembles a green bank than a vertical wall. This implies an
additional unknown inaccuracy because the area of the quay
producing the strongest radar reflections is not necessarily the
same that is declared as shore line in the nautical chart.

Therefore, the uncertainty range around the quay wall
position was assumed to be ±2m, extending the value of
0.75 m that is induced by radar distance and DGPS position
uncertainties. A deviation of the final radar distances to ground



Table II
PROPERTIES OF THE DATA SETS USED FOR THE EVALUATION. FOR THE SOG AND WIND SPEED, THE MEAN VALUES AND STANDARD DEVIATIONS OF ALL
MEASUREMENTS TAKEN DURING THE RESPECTIVE MANEUVER ARE LISTED. THE BOTTOM LINE CHARACTERIZES THE BACKGROUND BEHIND THE QUAY

AT THE LOCATION WHERE THE RESPECTIVE MANEUVERS WHERE CARRIED OUT (SEE TEXT FOR FURTHER DETAILS).

data set no. 1 2 3 4 5 6 7 8 9 10
duration [s] 56 29 36 39 84 119 135 98 81 99
SOG [kt] 5.0±0.4 4.9±0.4 5.0±0.4 4.9±0.3 2.9±0.4 2.1±0.4 1.8±0.3 5.0±0.6 4.8±0.7 5.1±0.7

wind speed [kt] 10.5±1.5 10.6±2.4 9.2±1.5 9.6±1.4 4.6±2.3 4.8±2.5 4.7±1.3 4.3±3.7 6.3±3.6 4.4±4.3
weather conditions rain dry dry
background objects factory hall – factory hall

truth that is within this range of ±2m then implies a valid
radar distance.

C. Field Tests and data set

The radar data for the evaluation was recorded within the
physical testbed of the eMaritime Integrated Reference (eMIR)
Platform 2 [20]. To record radar data in the field, our research
vessel Sally was used. In order to evaluate the chosen method,
data from a radar sensor mounted at the bow of the research
boat (see Fig. 1) with line of sight parallel to the surge
direction and from a second sensor at the starboard side
with line of sight perpendicular to the surge direction was
considered. In total 10 maneuvers were carried out during
which the vessel approached the quay wall head-on, performed
a 90◦ port side turn and then moved parallel to the quay. The
data was recorded during two trial runs at Emden Harbor on
August 2nd, 2023 (data sets 1 to 4) and August 29th, 2023
(data sets 5 to 10). The weather conditions were considerably
worse for the test trial on August 2nd, characterized by rain
and an average wind speed of 10.0 m/s as compared to August
29th with dry weather and an average wind speed of 4.9 m/s.

Table II gives an overview of the maneuver durations,
average speed over ground and wind speed for all data sets.

The manuevers of data sets 1-4 and 8-10 were carried out at
the same location within our trial area, which is characterized
by a factory hall behind the quay. Maneuvers 8-10 were
carried out at a slightly different location with less prominent
background objects on the shore.

D. Filtering parameter selection

The results of the filtering and clustering processes strongly
depend on the selection of the respective parameters. Table III
gives an overview of the applied values. The considerations
leading to the selection of these values are described in the
following.

The parameters of the filtering algorithm were selected
based on a visual inspection of our data sets. The challenge
in selecting the filtering parameters is finding a trade-off be-
tween removing as many irrelevant detections as possible and
not dismissing a considerable amount of relevant detections.
The maritime environment further complicates this task since
measurements are subject to bad weather conditions like rain
or heavy wind that churns up the water surface causing more
wave reflections. Since always 10 measurements are processed

2https://emaritime.de/, accessed 2023-12-08

together, the first filtering parameter, i.e. the minimum number
of neighbouring points, was set to Nmin = 10. This can be in-
terpreted as the expectation that an obstacle causes on average
at least one signal per measurement cycle with an amplitude
> Amin. For the search radius r, several values in the range
[0.5, 2.5] have been tested and a value of 1.5 was selected
after sampling plots of the filtered data. This value showed
the best trade-off of filtering out as many unwanted signals as
possible while not causing gaps in relevant detections. Fig. 5
shows the effect of filtering with two different rsearch on an
example data set. Plotted are again radar distances over time
as in Fig. 4.

The upper limit set on radial velocity of radar targets during
filtering is selected based on the maximum speed over ground
of our research boat, which is 6 kt ≈ 3m/s. A threshold
of vrad,max = 4m/s was established in order to account
for possible measurement uncertainties or current and wind
influences additionally accelerating the vessel.

The signal amplitude threshold, Amin, aims at filtering out
scattered signals mostly reflected by the water surface or
raindrops. Based on visual inspections of our data, it was set
at a value of 10 dB.

E. Clustering parameter selection
The clustering algorithms employed in this study, sourced

from Python’s scikit-learn library, include DBSCAN, HDB-
SCAN, and OPTICS.

To limit the complexity of the clustering optimization
problem, min samples = min cluster size was set for
HDBSCAN and OPTICS. Both values were set to a value
of 10, based on the same assumption used in the filtering
parameter selection: An object relevant for collision avoidance
would likely cause at least one reflection per measurement
cycle, thus ≥ 10 reflections per second. The ϵ parameter was
variable in our evaluation, testing values ranging from 0.5
to 3.0 in steps of 0.5 to identify the optimal setting for our
application.

V. RESULTS AND DISCUSSION

A. Quantitative considerations
The evaluation metrics across all data sets and sensors are

displayed in Fig. 6. Results for the three clustering algorithms
are shown in different colors and varying ϵ values are denoted
by distinct markers.

As expected, the number of data points per unit time
(Figs. 6(a) and 6(b)) is reduced in both data processing



Fig. 5. Example of filtering results with different search distances r for the density-based criterion (see Sect. III-A). The top left panel shows the unfiltered
data set recorded by the radar sensor mounted on the right hand side of the research boat. The near-distance signals at timestamp 11:04:55 originate from
the water surface. Quay wall signals start at ∼ 30m and go down to ∼ 7m. When reducing the search distance from r = 1.5m to r = 1m, gaps become
evident. The larger distances at 11:05:02 originate from background objects behind the quay (see Fig. 2).

Table III
OVERVIEW OF THE VALUES SELECTED FOR FILTERING AND CLUSTERING PARAMETERS. ϵ WAS TREATED AS A FREE PARAMETER IN THE EVALUATION.

filtering clustering
Parameter Amin vrad,max rsearch Nmin min samples min cluster size(∗) ϵ

Value 10 dB 4 m/s 1.5 m 10 10 10 ∈ [0.5, 1, 1.5, 2, 2.5, 3]m

(*) only applicable to HDBSCAN and OPTICS

steps, i.e. filtering and clustering. It is less than one for the
final distance values which can be explained by the fact that
the quay wall is not in the FOV of both sensors during
the whole time throughout the maneuver. The front sensor
captures it only before the 90◦ turn and the side sensor only
afterwards. Assuming the turn occurs mid-maneuver, a value
of approximately 0.5/(0.1 s) is expected for both sensors,
which is marked by the black dashed line. It is approximately
reached for almost all algorithms and ϵ values, except for
DBSCAN and HDBSCAN with ϵ = 0.5 where Ndatapoints/∆t
is considerably smaller for the front sensor (Fig. 6(b)). In these
cases, time gaps in the final radar distances occur.

The second metric, namely the mean deviations from ground
truth for each maneuver, is plotted in Figs. 6(c) and 6(d). The
raw data (indicated by black empty square markers) exhibit
considerably larger mean deviations compared to the filtered
(empty black triangles) and final distances (colored markers).
Overall, differences between the three clustering algorithms
are minor. OPTICS with ϵ = 0.5 (denoted by red ’+’ markers)
tends to perform particularly well.

For the side sensor, all data sets show mean deviations
below 3 m from the ground truth (Fig. 6(c)). In Sect. IV-B,
a valid radar distance range of ±2m around the ground
truth was derived. The border of this range is marked by
the black dashed line in Figs. 6(c) and 6(d). The largest
deviations for the side sensor distances after data processing
exceed the derived uncertainty range by less than 1 m. As
mentioned before, the uncertainty of the quay wall position
cannot be quantified. Taking that into account, the ground truth
deviations for the side sensor suggest reasonable accuracy of
the processed radar distances for all three clustering algorithms
over the whole ϵ range. In contrast, for the front sensor, ground
truth deviations are greater than 4m for at least 2 data sets,
depending on the choice of clustering algorithm and ϵ (see
Fig. 6(d)). This might be attributed to background objects that

are reflecting radar signals better than the quay wall. Since
only the two largest clusters are considered in each processing
step, prominent background objects can lead to an elimination
of the quay wall signals in data processing. There is a factory
building behind the quay in the area where the maneuvers
of data sets 1-4 and 8-10 were carried out. In contrast, the
area where maneuvers 5-7 took place exhibits less background
objects. Ground truth deviations for the front sensor for the
latter maneuvers are within the margin of uncertainty of 2 m.
This supports the hypothesis that the larger deviations for
the other data sets are related to background objects. The
front radar sensor is mounted at the top of the vessel bow,
which makes its location higher than that of the side sensors.
Therefore, it is more prone to detecting background objects.

B. Qualitative considerations

A qualitative representation of final radar distances and
ground truth allows for a more detailed evaluation and the
identification of gaps that might result from unfavorable pa-
rameter settings. Figs. 7(a) to 7(c) show exemplary plots of
data set 1 for DBSCAN with ϵ = 1, HDBSCAN with ϵ = 1.5
and OPTICS with ϵ = 0.5 respectively. The ϵ values were
selected based on Figs. 6(a) to 6(d). The ground truth is
represented by a black solid line, which is the interpolated rep-
resentation of DGPS measurements taken with a frequency of
1 s−1. Around time stamp 11:01:53, near-distance reflections
from the water surface are observable which form clusters
for all three algorithms. However, for OPTICS (Fig. 7(c)) the
number of clusters related to this phenomenon is lower than
for HDBSCAN or DBSCAN. The reflections coincide with
the vessel’s 90◦ turn, suggesting that they might be caused by
water being churned up during the maneuver. This hypothesis
is supported by a controlled test where radar reflections from
the water surface could be induced while the vessel was
moored and waves were created with its propulsion system.



(a) νDP for side sensor. (b) νDP for front sensor.

(c) Ground truth deviations for side sensor. (d) Ground truth deviations for front sensor.

Fig. 6. Evaluation of distance values was conducted for sensors mounted at the port side ((a), (c)) and bow ((b),(d)) of the research boat, with data set
numbers on the x−axis (refer to Table II). Upper plots display data point frequency νDP in (0.1 s)−1, matching the sensor’s measurement interval. Lower
plots show mean deviations from ground truth distance. Values are plotted with symmetric log y−axis scaling and linear labels. Black dashed lines indicate
expected values. Black squares and triangles represent raw and filtered data, respectively. Results from DBSCAN, HDBSCAN, and OPTICS are in green,
blue, and red, with different markers for various ϵ values.

In order to assess the influence of the 6 DOF vessel motion
on the radar data, a second test was conducted where the
research boat was excited manually to roll angles up to 5◦.
This coincides with the maximum roll angles observed during
the maneuvers. No reflections from the water surface were
observed during the test, suggesting that the state of the water
surface has a greater influence on radar data than large roll
angles.

Two other things are worth mentioning in Figs. 7(a) to 7(c):
Firstly, for the front sensor, some final distances considerably
exceed the ground truth. These anomalies either originate from
background objects, as previously discussed, or from signals
detected at the edge of the FOV. Secondly, there is a temporary
increase of ground truth deviations in the moment of the 90◦

turn right before timestamp 11:04:54. This is caused by both
the front and side sensor seeing the quay wall on the edge of
their FOV during the turn. Thus, during the turn, there is a
short time interval during which none of the sensors measures
the correct distance.

C. Feasibility for online application

To assess collision risks with static obstacles during remote
control operations, data processing has to be applied in real-
time during sea trials. The following considerations are in-
tended to give a rough estimate on the feasibility for online
application. We evaluated the processing times for filtering and
clustering for data set 1, measuring the duration from inputting
raw data to obtaining final radar distances. Processing times

increased from DBSCAN to HDBSCAN and OPTICS, with
the maximum outlier found for HDBSCAN at 0.13 seconds.
In over 90% of cases, all three algorithms processed data in
under 0.05 seconds. The sensor’s measurement frequency is
10 Hz, thus the data processing is fast enough in a majority of
the cases to catch up with new sensor data becoming available.

VI. CONCLUSION

We presented an approach for 1D FMCW radar data pro-
cessing in the maritime environment using the clustering al-
gorithms DBSCAN, HDBSCAN, and OPTICS. The data pro-
cessing results were evaluated against a DGPS-based ground
truth using data recorded in a harbor area during sea trials.
This approach provides an assessment of the performance of
the algorithms under different environmental influences. All
three algorithms yielded good results, although care has to be
taken when choosing the ϵ parameter. OPTICS with ϵ = 0.5
showed the best performance when filtering out reflections
from the water surface. Remaining challenges include a better
handling of wave reflections and background objects. The
latter is related to the fact that only the two largest clusters are
considered in each processing step. Considering more clusters
increases the probability of capturing the closest obstacle
also in presence of background objects. At the same time,
this approach raises the probability that clusters formed by
disturbing signals like wave reflections are considered to be
obstacles.



(a) DBSCAN clustering, ϵ = 1.0 (b) HDBSCAN clustering, ϵ = 1.5 (c) OPTICS clustering, ϵ = 0.5

Fig. 7. Distance as a function of time for data set 2 using different clustering algorithms. The black solid line is the interpolated representation of the
DGPS-based ground truth distance. Grey markers represent the raw data. Data of both the front sensor (circle markers) and side sensor (cross markers) are
plotted. In the first part of the maneuver, the quay wall is in the FOV of the front sensor. Before 11:04:54, the the 90◦ port side turn takes place, after which
the quay wall is in the FOV of the starboard side sensor.

The distance values resulting from our data processing can
be used for a safer navigation in remote control operations of
surface vessels when distances are displayed in a graphical
user interface. Several sensors can be mounted around the
vessel to get an omni-directional overview of distances to
obstacles. The applicability to a different hardware setup, like
a larger vessel, remains to be tested. In general, obstacles have
to be of sufficient height, depending on the mounting position
of the sensor. An applications case could be detecting the
distance to doors and walls when entering a lock. Challenges
like reflections from the water surface are expected to be less
prominent if sensors are mounted in higher positions like it
could be realized for larger vessels.
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