
Carina Haupt

carina.haupt@dlr.de

@caha42(@scholar.social)

BASICS OF
SOFTWARE PUBLICATION

1

mailto:carina.haupt@dlr.de

Reproducibility and Reuse of Software Development
Why Should I Care?

So that it‘s like this…

…instead of this.

2

OVERVIEW ABOUT TYPICAL
GOOD PRACTICES

Example: Astronaut Analysis

• Astronauts Analysis is a data publication

consisting of:

• Data set

• Analysis script written in Python

using pandas and matplotlib

• Result plots

• Scenario:

• I created it on my own as part of my job.

• I want to make its reuse as easy as possible and

make it available under an open source license.

https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-research-software-publication/astronaut-analysis/-/tree/0-original-source
https://pandas.pydata.org/
https://matplotlib.org/

Make your code reusable

▪ Step 1: Put your code under version control

▪ Step 2: Make sure that your code is in a sharable state

▪ Step 3: Add essential documentation

▪ Step 4: Add a license

▪ Step 5: Release your code

5

Essential aspects

which you should

try to already

address for

“internal” software!

VERSION CONTROL

Step 1: Put Your Code Under Version Control
Where Should I Store My Code?

Minimum: Use a local Git

repository + backup

Recommended: Use a code

collaboration platform

Step 1: Put Your Code Under Version Control
What Belongs in the Repository?

• Everything to make a usable version of your code such as:

• Source code, documentation, build scripts, test cases, configuration files, input data, …

• Avoid adding generated files such as:

• Third-party libraries, generated binaries, ...

• How to handle large (data) files?

• Available could be git-lfs, git-annex, Datalad or your research data management

publication repository

• Please note:

• Details depend on the “product” that you manage in the Git repository

• .gitignore files helps you to control what goes into your repository. See also

https://gitignore.io/ for templates.

https://git-lfs.github.com/
https://git-annex.branchable.com/
http://handbook.datalad.org/en/latest/intro/executive_summary.html
https://gitignore.io/

SHARABLE STATE

Step 2: Make Sure That Your Code Is in a Sharable State
General Hints

• Make sure others can run your code:

• No dependencies on internal resources (servers, storage, licensed software, ...)

• No absolute paths

• Clearly state dependencies + provide required build / installation scripts (e.g.: pip-tools,

poetry) => crucial aspect of reproducibility

• Organize files in a suitable directory structure (e.g.: Python Application

Layouts, Good Data Practices)

• Do not share sensitive data such as passwords, user accounts, SSH keys,

internal IP addresses, etc. (e.g.: gitleaks)

• Orientate on standards of your domain / community

https://pypi.org/project/pip-tools/
https://python-poetry.org/
https://realpython.com/python-application-layouts/
https://datadryad.org/stash/best_practices
https://github.com/gitleaks/gitleaks

Step 2: Make Sure That Your Code Is in a Sharable State
Improve Your Code Style and Structure

• Strive for understandable code:

• Apply a code style – consistency is more important than convenience (e.g.: PEP8)

• Use a consistent and light code layout

• Structure your code in suitable "building blocks" such as functions

• Use specific and appropriate names for all artifacts

• Provide sufficient level of code comments

• Read code of others for inspiration

• Try to do pair programming and reviews (even if it is with your rubber duck)

https://www.python.org/dev/peps/pep-0008/
https://en.wikipedia.org/wiki/Rubber_duck_debugging

Step 2: Make Sure That Your Code Is in a Sharable State
Think About Testing and Automation

• Small tests are done easily but already show effect:

• Code linters and checkers help to find poor code snippets and help to enforce coding

styles (e.g.: flake8, black)

• Automated tests work as an executable documentation (e.g.: pytest)

• Tests offer a good starting point for your automation efforts!

https://flake8.pycqa.org/
https://github.com/ambv/black
https://docs.pytest.org/

DOCUMENTATION

Step 3: Add Documentation

Typical Structure:

• Software name

• Purpose

• Install

• Usage

• Contributing

• Citation Hint

• License

Step 3: Add Documentation
General Hints

• Mind your target groups:

• Typical perspectives: Users, contributors

• Users: Installation / usage instructions, tutorials, support channels, …

• Contributors: Contribution guidelines, technical overview, …

• Think about adding typical documentation files such as:

• README (project front page), CONTRIBUTING (contributions guidelines),

CODE_OF_CONDUCT (communication rules), LICENSE (license information),

CHANGELOG (major changes), CITATION (citation metadata)

• Please note:

• Markdown or another markup language is quite often used to write documentation

• Usually, you will need additional documentation, for example, in a docs directory

(e.g.: Sphinx, MkDocs)

https://commonmark.org/help/
https://www.sphinx-doc.org/
https://www.mkdocs.org/

SOFTWARE LICENSING

Copyright Basics

• Copyright

• Software is protected by copyright.

• Copyright protects the expression of an idea.

• Copyright grants exclusive rights to the copyright holder.

• Who is the copyright holder of a software?

• All contributors are considered as copyright holders

and jointly exercise the rights granted by copyright.

• A company paying an employed developer

obtains most of the exclusive rights.

Software
Licenses

Proprietary
Free and

Open
Source

Copyleft Permissive

Public
Domain

Software Licenses

Licenses are

infective!

There is also the

problem of license

incompatibilities!

Make sure that

every code that

you use is

covered by a

license!

Combining Modules under Different Licenses

Take care when

combining code

under different

licenses!

https://en.wikipedia.org/wiki/License_compatibility#/media/File:Software-license-compatiblity-graph.svg

Minimal License Checklist

1. Choose a license

• Consider strategical implications

• Comply with licenses of third-party dependencies

2. Ask your boss for permission

3. Add copyright holder and license information

• Please note:

• DLR Open Source Brochure (German only) provides further

detailed information.

Find out about

your

organizational

processes!

Ask for legal

advice if you

are unsure!

https://www.dlr.de/de/medien/publikationen/broschueren/opensource-software_dlr_2022.pdf

Example: Astronaut Analysis
Choose a License

• After checking the recommendation from https://choosealicense.com/, I want

to use the MIT License.

• But do the licenses of my dependencies fit?

• But what about the non-code artifacts?

• Final copyright and license decisions:

• Copyright holder: German Aerospace Center

• Source code: MIT

• Data set: CC0-1.0

• Docs and plots: CC-BY-4.0

• Insignificant files: CC0-1.0

My boss is fine

with it ☺ But

how do I

annotate this

information

“correctly”?

https://choosealicense.com/

Example: Astronaut Analysis
Add Copyright Holder and License Information

• Goal: Add license file(s) and note copyright holder(s)

• REUSE: Make it easy to determine what license a file is

licensed under and who owns the copyright!

• Heavily builds on SPDX and provides the reuse helper tool

• For more information: Tutorial, FAQ, Specification

https://spdx.dev/
https://git.fsfe.org/reuse/tool
https://reuse.software/tutorial/
https://reuse.software/faq/
https://reuse.software/spec/

RELEASE

Release basics

• A release is a specific working software version

• The release number uniquely identifies the release

(e.g., 1.0.1 or 2022-03-17)

• A user uses the release package to install and use the released software:

• Contains code + documentation

• Simplest form: snapshot of your source code repository packaged as Zip file

• Important changes between releases are documented in a changelog

https://semver.org/
https://calver.org/
https://keepachangelog.com/

What do I have to do?

1. Prepare your code for release

a) Define the release number

b) Update the documentation and citation metadata

2. Check your code

3. Publish and archive the release

a) Mark the release in the source code repository using a tag

b) Create the release package

c) Archive the release package in the publication repository

Astronaut Analysis Release 1.0.0

License

information

for code, data,

results

properly

annotated via

REUSE

Release

1.0.0 marked

as Git tag in

the repository

https://reuse.software/

Summary

▪ Step 1: Put your code under version control

▪ Step 2: Make sure that your code is in a sharable state

▪ Step 3: Add essential documentation

▪ Step 4: Add a license

▪ Step 5: Release your code

A new feature has been added

to the application!

Source: DLR, Philae landing on comet 67

P/Churyumov-Gerasimenko, CC BY 3.0

Thank you!

What are your Questions?

Email: carina.haupt@dlr.de

Mastodon: https://scholar.social/@caha42

https://creativecommons.org/licenses/by/3.0/

Impressum

▪ Content created based on DLR/HIFIS training “Foundations of Research

Software Publication” and example project “Astronaut Analysis”

▪ https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-

research-software-publication/workshop-materials

▪ https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-

research-software-publication/astronaut-analysis

https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-research-software-publication/workshop-materials
https://codebase.helmholtz.cloud/hifis/software/education/hifis-workshops/foundations-of-research-software-publication/astronaut-analysis

Copyright and License Information

All content is © German Aerospace Center and licensed under Attribution 4.0 International (CC-BY-4.0)

with the following exceptions:

• DLR logo, slide layout, © German Aerospace Center. All rights reserved.

• “Open Source vs. Closed Source”, slide 2, @ Patrick Hochstenbach. CC0.

• Copyright logo, slide 17, Public Domain.

• License compatibility, slide 19, image by MikkoVälimäki, public domain, source:

https://commons.wikimedia.org/wiki/File:Software-license-compatiblity-graph.svg

• REUSE SOFTWARE logo, slide 22, © 2019 Free Software Foundation Europe. CC-BY-SA-4.0.

• Philae landing on comet 67 P/Churyumov-Gerasimenko, slide 28, © German Aerospace Center. CC-BY-3.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/choose/zero/
https://commons.wikimedia.org/wiki/File:Copyright.svg
https://creativecommons.org/share-your-work/public-domain/pdm/
https://commons.wikimedia.org/wiki/File:Software-license-compatiblity-graph.svg
https://github.com/fsfe/reuse-website/blob/main/site/static/img/reuse.png
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/3.0/

	Basics of �software publication
	Reproducibility and Reuse of Software Development �Why Should I Care?
	Overview about typical Good practices
	Example: Astronaut Analysis
	Make your code reusable�
	Version Control
	Step 1: Put Your Code Under Version Control�Where Should I Store My Code?
	Step 1: Put Your Code Under Version Control�What Belongs in the Repository?
	Sharable State
	Step 2: Make Sure That Your Code Is in a Sharable State General Hints
	Step 2: Make Sure That Your Code Is in a Sharable State Improve Your Code Style and Structure
	Step 2: Make Sure That Your Code Is in a Sharable State Think About Testing and Automation
	Documentation
	Step 3: Add Documentation
	Step 3: Add Documentation�General Hints
	Software Licensing
	Copyright Basics
	Software Licenses
	Combining Modules under Different Licenses
	Minimal License Checklist
	Example: Astronaut Analysis�Choose a License
	Example: Astronaut Analysis�Add Copyright Holder and License Information
	RELEASE
	Release basics
	What do I have to do?
	Astronaut Analysis Release 1.0.0
	Summary
	Slide 28
	Impressum
	Copyright and License Information

