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Using Pseudotime Marching for
the Solution of Harmonic Balance
Problems
The aim of this paper is to study approaches to implement implicit pseudotime marching for
the harmonic balance system in the frequency domain. We first give a motivation for using
pseudotime marching as a solution technique. It turns out that, when the discretization
errors of the pseudospectral time derivative and the pseudotime derivative are neglected,
the harmonic balance solution converges to a stable periodic flow, provided that the initial
solution is sufficiently close to a stable periodic solution. This motivates the choice of a
robust pseudotime marching approach, e.g., an implicit solver based on backward Euler
integration. This approach requires the Jacobian of the harmonic balance residual. As for
the steady problem, the Jacobian can be approximated without changing the final solution
as long as the solver converges. Therefore, a central question is which simplifications are
appropriate in terms of the overall efficiency and robustness of the solver.

As has been shown in the literature, the spectral time-derivative operator should be
taken into account in the implicit system. On the other hand, the linearization of the
flow residual can be simplified to a certain extent, especially if the system is solved in
the frequency domain. In this paper, we show that, up to terms which scale with the
amplitude of the disturbances, the linear system matrix is the sum of a scalar diagonal
and a block diagonal matrix with identical blocks for each harmonic. The deviation from
this structure is due to to the nonlinearity of the unsteady flow problem. We show that when
the unsteadiness is small, the nonlinear coupling terms can be neglected in the implicit
solver and the resulting special matrix structure can be exploited to massively speed up
the solver. In contrast, when a strong disturbance is simulated, this simplification can lead
to significant losses in robustness. To illustrate our findings we apply the implemented
methods to predict the flow response to a disturbance prescribed at the inlet of a transonic
compressor. When the disturbance amplitude is increased, a strong oscillation is induced,
and the harmonic balance solver converges only when the nonlinear coupling between the
harmonics is taken into account.

Keywords: unsteady flows, CFD methods, aeroelasticity, harmonic balance, pseudotime
marching

1 Introduction
As CPU costs of predicting nonlinear unsteady aerodynamics in

turbomachinery are becoming more and more affordable, complex
flow phenomena that are not yet fully understood can now be an-
alyzed using CFD. For a number of unsteady problems such as
noise transmission or the onset of flutter, nonlinear flow physics
may be relevant for the modeling of the background flow but not for
the unsteady phenomena itself. However, there are highly relevant
flow phenomena for which nonlinear mechanisms are critical for
the unsteady dynamics themselves. These include, among others,
the following:

• rotor-stator interactions and their impact on aerodynamic per-
formance,

• asymmetric inflows and the influence on the aerodynamic per-
formance,

• forced response due to rotor-stator interactions,

• flutter-induced limit cycles,

• self-induced flow instabilities,

• nonsynchronous vibrations,

1Corresponding Author.
January 4, 2025

• rotating stall.
The impact of these effects on performance, operating ranges or
high-cycle fatigue of a turbomachinery component can be severe.
The aim of this work is to find an appropriate CFD method which
is, on the one hand, sufficiently fast and robust to be run in an
industrial design loop and, on the other, taking relevant nonlinear
effects into account. We focus on periodic unsteady phenomena,
a category that includes many unsteady phenomena relevant to
turbomachinery applications.

The harmonic balance (HB) technique which, in the turboma-
chinery CFD community, was introduced over 20 years ago by
Hall et al. [1] is a natural choice, as it has been demonstrated
by many researchers to considerably reduce CPU times for time-
periodic problems. In this work, we address the question of how to
implement efficient and robust solution methods for the HB system.

Whereas for the simulation of nonlinear electric circuits [2,3]
and structural dynamics [4], Newton methods are quite common
for the solution of the HB system, nearly all HB solvers in CFD
use pseudotime marching thereby generalizing the common ap-
proach for steady solvers [1]. The pseudotime term was added to
the harmonic balance equations in a rather ad-hoc manner with-
out much justification other than the observation that it made the
HB system resemble the steady pseudotime equation. The main
difference, it seemed, were the time-derivative terms which many
authors regarded as “HB source terms”.

Woodgate and Badcock [5] presented an implicit pseudotime
solver for the harmonic balance equations. The solver as well as the
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implicit linear system were formulated in the time-domain, so that
the linearization of the time-derivative was the only term that cou-
pled the sampling points. Numerical experiments showed that these
off-diagonal terms could not be dropped from the harmonic balance
Jacobian, with significant implications for the memory require-
ments of the method. Su and Yuan [6] also implemented a fully
implicit harmonic balance solver. For a classical LU-SGS they
observed reduced robustness and attributed the numerical stability
issues to the loss of diagonal dominance in the time-domain for-
mulation due to the addition of the spectral time-derivative. As did
Woodgate and Badcock, they proposed to implement a precondi-
tioned Krylov method as approximate linear solver. Sicot et al. [7]
reported convergence issues when LU-SSOR was applied to the
fully implicit HB system. They suggested the use of the so-called
Block-Jacobi Successive Overrelaxation method. There are suc-
cessful attempts in the literature to analyze the HB systems by
means of its spectrum and draw conclusion about how to develop
implicit methods. For instance, Thomas et al. [8] showed that ne-
glecting the so-called HB source term in the linear system will re-
sult in an unstable system for very short and very long wavelengths
which explained the behavior observed in previous studies. The
authors then showed that a two-step approximate factorization, in
which the system is temporally (first step) or spatially (second step)
decoupled results in an unconditionally stable iterative scheme.

Summarizing, all attempts to generalize implicit steady methods
by neglecting the time-derivative in the implicit linear systems
were reported to reduce the computational effort while at the same
time causing considerable instabilities. In this paper, we revisit
the problem of formulating implicit formulations for pseudotime
marching solvers of the HB system. The main difference with
the work cited above is that the HB solver here is formulated in
the frequency domain. One of the goals of this work is to show
that in most practical situations one can drop the off-diagonal terms
which, in contrast to the time-domain solvers, couple the harmonics
and, as is shown below, scale with the nonlinearity of the problem.
This is in stark contrast with the time-domain systems, for which
the work by Thomas et al. [8] showed that even for infinitesimal
amplitudes, dropping the off-diagonal terms (that couple the time
instants) may result in unstable pseudotime dynamics.

To support our findings, we study a transonic compressor test
case where, near the numerical stall margin, unsteady disturbances
are prescribed at the inlet. By scaling the disturbances we are
able to artificially increase the unsteady amplitudes. The results
illustrate that dropping the coupling between the harmonics comes
at the expense of robustness. In contrast to the decoupling of time
instants, however, the decoupling of harmonics is found to result
in a severe loss of stability only in the case of extremely high
amplitudes.

Furthermore, we give in this paper, for the first time in the open
literature, a concise mathematical argument why the pseudo-time
approach for the harmonic balance method should, at least in the
limit of many harmonics and small pseudotime steps, give similar
results as a time-domain URANS solver even for strongly nonlinear
dynamics.

2 Harmonic Balance
The harmonic balance method which is investigated in this pa-

per is part of the flow solver TRACE [9]. TRACE has been de-
veloped for more than three decades by DLR in close cooperation
with MTU Aero Engines. Originally developed as a finite-volume
based code for the compressible Reynolds-Averaged Navier-Stokes
(RANS) equations, the flow solver has in recent years been ex-
tended to include modules for simulating combustion [10], adjoint
based optimization [11], and discontinuous Galerkin methods [12].
In the present work we use the finite-volume method to discretize
the compressible RANS equations with Roe’s upwind scheme [13],
MUSCL extrapolation [14], and a van Albada-type limiter [15].
For the simulation results presented below, Wilcox’ 𝑘-𝜔 turbu-
lence model [16] with the Kato-Launder modification [17] was

used.
The harmonic balance solver employs the alternating frequency

time-domain (AFT) approach, i.e., we compute the spectral time-
derivative in the frequency domain whereas the flow residuals are
evaluated for a set of sampling points at which the flow is recon-
structed with an inverse discrete Fourier transform, the matrix of
which will be denoted by 𝐹inv. Denoting by 𝐾 the number of
higher harmonics and 𝑁 ≥ 2𝐾 + 1 the number of sampling points
𝑡𝑛, 𝑛 = 0, ..., 𝑁 − 1, the solution at the 𝑛-th sampling point is thus

𝑞𝑛 = <
𝐾∑︂
𝑘=0

ˆ︁𝑞𝑘𝑒i𝜔𝑘 𝑡𝑛 = 𝐹inv
𝑛𝑘

ˆ︁𝑞𝑘 . (1)

In this paper, we assume that the frequencies are 𝜔𝑘 = 𝑘𝜔, for
𝑘 = 0, ..., 𝐾 and that the sampling points are uniformly distributed
over the period,

𝑡𝑛 =
𝑛

𝑁
· Δ𝑡, Δ𝑡 = 2𝜋

𝜔

The harmonic balance system in the frequency domain is thus

𝑅HB (ˆ︁𝑞) = 0, (2)

where the harmonic balance residual 𝑅HB is the vector whose 𝑘-th
component is

𝑅HB
𝑘

= i𝑘𝜔ˆ︁𝑞𝑘 + ̂︄𝑅(𝑞)𝑘 , 𝑞 = 𝐹invˆ︁𝑞. (3)

The Fourier coefficients of the flow residuals are computed using
the discrete Fourier transform, the corresponding matrix of which
is denoted by 𝐹.

The number of sampling points 𝑁 is set to 𝑁 = (𝑛hh − 1)𝐾 + 1
with 𝐾 denoting the highest harmonic. 𝑛hh, the number of sam-
pling points per period for the highest harmonic. 𝑛hh = 3 is the
lower limit for the number of sampling points and corresponds to
the Nyquist criterion. 𝑛hh = 4 is the minimum value to guarantee
that taking products of two harmonics does not result in a mode
which is indistinguishable from some original harmonic, i.e., alias-
ing [18]. For the simulations below 𝑛hh = 5 has been used which
suppresses aliasing due to cubic nonlinearities and which results in
𝑁 = 4𝐾 +1 sampling points. Note that in the case of oversampling,
i.e., if 𝑁 > 2𝐾 + 1, 𝐹 is the pseudoinverse of 𝐹inv.

For applications with multiple fundamental frequencies, the
solver has been extended based on the so-called harmonic set
approach [19] and multidimensional-time harmonic balance [20].
These extensions, however, are outside the scope of this work.
The nonreflecting boundary conditions as well as the blade row
coupling method can be found in [21].

3 Pseudotime Solver
The pseudotime marching technique consists in the integration

of the ordinary differential equation system

𝜕ˆ︁𝑞𝑘
𝜕𝜏

+ i𝜔𝑘ˆ︁𝑞𝑘 + ̂︄𝑅(𝑞)𝑘 = 0, 𝑘 = 0, ..., 𝐾. (4)

Note that, since 𝑅 is nonlinear, the 𝑘-th harmonic of the residual 𝑅
will, in general, depend on all harmonics of 𝑞 which implies that
Eq. (4) is a coupled system. Apply the inverse Fourier transform
𝐹inv to Eq. (4) to obtain

𝜕𝑞𝑛

𝜕𝜏
+ (𝐷𝑡𝑞)𝑛 + (Π𝐾 𝑅(𝑞))𝑛 = 0, 𝑛 = 0, ..., 𝑁 − 1. (5)

Here, 𝐷𝑡 is the spectral time derivative

𝐷𝑡 = 𝐹
inv

⎛⎜⎜⎜⎜⎝
0 0 · · · 0
0 i𝜔 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · i𝐾𝜔

⎞⎟⎟⎟⎟⎠
𝐹, (6)
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Fig. 1 Integral curve of the vector field corresponding to the
sum of pseudotime-time and time derivatives.

usually encountered in time-domain formulations of harmonic bal-
ance solvers (e.g. [1]). The operator Π𝐾 represents the modal
filter onto the solution space, i.e., the flow solutions along the 𝑁
sampling points which can be reconstructed from up to 𝐾 higher
harmonics,

Π𝐾 = 𝐹inv𝐹. (7)

If no oversampling is used, then 𝑁 = 2𝐾 +1 and Π𝐾 is the identity
operator, so Eq. (5) then takes exactly the form of the pseudo-
time marching of the time-domain harmonic balance (or “time-
spectral”) solvers, cf. [1,8].

It follows that the pseudotime marching harmonic balance
solvers, regardless of whether they are modal or nodal in time,
implement a discretization of the partial differential equation

𝜕𝑞

𝜕𝜏
+ 𝜕𝑞
𝜕𝑡

+ 𝑅(𝑡, 𝑞) = 0, 𝑞(0, 𝑡) = 𝑞0 (𝑡) (8)

where 𝑞(𝜏, 𝑡) represents a spatially discretized solution which is
Δ𝑡-periodic in 𝑡. 𝑞0 (𝑡) is the initial solution used to start the
pseudotime solver, typically a solution to a steady problem. We
have added the time-dependence of 𝑅 as we are primarily interested
in non-autonomous problems, i.e., the unsteadiness is due to a
relative rotation, a blade vibration or an unsteady inhomogeneous
boundary condition. Now, Eq. (8) can be viewed as a system of
transport equations in the 𝜏-𝑡-plane whose characteristic curves are
given by 𝑡 = 𝑡0 + 𝜏. Figure 1 depicts such a line in the rectangular
domain

{(𝜏, 𝑡) | 𝜏 ≥ 0, 0 ≤ 𝑡 ≤ Δ𝑡}

with periodic boundaries in the 𝑡-direction. The characteristic
lines could also be depicted as helices inclined by 45◦ against the
𝜏 = const planes if the 𝑡-periodic functions along the rectangular
domain above are thought of as functions along a semi-cylinder.
The following arguments, however, are simplified if one imagines
the solution space as Δ𝑡-periodic functions in 𝑡 defined on the
whole half-plane 𝜏 ≥ 0.

Consider a solution 𝑞(𝜏, 𝑡) to the semi-discrete system in Eq. (8),(︃
𝜕

𝜕𝜏
+ 𝜕

𝜕𝑡

)︃
𝑞(𝜏, 𝑡) + 𝑅(𝑡, 𝑞(𝜏, 𝑡)) = 0, 𝑞(0, 𝑡) = 𝑞0 (𝑡). (9)

For 𝑡0 ∈ R, define a single time-parameter function by

𝑞𝑡0 (𝑡) = 𝑞(𝑡 − 𝑡0, 𝑡), 𝑡 ≥ 𝑡0

This is the restriction of the solution to a characteristic line. It is
straightforward to check that

𝜕𝑞𝑡0

𝜕𝑡

|︁|︁|︁
𝑡
=
𝜕𝑞

𝜕𝜏

|︁|︁|︁
(𝑡−𝑡0 ,𝑡)

+ 𝜕𝑞
𝜕𝑡

|︁|︁|︁
(𝑡−𝑡0 ,𝑡)

=

(︃
𝜕

𝜕𝜏
+ 𝜕

𝜕𝑡

)︃
𝑞(𝑡 − 𝑡0, 𝑡)

= −𝑅(𝑡, 𝑞(𝑡 − 𝑡0, 𝑡))

= −𝑅(𝑡, 𝑞𝑡0 (𝑡)),

so 𝑞𝑡0 is the solution to the semi-discrete URANS equation,

𝜕𝑞𝑡0

𝜕𝑡
+ 𝑅(𝑡, 𝑞𝑡0 (𝑡)) = 0, (10)

with initial value given by the solution value of the initial solution
𝑞0 at 𝑡0 since

𝑞𝑡0 (𝑡0) = 𝑞(0, 𝑡0) = 𝑞0 (𝑡0).

Hence, the harmonic balance solution along the characteristics
𝑡 = 𝑡0 + 𝜏 corresponds to a solution of the semi-discrete URANS
equations. Therefore, if for the given initial value, the solutions of
the URANS equations approach a Δ𝑡-periodic solution, 𝑞∗ (𝑡) say,
then the harmonic balance solution satisfies

‖𝑞(𝑡 − 𝑡0, 𝑡) − 𝑞∗ (𝑡)‖ = ‖𝑞𝑡0 (𝑡) − 𝑞∗ (𝑡)‖ −→
𝑡→∞

0.

The harmonic balance solution will therefore approach 𝑞∗ for
𝜏 → ∞. Conversely, if the harmonic balance solution approaches a
time-periodic flow 𝑞∗, then so do the solutions of the semi-discrete
URANS system for all initial values 𝑞0 (𝑡0), 0 ≤ 𝑡0 < Δ𝑡. Summa-
rizing, if we neglect the discretization errors of the pseudotime and
time derivatives, then the harmonic balance solution converges to
a limit cycle for 𝜏 → ∞ if and only if the URANS solutions do for
𝑡 → ∞, provided both systems are initialized consistently.

The above argument requires the pseudotime and time deriva-
tives to be exact, but nevertheless suggests that if the discretization
errors are small (e.g. using small pseudo-time steps and large num-
bers of harmonics), it should be possible to compute exactly those
periodic solutions that can be simulated with a standard URANS
approach. It also points to the fact that if the time-integration
method does not approach a periodic solution (e.g., in the case of
quasi-periodicity or chaos), a similar behavior should be expected
for the harmonic balance solution along the lines 𝑡 = 𝑡0 + 𝜏. More-
over, we will see below, that simplifying assumptions during the
𝜏-discretization can indeed cause divergence of the HB solver and
may severely limit the pseudotime step size.

The analogy above is a sound heuristic argument why pseudo-
time marching of the harmonic balance equations should be ex-
pected to reproduce periodic URANS solutions even in the case of
strong nonlinearities.

It should be emphasized, however, that our argument assumes
that the flow residual 𝑅 is time-local and all the ingredients to com-
pute it, in particular boundary conditions, are consistent for the
semi-discrete URANS equations and the pseudotime HB solver.
The argument above therefore suggests that a major difference be-
tween the pseudotime dynamics of the harmonic balance solver
and the transients of the time-integration results can be due to dif-
ferent formulations of inlet and outlet boundary conditions. These
are usually nonlocal in time, i.e., the residual 𝑅 is not just a func-
tion of 𝑡 and the current flow 𝑞(𝑡) but also involves the solutions
at different pseudotime and/or time instants (𝜏′, 𝑡 ′), 𝜏′ ≤ 𝜏. In
our experience, the implementation of robust nonreflecting spec-
tral boundary conditions is a rather intricate task and the measures
to formulate a stable method are quite different for time integration
schemes [22] than for harmonic balance methods [23]. Similar
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considerations apply to the periodic phase-lag boundary condi-
tions which are nonlocal in time and require special treatment for
the time integration solver to prevent robustness issues [24].

The pseudotime solver discussed in this paper is formulated in
the frequency domain and employs, like the steady solver, the Euler
backward scheme to solve Eq. (4). Henceˆ︁𝑞 (𝑚+1) = ˆ︁𝑞 (𝑚) + 𝛼Δˆ︁𝑞 (𝑚) (11)

where Δˆ︁𝑞 (𝑚) is an approximate solution to the linear equation(︃
1
Δ𝜏

+ 𝜕𝑅
HB

𝜕ˆ︁𝑞 |︁|︁|︁ˆ︁𝑞 (𝑚)

)︃
Δˆ︁𝑞 (𝑚) = −𝑅HB (ˆ︁𝑞 (𝑚) ). (12)

To increase the robustness of the method, a relaxation factor of
𝛼 < 1 can be applied to the approximate solution of this system.
The turbulence model equations are solved in a loosely coupled
way, so there are five coupled conservation equations. The total
number of real degrees of freedom of the harmonic balance system
for the flow equations is thus

(2𝐾 + 1) × 5 × #{finite volume cells}.

Each higher harmonic consists of the real and imaginary compo-
nents. With the mapping between real and imaginary components

Table 1 Real components of the vector of all harmonics

frequency 0 𝜔1 𝜔2 𝜔3 ...
real coefficient index 0 1 2 3 4 5 6 ...

and harmonic indices outlined in Table 1, the Jacobian in Eqn.(12)
has the form

𝜕𝑅HB

𝜕ˆ︁𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
0 0 −𝜔 · · · 0 0
0 +𝜔 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · 0 −𝐾𝜔
0 0 0 · · · +𝐾𝜔 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(13)

To stabilize the harmonic balance solver, a temporal damping is
introduced by replacing the angular frequency 𝜔 with

�̃� = 𝜔(1 − i𝜀)

in the definition of the spectral time derivative. 𝜀 is typically set to
a value in the range of [0, 10−2]. The simulation results below were
obtained with 𝜀 = 10−3. On the left-hand side this modification
means to substitute the 𝑘-th diagonal block in the first matrix of
Eq. (13) with

𝑘

(︃
𝜀𝜔 −𝜔
+𝜔 𝜀𝜔

)︃
.

As is common practice the local pseudotime step size is com-
puted from a global CFL number according to

𝛿𝜏𝑘 =
CFL

𝜆max + 𝜔𝑘
,

where 𝜆max is an estimate of the maximal eigenvalue of the spatial
discretization which, in turn, is computed from cell sizes and local
flow conditions. Note that, slightly deviating from Eq. (12), the
pseudotime step depends on the harmonic.

3.1 Computation of the Harmonic Balance System Jaco-
bian. The definition in (1) can be rewritten as a matrix multipli-
cation,

𝑞𝑛 = 𝐹inv
𝑛𝑘

ˆ︁𝑞𝑘 (14)

where ˆ︁𝑞 is to be considered a real block vector (using the above
correspondence), so 𝐹inv

𝑛𝑘
is a real 1 × 2 submatrix for 𝑘 > 0.

Similarly, 𝐹𝑘𝑛 is a 2 × 1 submatrix for 𝑘 > 0. In terms of 𝐹 and
𝐹inv, the second summand of (13) is given by

𝜕

𝜕ˆ︁𝑞 (︂
𝐹𝑅(𝐹invˆ︁𝑞))︂ = 𝐹

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑅
𝜕𝑞

|︁|︁|︁
𝑞0

0 · · · 0

0 𝜕𝑅
𝜕𝑞

|︁|︁|︁
𝑞1

· · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 𝜕𝑅
𝜕𝑞

|︁|︁|︁
𝑞𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐹inv

(15)
With this formula, one can readily compute the flow residual Ja-
cobians during the sampling loop that is needed for the right-hand
side of Eq. (12). Using 𝐹 and 𝐹inv, one computes the entries in
the second matrix of Eq. (13) as

𝜕̂︄𝑅(𝑞)𝑘
𝜕ˆ︁𝑞𝑘′ =

𝑁−1∑︂
𝑛=0

𝐹𝑘𝑛
𝜕𝑅

𝜕𝑞

|︁|︁|︁
𝑞𝑛
𝐹inv
𝑛𝑘′ . (16)

for all harmonic indices 𝑘 and 𝑘 ′. Each entry is a sparse matrix
with a non-zero pattern that depends on the stencil necessary for
the residual Jacobian. As the latter is approximated by the Jacobian
of a first order accurate spatial scheme, the non-zero pattern is that
of neighboring cells.

A naive way to implement the computation of each summand
in Eq. (16) amounts to an effort that grows quadratically with the
number of higher harmonics 𝐾 . Since 𝑁 = 𝑛hh𝐾 + 1, the compu-
tational effort for the computation of the complete left-hand side
would thus grow with 𝐾3. We can, however, exploit the fact that
the multiplication with the residual Jacobian corresponds, in the
frequency domain, to a convolution operator and can therefore be
represented by a Toeplitz matrix if standard complex Fourier coef-
ficients are used [25]. A matrix is called Toeplitz, if its diagonals
are constant, i.e., its entries 𝑎𝑖 𝑗 only depend on 𝑖 − 𝑗 . It is called
Hankel, if its anti-diagonals are constant, i.e., if its entries only de-
pend on 𝑖 + 𝑗 . In our representation the 𝑘-th harmonic corresponds
to both the 𝑘-th and −𝑘-th standard complex Fourier coefficient.
Therefore, the flow residual Jacobian in the frequency domain is a
sum of a Toeplitz and a Hankel matrix. To see this, observe that
the Fourier matrix entries in Eq. (16) satisfy

𝐹𝑘𝑛𝐹
inv
𝑛𝑘′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2𝑁

(︃
𝑒−2𝜋i 𝑛(𝑘−𝑘

′)
𝑁 + 𝑒−2𝜋i 𝑛(𝑘+𝑘

′)
𝑁 𝒞

)︃
, if 𝑘 = 0,

1
𝑁

(︃
𝑒−2𝜋i 𝑛(𝑘−𝑘

′)
𝑁 + 𝑒−2𝜋i 𝑛(𝑘+𝑘

′)
𝑁 𝒞

)︃
, if 𝑘 > 0.

(17)
Here, a complex number represents the complex multiplication
with that number whereas 𝒞 represents complex conjugation 𝑧 ↦→
𝑧, the real representation of which is the matrix

𝒞 =

(︃
1 0
0 −1

)︃
.

It follows that the matrix in Eq. (13) can be computed from the
complex Fourier coefficients of the residual Jacobians,

̂︅(︃ 𝜕𝑅
𝜕𝑞

)︃C
𝑙

=
1
𝑁

𝑁−1∑︂
𝑛=0

(︃
𝜕𝑅

𝜕𝑞

|︁|︁|︁
𝑞𝑛

)︃
𝑒−i𝜔𝑙 𝑡𝑛 , (18)
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for 𝑙 ∈ [−b(𝑁 − 1)/2c, d(𝑁 − 1)/2e]. The computational effort
to compute these Fourier coefficients is proportional to 𝐾2. Using
this approach for the computation of the harmonic balance residual
Jacobian, the computational effort grows only quadratically with
the number of higher harmonics. Moreover, one can exploit the
fact that the coefficient in Eq. (18) for −𝑙 is the complex conjugate
of the coefficient for 𝑙.

3.2 Simplified Harmonic Balance System Jacobian. As-
sume that the 𝑞𝑛 do not vary strongly about the mean ˆ︁𝑞0. Then we
can write 𝑞𝑛 = ˆ︁𝑞0 + 𝑞′𝑛 and, assuming that the second derivatives
of 𝑅 w.r.t. 𝑞 are bounded,∥︁∥︁∥︁∥︁ 𝜕𝑅𝜕𝑞 |︁|︁|︁𝑞𝑛 − 𝜕𝑅

𝜕𝑞

|︁|︁|︁ˆ︁𝑞0

∥︁∥︁∥︁∥︁ = O(‖𝑞′‖∞). (19)

Together with Eq. (16), this implies

𝜕̂︄𝑅(𝑞)𝑘
𝜕ˆ︁𝑞𝑘′ =

𝑁−1∑︂
𝑛=0

𝐹𝑘𝑛

(︃
𝜕𝑅

𝜕𝑞

|︁|︁|︁ˆ︁𝑞0
+ 𝜕𝑅
𝜕𝑞

|︁|︁|︁
𝑞𝑛

− 𝜕𝑅

𝜕𝑞

|︁|︁|︁ˆ︁𝑞0

)︃
𝐹inv
𝑛𝑘′

=

𝑁−1∑︂
𝑛=0

𝐹𝑘𝑛
𝜕𝑅

𝜕𝑞

|︁|︁|︁ˆ︁𝑞0
𝐹inv
𝑛𝑘′ + O(‖𝑞′‖∞)

= 𝛿𝑘𝑘′
𝜕𝑅

𝜕𝑞

|︁|︁|︁ˆ︁𝑞0
+ O(‖𝑞′‖∞)

(20)

It follows that the left-hand side entries of the implicit system in
Eq. (12) for 𝑘 ≠ 𝑘 ′ are bounded by a constant multiple of the
unsteady amplitudes ‖𝑞′‖∞. Moreover, the diagonal entries can
be approximated up to first order using

1
Δ𝜏

+ i𝜔𝑘 +
𝜕̂︄𝑅(𝑞)𝑘
𝜕ˆ︁𝑞𝑘 ≈ 1

Δ𝜏
+ i𝜔𝑘 + 𝜕𝑅

𝜕𝑞

|︁|︁|︁ˆ︁𝑞0
. (21)

In contrast to the exact HB residual Jacobian, this is a complex
linear matrix for each 𝑘 . This approximation considerably reduces
both the memory requirements and the computational effort of one
pseudotime iteration since:

• The matrices for the different harmonics differ only by a con-
stant diagonal.

• The second summand of Eq. (21) is computed just once per
pseudotime step, outside the sampling loop.

• All matrix vector operations now grow only linearly with 𝐾 .

• The implicit equations for the harmonics decouple.

• One can employ complex arithmetics.

It should be stressed again that the deviation of the simplified Jaco-
bian from the fully coupled one scales with unsteady amplitudes.
If the harmonic balance solver is used to predict effectively linear
problems such as the onset of flutter on the basis of very small
prescribed vibration amplitudes, this simplification should be ex-
pected to have a negligible impact on the convergence while the
CPU costs are reduced considerably.

3.3 Linear Solvers. In recent years, a linear solver library for
large block sparse systems has been integrated in TRACE. This
library called Spliss (Sparse linear systems solver) [26] has been de-
signed to target the demands of large-scale computational fluid dy-
namics (CFD) simulations, emphasizing node-level performance,
computational accelerators [27], and scalability. The architecture
of Spliss is characterized by its inherent flexibility, enabling the
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Fig. 2 Total pressure ratio and isentropic efficiency over mass
flow of the TCD stage at 80% and 100% rotational speed.

combination of various solution methods and preconditioners. No-
table among these are the Jacobi method, SSOR (Successive Sym-
metric Overrelaxation), ILU (Incomplete LU Factorization), and
a spectrum of Krylov methods, especially GMRES (Generalized
Minimal Residual), line-implicit methods and multigrid.

A distinctive feature of Spliss lies in its tailored matrix type de-
signed to exploit the simplified Jacobian structure of the harmonic
balance systems with left-hand sides as in Eq. (21). This structure
combines complex block-diagonals and real-valued off-diagonals,
with an efficient utilization of the Single Instruction Multiple Data
(SIMD) capabilities featured by modern processors [28].

4 Application
To demonstrate the capabilities the implicit solution methods

above to simulate unsteady flow in off-design conditions, the solver
has been applied to the Transonic Compressor Darmstadt (TCD)
test case. For this compressor, experimental investigations are cur-
rently conducted at the Technical University of Darmstadt (TUDa)
within the framework of the European research project ARiAS
(Advanced Research into Aeromechanical Solutions). These stud-
ies have a strong focus on forced response vibrations of the blisk
rotor [29]. The investigated 1.5-stage configuration comprises a
wake generator, a blisk rotor designed by MTU Aero Engines, and
a stator with 29 vanes, designed by TUDa and DLR (see [30]).

The configuration studied in this work has a wake generator with
8 prismatic NACA airfoils. The following harmonic balance simu-
lations are carried out for an operating point on the 80% speedline
which is marked with a dot in Fig. 2. Both speedlines has been
computed with the steady solver using the whole configuration as
computational domain, though the plot in Fig. 2 shows perfor-
mance data for the stage only. The operating point considered is
close to the numerical stall boundary, i.e., the steady solver no
longer converges to a satisfactory residual level if the backpres-
sure is further increased. The axial component of the wall shear
stress along the suction side is depicted in Fig. 3 which shows a
separated flow region close to the leading edge in the lower part
of the blade. The computational domain for the harmonic balance
simulations consists of one rotor passage. The modal gust bound-
ary conditions [21] are employed at the rotor inlet to prescribe
disturbances coming from the wake generator. The engine orders
are thus integer multiples of 8. Three harmonics (𝑚 = 8, 16, 24)
are used to resolve the unsteady flow in the rotor. Here, we apply
the circumferential modes extracted from a Fourier decomposition
of the outflow of the wake generator. The circumferential distri-
bution of the axial velocity obtained from the reconstruction with
the three mode orders given is plotted in Fig. 4. Here, the sec-
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ond disturbance plotted ("scaled") corresponds to the same Fourier
coefficients as in the original wake generator outflow, but the dis-
turbance amplitudes are increased by a scaling factor of 8. The
solver convergence will be assessed by the convergence of the first
modal force harmonic for the eigenmode depicted in Fig. 5. The
unsteady flow for the strong disturbance is shown in Fig. 6 at four
time instants.

To assess the convergence of the solver, 𝐿1 residuals (averaged
over all harmonics, conservation equations, and cells) as well as
the modal force for the eigenmode depicted in Fig. 5 have been
plotted in Fig. 7. The linear solution method for all results plotted
in Fig. 7 was a preconditioned GMRES method with 50 iterations
and ILU as preconditioner. For the original disturbances and using
a CFL number of 10, the implicit HB solver converges within a
few hundred iterations to a satisfactory level, both in terms of
the residual and the modal force variation. One can see that, for
this amplitude, discarding the coupling between the harmonics has
almost no impact on the residual reduction per iteration.

When the disturbance amplitudes are scaled by a factor 8, how-
ever, the uncoupled Jacobian approach causes the solver to diverge,
even with a CFL number as small as unity. In contrast, if the full
Jacobian is used the implicit solver is robust for CFL numbers as
high as 20. The residual reduction is not perfect though. The
remaining residual level is considerably higher than in the original
setup (even if the original residuals were scaled by a factor of 8).
This indicates that due to non-linearity the pseudotime dynamics
are qualitatively different for the two amplitudes. Observe that the
convergence of the modal forces is satisfactory for the robust se-
tups. In the fully coupled simulations with increased amplitudes,
the relative variation is below 10−2 after less than 400 pseudotime
steps. The normalization in Fig. 7(b) is increased by 8 for the high
amplitude simulations. Hence, if the system response were linear,
the normalized modal forces would all equal unity. The unsteady
flow field in Fig. 6 shows that the position and strength of the shock
oscillate strongly.

On the one hand, the results illustrate that the uncoupled Jaco-
bian approach is applicable to numerically delicate operating points
close to the numerical stall margin. On the other hand, the appli-
cability is confined to a limited range of unsteady nonlinearity and
it may be necessary to include the coupling between harmonics to
be able to treat disturbances such as large shock oscillations.

The plots in Fig. 7 were all produced with preconditioned GM-
RES as linear solver with 50 iterations and ILU as preconditioner.
The reason behind the choice for this rather powerful yet expen-
sive linear solver was that it enables us to focus on the question

Fig. 3 Axial component of normalized wall shear stress along
the rotor suction side.
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Fig. 4 Axial velocity disturbance along 80% channel height at
rotor entry with three harmonics. Original IGV outflow and dis-
turbance increased by a factor of 8.

whether the coupling between harmonics is needed. Note that even
for the crashing simulation, the linear L2 residual reduction pro-
vided by GMRES during one pseudotime step was at least 8 orders
of magnitude. We conclude from this that the robustness issues
of the uncoupled solver, observed for the high disturbance ampli-
tudes, cannot be remedied by simply switching to a more accurate
approximate linear solution method.

When the harmonic coupling is taken into account, one can also
use a rather cheap linear approximate solver such as SGS with one
forward and one backward sweep. As the plot in Fig. 8 shows,
with a moderate CFL number of 5, the SGS solver is robust and
roughly as fast as the GMRES approach in terms of overall times
to convergence.

When a simple linear solver is used and the left-hand side is
recomputed in every pseudotime step the time spent during the
computation of the matrix is significant. E.g., when using SGS
with one sweep then the fast computation of the fully-coupled
left-hand side reduces the overall CPU times by a factor of about
2.9 compared with what was called above the “naive” approach.
Note that this speed-up factor increases with the number of higher
harmonics (here 𝐾 = 3) but decreases when a computationally ex-
pensive solution method (e.g. GMRES with many iterations) is
used. The uncoupled approach, in turn, is about 11 times faster
per pseudotime step (measured with one SGS sweep) than the fully

Fig. 5 Displacement vector norm of blade eigenmode.
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coupled solver. Here, it should be mentioned that the implemen-
tation of the uncoupled approach has been improved over recent
years so that it exploits the potentials in CPU cost savings that
were listed in the previous section. In the fully coupled approach
as it is implemented here, still (𝐾 + 1)2 residual Jacobians with 10
degrees of freedom (5 for the 0-th harmonic) per cell are stored
even though the amount of information of the fully coupled system
matrix has been shown above to reduce to only 𝑁 residual Jaco-
bians with 5 degrees of freedom per cell. Hence, the considerable
speed-up factor could, at least to some extent, be due to the fact
that, algorithmically, the two approaches have not been equally
optimized.

4.1 Harmonic convergence. All computations above have
been carried out with three harmonics, which, in view of the highly
nonlinear flow response, seems a relatively coarse temporal resolu-
tion for the increased amplitude. To address the issue of harmonic
convergence two additional setups have been simulated. The first
one is a harmonic balance simulation with five harmonics. It uses
GMRES with a CFL number of 20 since this was found to be
the most efficient approach for three harmoncs. Otherwise this
setup is identical to the coupled setup with three harmonics. The
second one is a time-domain simulation with second-order back-
ward differencing (BDF2) and 128 time steps per period. This
simulation employs dual time stepping with 40 inner pseudotime
steps and a pseudotime CFL number of 200. It should be pointed
out that in order to achieve consistent results in the frequency and
time domains, one has to use consistent inlet and outlet bound-
ary conditions. For the test case here, consistent two-dimensional
non-reflecting boundary conditions [22,31] with modal gusts for
three circumferential mode orders (see Fig. 4) have been used.
Since the interblade phase angle of the disturbance is 180◦, we
can achieve periodicity for the time-domain simulations by simu-
lating a computational domain that comprises two passages. The
resulting amplitude of the first modal force harmonic (normalized
as before) is plotted over CPU time in Fig. 9. Figure 9(a) shows
that, compared with the HB setup with three harmonics, the more

(a) 0◦ (b) 90◦

(c) 180◦ (d) 270◦

Fig. 6 Relative Mach number at 80% channel height at four
phase positions.

accurate simulations give very similar results with relative discrep-
ancies in terms of the modal force harmonic below 1%. This shows
that from a practical point of view, three harmonics is a reason-
able choice even for strongly nonlinear problems such as the high
amplitude disturbance discussed here.

Figure 9(b) shows an estimate of the relative error of the modal
force harmonic defined as follows. Suppose that ˆ︁𝑓𝜔,𝑖 is the current
value of the modal force harmonic for the 𝑖-th (pseudo) time step.
Note that for the time-domain simulation this value is an integral
over the past 128 time steps. Then,

( ˆ︁𝑓𝜔,𝑖′)𝑖′≥𝑖
is the average of the time series of the values after the 𝑖-th step. To
compare convergence speeds, we define an estimate of the instan-
taneous error by

𝜀𝑖 = ‖( ˆ︁𝑓𝜔,𝑖′)𝑖′≥𝑖 − ( ˆ︁𝑓𝜔,𝑖′)𝑖′≥𝑖 ‖∞.
Note that this is just an estimate for the error due to non-
convergence. As can be seen in Figure 9(b), increasing the number
of harmonics in the HB solver has a moderate impact on the CPU
costs. The time-domain simulation, however, takes considerably
longer to reduce the modal force error to, say, 1%. For this setup,
HB with three harmonics is roughly one order of magnitude faster
than the time-domain approach. Note that this is only a rough
estimate, since neither the harmonic balance nor the time-domain
setups have been optimized for CPU time and modal force errors.

5 Conclusions
Although the pseudotime marching approach for the harmonic

balance equations lacks the physical, albeit heuristic, rationale of
steady pseudotime solvers, it has been shown in this paper that it
can be motivated by sound mathematical reasoning. The pseudo-
time solver should, in principle, be able to predict the same pe-
riodic flow solutions as the time-domain URANS approach. This
motivates the pursuit of robust and efficient pseudotime marching
formulations. Implicit methods are known for their robustness and
should therefore be the method of choice.

The computation of the implicit system matrix in the frequency
domain, if coded in a naive way, can become quite costly in terms
of CPU time. However, the computations can be accelerated by
exploiting the Toeplitz property of the matrix. Furthermore, it is
shown that, in order to obtain an efficient method, one can sim-
plify the implicit harmonic balance system for moderate amplitude
disturbances. This simplification assumes that the variation of the
flow residual Jacobian over the period is small. As a result, the
harmonics decouple in the implicit linear system which leads to
considerable CPU time savings if the implicit solver is formulated
in the frequency domain.

The applicability of the simplifying assumption about approxi-
mately constant flow residual Jacobians is demonstrated for a tran-
sonic compressor at an operating point near the numerical stall
boundary. It is shown that for an incoming disturbance derived
from the outflow of a wake generator, the pseudotime solver is
robust and the assumption of decoupled harmonics can be em-
ployed. However, as the disturbance amplitude is increased, the
flow response becomes highly nonlinear and the simplified Jaco-
bian leads to robustness issues, which cannot be overcome with a
more powerful approximate linear solver. Instead, the linear sys-
tem matrix itself must account for the time variation of the flow
and the residual. On the one hand, the example shows that the
simplifying assumption restricts the applicability of the solver to
a limited range of nonlinearity. Thus, an implicit method that
takes the interaction of the harmonics into account is needed for
problems involving, for example, strong shock oscillations. On the
other hand, the increased amplitude configuration should be con-
sidered as extreme. In the authors’ experience, most applications
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Fig. 7 L1 residual and normalized modal force over pseudotime step. Original and increased amplitudes.
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can be treated with the simplified linear system matrix. Since the
savings of the overall computational times can be considerable, it
would therefore be desirable to derive a measure for the degree of
nonlinearity and a criterion when the additional effort of the full
coupling is necessary.
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Nomenclature
i = square root of −1
𝑘 = harmonic index
𝑚 = pseudotime step index
𝑛 = sampling point index

𝑛hh = number of sampling points for the highest harmonic
𝑞 = flow stateˆ︁𝑞𝑘 = 𝑘-th flow harmonic
𝑞𝑛 = flow at 𝑛-th sampling point
𝑡 = (physical) time
𝑡𝑛 = 𝑛-th sampling point
Δ𝑡 = time period
𝑧 = complex conjugate of 𝑧
𝒞 = complex conjugation operator
𝐷𝑡 = spectral time derivative
𝐹 = discrete Fourier transform

𝐹inv = inverse discrete Fourier transform
𝐾 = number of higher harmonics
𝑁 = number of sampling points
𝑅 = flow residual

𝑅HB = harmonic balance residual
Re 𝑧, Im 𝑧 = real and imaginary parts of 𝑧

Greek letters
𝛿𝑞 = disturbance of 𝑞
𝜏 = pseudotime

Δ𝜏 = pseudotime step
𝜔𝑘 = angular frequency
Π𝐾 = modal projection
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