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Abstract

The increasing number of drone’s flights is posing several challenges such as airspace safety and particularly in urban and 
restricted areas. Safety could be enabled by considering several types of geo-zones allowing or preventing drone’s operation. In 
addition, ensuring reliable and efficient communication between drone operators and the U-space service providers represents an 
important challenge to address and more specifically in situations of unauthorized intrusion into restricted airspace. This paper 
presents some preliminary results of a SESAR funded Project AI4HyDrop project (An AI-based Holistic Dynamic Framework 
for safe Drone Operations in restricted and urban areas) which aims to integrate drones safely into controlled airspace.
The research study aims to analyze the latency and throughput in API-based communication to send intrusion alerts, using a 
developed algorithm to simulate the sending and receiving of these notifications. The results show that shorter time intervals (10 
ms) significantly impact latency and throughput, suggesting that the system begins to deteriorate near the limit. However, the 
effect of message payload size and multiple systems broadcasting warnings was minimal. The overall finding suggests that API-
based communication system can transmit drone detection warnings with sufficiently low latency as required in the current 
requirements of drone operations. 
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1. Introduction

The increasing use of drones, or Unmanned Aerial Vehicles (UAVs), in various commercial, recreational, and 
public safety activities has brought new challenges related to airspace security, particularly in urban and restricted 
areas. The AI4HyDrop project (An AI-based Holistic Dynamic Framework for safe Drone Operations in restricted 
and urban areas) emerges as a response to these challenges, aiming to safely and efficiently integrate drones into 
controlled airspace. Among the project's objectives are the assessment and quantification of safety levels in U-space 
operations, the definition of a safety framework for strategic and tactical operations, the determination of the 
acceptable level of automation and AI integration, the optimization of airspace usage, and the establishment of a 
rational flight approval process (SESAR 3 JU, 2023).

In this context, efficient communication between drone detection and U-Space Service Provider (USSP) systems, 
who oversee drone operators, is crucial to achieving the AI4HyDrop objectives, ensuring that operations in sensitive 
areas are conducted safely and reliably. In particular, the rapid and accurate detection of drone intrusions into 
restricted airspace, followed by immediate communication to the operator, is essential to mitigate potential risks.

There are several research addresses the communication used in drone operations. Raffelsberger et al. (2019) 
developed a tool for evaluating the performance of drone communications over 4G cellular networks, focusing on 
measuring throughput and latency. This study provided valuable insights into communication performance in real-
world environments, essential for developing communication protocols in multi-drone systems. While Cruz et al. 
(2024) explored secure communication in the context of the Internet of Drones, using elliptic curve cryptography 
(ECC) to manage keys securely on IoT devices, including drones. Implementing ECC in drones proved to be a cost-
effective and time-efficient solution, offering secure and reliable communication in IoT networks.

Kagawa et al. (2017) investigated a latency-guaranteed multi-hop wireless communication system specialized for 
the remote control and telemetry of drones and robots in beyond-line-of-sight (BLOS) operations. The research 
identified that wireless LANs, commonly used for robot control, must be more suitable for BLOS operations due to 
unstable transmission latency and interference issues. The authors developed a prototype system that ensures 
reliable and low-latency communication to mitigate these limitations, as demonstrated through field tests. This 
approach is particularly appropriate in scenarios where fast and stable communication is critical for the safe control 
of drones in disaster response missions, infrastructure inspection, and logistics. However, Ruseno and Lin (2023) 
evaluated a communication of transferring the network Remote ID data from USSP system that provides network 
identification service to the UTM application used by drone operator using API-based communication via internet. 
The authors conducted a flight test to analyse the performance of the system and algorithm.

Cropf et al. (2022) introduces a conceptual implementation of a System Wide Information Management (SWIM) 
architecture within a proposed Unmanned Aircraft System (UAS) Traffic Management (UTM) framework for the 
U.S. National Airspace System (NAS). The system collects messages from various data producers via FAA SWIM, 
extracts relevant attributes, stores them in a database, and provides flexible geospatial, temporal, and attribute-based 
filters for consistently correlated SWIM data retrieval. The data includes (but is not limited to) airspace constraints, 
traffic advisories, weather, and low-altitude hazards.

Shivakoti et al. (2021) explored a model for reliable communication between multiple drones and a web-based 
Air Traffic Control (ATC) system. Through simulations of various scenarios involving multiple drones flying in an 
urban environment, the study showed that the Message Queuing Telemetry Transport (MQTT) protocol holds 
significant potential for enabling communication among multiple drones within a network. In these simulations, four 
drones communicated over a single network using limited hardware, specifically Raspberry Pi devices integrated 
with ThingsBoard.

These studies demonstrate the diversity of approaches to addressing communication challenges in drone 
operations, from developing new protocols that enhance performance to creating specific communication systems 
for critical operations requiring low latency and high reliability. Within the project, the drone detection system 
considers cooperation and non-cooperation drones which could violate a restricted airspace. Cooperative drones are 
assumed to be equipped with a broadcast Remote ID that transmits its identification, operator, mission, and position 
via Bluetooth or Wi-Fi technology that can be received by devices that have Bluetooth or Wi-Fi capabilities in the 
vicinity that could be varied in range maybe 800 feet, maybe a mile, or it might be five miles depends on the 
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hardware used and the situations. While non-cooperative drones do not broadcast any of their information, but only 
can be detected from their signatures such as visual, thermal, audio, or radio frequency.

In this paper, the scope is on the communication channel between the drone detection service and the USSP 
system, and only cooperative drones are considered that enable the communication to the drone operator via the 
USSP. The other systems shown in the drone detection framework are assumed to be in place and support this 
communication. Also, internet communication is assumed to use the current internet protocol that is widely used in 
our daily life based on TCP/IP protocol.

The main challenges related to communication between systems are maintaining consistent, reliable 
communication performance and avoiding its degradation. Communication performance can suffer interference due 
to buildings and other types of signals that travel in the same airspace, leading to an increase in latency and a 
decrease in throughput (Zreikat and Mathew, 2024). Communication degradation can occur in adverse situations, 
such as unfavorable weather conditions and in rural areas, due to an infrastructure lack (Jesús-Azabal et al., 2023). 
In these situations, data loss and disconnection problems may occur, leading to aircraft loss of control.

The study's overall objective is to analyze the communication performance between drone detection system and 
USSP system ensuring that intrusion notifications are transmitted securely and efficiently. IMore specifically, within 
AI4HyDrop project, the German Aerospace Center (DLR) U-Space Research Environment (DURE) is used as the 
USSP system. Moreover, the result will be compared to the other research and the requirement of regulation to check 
that the communication performance meets the requirement of U-Space operations. To this end, an algorithm was 
developed and tested that simulates the sending and receiving of drone intrusion alerts in restricted airspace. It was 
designed to measure latency and throughput as the system's ability performance to handle multiple simultaneous 
requests. This work's contributions include presenting a methodology to evaluate the latency and throughput of 
communication systems in critical air security scenarios. Additionally, the results obtained can serve as a basis for 
developing standards and best practices for implementing communication systems in operations involving drones, 
ensuring that quick and effective responses can be provided in intrusion situations.

The remainder of this paper is organized as follows: Chapter 2 describes the adopted methodology, detailing the 
drone detection framework in AI4HyDrop project and the development of algorithm used to simulate and evaluate 
communication between drone detection system and USSP system. Chapter 3 presents the experimental results 
obtained, including the analysis of latency and throughput. Chapter 4 discusses the key findings from these 
preliminary experimental results. Finally, Chapter 5 presents the conclusion, highlighting the main contributions of 
the work and suggesting directions for future research.

2. Methodology

2.1. Drone Detection Framework

The proposed framework of drone detection in the AI4HyDrop project can detect cooperative and non-
cooperative drones using AI-based detection algorithms as shown in Figure 1. The drone detection service employs 
various sensors such as a camera, microphone array, and radio frequency antenna to detect all drones near the 
restricted airspace as the input for the AI-based detection algorithms. Since the algorithms used are normally the 
deep learning type, they required a model trained using a large dataset to accommodate a variety of drone types.

In the proposed framework, the drone detection service could be part of U-Space Service Provider (USSP)’s 
services or other third-party services that are connected to a USSP. USSP is an entity in the U-Space system that 
provides services as mentioned in the regulation to UAS operators to support their operations as stated in Barrado et 
al. (2020). There is also another U-Space entity mentioned in this framework, the Common Information Service 
Provider (CISP). In our study, the extended CISP terminology is used because the current regulation does not 
include the service of finding a drone flight plan (U-Plan) as part of CISP capabilities as described in EASA (2024).
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Fig. 1. Drone detection framework.

There are three case studies of drone detection identified in this research that consists of:
1. Cooperative drone that is authorized to fly into restricted airspace:

• A drone is detected by sensors flying near a restricted airspace and its location is estimated.
• The broadcast remote ID data is received including its ID and location.
• The detection system connects to the Extended CISP to get the flight plan authorization data.
• The data received confirms that the drone is authorized to fly in restricted airspace and the case is 

closed.
2. Cooperative drone that is not authorized to fly into restricted airspace:

• The drone is detected by sensors flying near a restricted airspace and its location is estimated.
• The broadcast remote ID data is received including its ID and location.
• The detection system connects to the Extended CISP to get the flight plan authorization data.
• The data received confirms that the drone is NOT authorized to fly to the restricted airspace 
• A warning level 1 (including drone ID and its location) is sent to the USSP to notify the operator to stay 

away from the restricted airspace.
• The drone operator commands the drone to return to its planned trajectory and the case is closed.
• If the drone continues to be nearer to the restricted airspace, it becomes a non-cooperative drone (case 

3).
3. Non-cooperative drone that flies into restricted airspace:

• A drone is detected by sensors flying near a restricted airspace and its location is estimated.
• No broadcast remote ID data is received or the non-cooperative drone case from case 2.
• A warning level 2 (including drone location) is sent to the USSP to notify all the operators in the area, 

trigger any tactical deconfliction measure and warn the security personnel to take the necessary actions.

2.2. API-based Communication

The mechanism of transferring warning information to the USSP has a significant role in the drone detection 
framework because the information should be transferred as quickly as possible to the related parties to take 
necessary action to avoid a further catastrophic event. In this research, it is assumed that the detection system and 
USSP are connected by internet communication that is available in most countries using Application Programming 
Interface (API) to exchange the information such as warning from drone detection system. An API describes how 
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users (also called clients) requests information of actions to a server. These requests usually need to determine the 
values of some parameters, for instance, the date when booking a flight or username and password.

The proposed warning message submitted through the API is in the form of JavaScipt Object Notation (JSON) 
format as shown in Figure 2. JSON is a widely used format to gather and send the aforementioned pairs of names of 
parameters and its values in a readable way. In our case, the warning message sent from the drone detection system 
to the USSP server contains the parameters timestamp, representing the moment the drone was detected; warning, to 
identify the type of warning; droneID, when it was possible to identify the drone, this value represent its plate or 
unique identifier; warning level, it is used to determine the severity of the situation used for instance to determine 
how to display the warning in the pilot interface; lon, lan, and alt_rel which represent the detected drone position; 
reason to explain more detail on the warning situation; and token that represent the security key to access the USSP 
system.

Fig. 2. JSON format of the warning message.

To evaluate the performance of the communication protocol, two key parameters are considered: latency and 
throughput. Latency refers to the time taken from when a client initiates a request to when the client receives the 
complete response. While throughput measures the number of requests that a server can process at any given 
moment. Throughput assessments generally aim to identify the maximum throughput, which is the highest number 
of requests a server can manage simultaneously without experiencing timeouts. 

Furthermore, in this research the ratio of throughput is introduced to compare the calculated throughput with the 
intended throughput for the same time duration. Generally, these two parameters (latency and throughput) are 
related to each other. As the load approaches maximum throughput, latency will rise as explained in Bermbach and 
Wittern (2020).

In this study, the API is used to transfer the warning from drone detection system to a USSP system.  The 
algorithm in the form of pseudo code to evaluate the latency and throughput is shown in Figure 3. It starts with 
importing necessary libraries of Python programming, then define the url and payload of the API. The pseudo code 
consists of two functions which are RUN_TEST as the main function of the test and SEND_REQUEST as the 
secondary function to send the API. The main function starts with defining intervals and message sizes used in the 
experiment, then creating the log files to record the result for throughput and latency calculations. It continues to use 
ThreadPoolExecutor function to run asynchronous task of sending and receiving messages and then record the 
starting time as reference for throughput calculation. 

The sending of the warning message is conducted by executing the SEND_REQUEST function 100 times in a 
loop for each case study with the defined intervals. The latency calculation is conducted in this function based on the 
sending and response timestamp. After each loop, the resulted data is saved into a log file with a filename according 
to the interval and payload size.
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Algorithm API Request and Logging Process
1: Start
2: Import necessary libraries
3: Define url and payload
4: function SEND_REQUEST (index, payload_size, interval)
5: Capture sending timestamp
6: Send POST request to the url
7: Capture response timestamp, status, and response text
8: Calculate latency between sending and response
9: return (index, sending_timestamp, response_timestamp, latency, status_code, response_text)

10: end function
11: function RUN_TESTS()
12: Define intervals and payload sizes used in the experiment
13: Create log files for throughput and latency data
14: Use ThreadPoolExecutor to execute tasks concurrently
15: Record start time of the test
16: for each request do
17: Submit SEND_REQUEST(index, payload_size, interval) for asynchronous execution
18: Wait for an interval between sends
19: end for
20: Record end time of the test
21: Calculate throughput as test time divided by number of messages sent
22: Update log for latency data
23: Update log for throughput data
24: Print “Finished testing for defined interval and payload size”
25: end function
26: Run RUN_TESTS()
27: Finish

Fig. 3. An algorithm to evaluate the API-based communication performance.

2.3. Experimental Setup

To evaluate the communication system for drone detection, the sender of information is from an office computer 
using Windows OS running a Python script in the University of South-Eastern Norway in Kongsberg campus and 
the receiver of information is the DLR U-Space Research Environment (DURE), hosted in Amazon Web Service 
(AWS) cloud servers located in Frankfurt, Germany, running on an Amazon Linuz server instance. In the 
experiment, the latency and throughput are calculated for the combination of message intervals (1000ms, 500ms, 
100ms, and 10ms), and message payload size by varying the reason text (small (62 bytes), medium (234 bytes), and 
large (1,844 bytes)). The message intervals and sizes are selected that represent the most possible setting in the 
drone operations without trying to get the limit of server capability. The system sends 100 messages for each case to 
avoid the experiment to be considered as Distributed Denial of Service (DDoS) attack. Furthermore, there could be 
multiple drone detection systems that operated in a U-Space airspace. To simulate this condition, an experiment with 
two computers sending messages at the same time (twin system) is conducted to evaluate the communication 
performance. The experiment for single system is conducted twice before and after the experiment of twin system. 
Thus, the result presented in the next chapter comes from two sets of experiments.

The assumptions considered during the experiment are the drone detection system exists and able to generate the 
required message immediately, the communication used is the Hypertext Transfer Protocol (HTTP) and always 
available, the USSP system as the receiver of the message able to send a receipt message immediately, and there is 
no connectivity problem during the transfer of data.

Python programming language is used to implement the algorithms to evaluate the API protocol for the warning 
of drone detection because it supports the API protocol and asynchronous process for handling the sending and 
receiving messages separately. Several modules of Python programming are employed to support this 
implementation such as REQUESTS to send messages via HTTP using POST method, TIME to apply the interval of 
sending message, CSV to create log file, DATETIME to record time stamp when sending and receiving message in 
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order to calculate latency, CONCURRENT to implement asynchronous process between sending and receiving 
message in parallel, QUEUE to orderly sort the receiving message to their sending index.

2.4. Statistical Data Analysis

Once the experiments were conducted and data were collected, a statistical analysis will be performed to evaluate 
the results. The statistical parameters such as mean, median, minimum, maximum, standard deviation, and outlier 
will be calculated and presented in the result chapter. Then, a statistical analysis will be performed to the data using 
the appropriate method that suitable for the collected data. Analysis of Variance (ANOVA) is a widely used 
statistical method when comparing the means of multiple groups and testing whether specific independent variables 
(factors) significantly impact a dependent variable. However, whether ANOVA is suitable for the data depends on 
several factors and the nature of the data itself such as the dependent variables are continuous, the independent 
variables (factors) are categorical, the residuals (differences between observed and predicted values) are normally 
distributed, and the variance of residuals should be roughly equal across groups as explained by Nwobi & Akanno, 
(2021).

To check those assumptions, a normality test such as The Shapiro-Wilk test is often used to test if the residuals 
from the model follow a normal distribution and a homogeneity of variances test such as Levene's test can be used 
to check if the variances across the groups are equal. When the assumptions for ANOVA test are violated, a non-
parametric test should be used to test the statistical data such as the Kruskal-Wallis test. It is a non-parametric 
alternative to the ANOVA assumes that observations in each group come from a population with the same shape of 
the distribution as described by Nwobi & Akanno, (2021). The statistical analysis will be conducted using Python 
programming language with SCIPY module which has Kruskal-Wallis, Shapiro-Wilk, and Levene’s tests.

3. Result and Analysis

3.1. Latency Analysis

This chapter presents the latency results for two scenarios: a single system sending messages and two systems 
sending messages in parallel (twin system). Latency statistics for selected intervals and payload sizes are illustrated 
in Figure 4 with the red diamond indicates the mean value and the black line in the middle of boxplot indicates the 
median value. The results indicate similar latency values for intervals of 100 ms, 500 ms, and 1000 ms. However, a 
significant increase in latency is observed at a 10 ms interval, suggesting that this interval is approaching the limit of 
the USSP system's capability to receive warning messages, as system performance begins to degrade. While the 
comparison between the single and twin systems reveals a slightly higher latency in the twin system.

(a) (b)

Fig. 4. Statistics of latency result for: (a) single system and (b) twin systems.
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Figure 5 displays the mean latency and its standard deviation. The results show no significant effect of message 
payload size on latency, except at the 10 ms interval. This suggests that the payload sizes used are within the 
system's handling capacity. The findings further support the observed impact of the small 10 ms interval on system 
performance. Additionally, Figure 5 shows a minor difference in latency between the single and twin systems, with 
the twin system exhibiting a slightly higher latency of 2 ms, likely due to the increased number of messages being 
processed simultaneously.

(a) (b)

Fig. 5. Average latency result for: (a) single system and (b) twin system.

3.2. Throughput Analysis

Figure 6 plots the throughput ratio of the API for various intervals and message sizes. The results clearly 
demonstrate that message interval affects throughput, with the most significant impact occurring at the smallest 
interval of 10 ms, which drastically reduces throughput compared to other intervals. Payload size also negatively 
impacts throughput, and the twin system exhibits a slightly lower throughput compared to the single system.

(a) (b)

Fig. 6. Throughput ratio result for: (a) single system and (b) twin system.

3.3. Statistical Analysis

The result for two assumption tests of data: the Shapiro-Wilk test for normality and the Levene’s test for 
homogeneity of variances are shown in Table 1. In both cases for latency and throughput ratio, the p-values of 
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Shapiro-Wilk test are extremely small (far below a common threshold like 0.05), which means that the residuals for 
both latency and throughput ratio do not follow a normal distribution. This violates the normality assumption needed 
for parametric tests like ANOVA. Also, the p-values of the Levene’s test are very small, so this indicates that the 
variances for both latency and throughput ratio are not homogeneous (i.e., the assumption of equal variances is 
violated). Since both tests indicate violations of the assumptions in normality and homogeneity, using parametric 
tests like ANOVA is not suitable. Thus, the non-parametric tests such as the Kruskal-Wallis test is a better approach.

     Table 1. Data assumptions test result.

Parameter Shapiro-Wilk Test Levene’s Test

Test Statistic p-value Test Statistic p-value

Latency 0.864606 1.135876e-53 249.915972 1.097448e-150

Throughput Ratio 0.696255 1.140684e-08 11.872204 7.968879e-06

The result of Kruskal-Wallis test for both Latency and Throughput Ratio are shown in Table 2. For latency, the p-
value (4.35e-280) is incredibly small, indicating that the differences between the groups (based on message interval 
and payload size) are highly significant. This suggests that at least one group has a statistically different median 
latency than the others. While for throughput ratio, the p-value (1.45e-09) is also very small, meaning that the 
throughput ratio significantly differs across at least one group. Overall, there are statistically significant differences 
in both latency and throughput ratio between the groups.

Table 2. Kruskal-Wallis test result.

Parameter Kruskal-Wallis Test

Test Statistic p-value

Latency 1293.220000 4.354683e-280

Throughput Ratio 44.081632 1.450109e-09

4. Discussion 

Our findings indicate that the latency of the API-based communication for drone detection warnings ranges from 
70 ms to 300 ms, as shown in Figure 4. These values are comparable to those reported by Bermbach and Wittern, 
(2020), who found a latency range of 50 ms to 350 ms in their study of API latency across seven global regions over 
a three-month period. Also, our result in the latency is in line with the finding from research of Ruseno and Lin 
(2023) that their latency average of transferring network identification data is slightly higher around 400 ms. The 
difference could be due to the distance differences of longer location between Czech Republic and Taiwan 
compared to our systems location between Norway and Germany. 

Also, according to the result of statistical tests, the finding indicates that the independent variables (message 
interval and payload size) have a significant impact on both latency and throughput ratio. This finding is inline with 
the result from the research of Serrani & Aliverti (2024) about the latency of communication in wireless 
communication engine.  Their p-value of the Kruskal-Wallis test was significant (<0.05) which indicated the interval 
parameter has a significant contribution to the communication latency. 

Additionally, the latency observed in our analysis is significantly lower than the U-Space traffic information 
distribution requirement, which mandates that latency should be below 5 seconds at least 99% of the time, as 
specified in Article 11 of the Easy Access Rules for U-Space from EASA, (2024). This suggests that the API-based 
communication system meets regulatory requirements, making it suitable for supporting drone operations within the 
U-Space framework.
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5. Conclusion and Recommendation

This study aimed to analyze the performance of API-based communication between a drone detection system and 
a USSP in transferring warning information when drones violate restricted airspace. An experiment was conducted 
to measure the latency and throughput of the communication system across various intervals and payload sizes. The 
results indicate that message interval has a significant impact on latency and throughput, particularly at the very 
small interval of 10 ms, where the system approaches its performance limit. However, the effect of message payload 
size and multiple systems broadcasting warnings was minimal, attributed to the high-performance capabilities of the 
USSP as the receiving system. Those findings are supported by the result from the conducted statistical test of non-
parametric method.

In conclusion, the API-based communication system can transmit drone detection warnings with sufficiently low 
latency, meeting the EASA requirements for drone operations. For future research, it is recommended to evaluate 
the communication system's performance limits while considering additional factors such as bandwidth reduction 
and the computational hardware utilized. Another aspect to consider in future tests is the quantity and kind of 
messages being received by the USSP server. Position reports from the drone to the USSP that should be constantly 
sent during the flight, could be enough once per second or half second. Not very demanding in terms of frequency, 
however they trigger much more processing than a warning message. 
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