
How Industry Tackles Anomalies during Runtime:
Approaches and Key Monitoring Parameters

Monika Steidl∗, Benedikt Dornauer†, Michael Felderer‡,
Rudolf Ramler§, Mircea-Cristian Racasan¶, Marko Gattringer∥

∗†‡University of Innsbruck, Innsbruck, Austria
§Software Competence Center Hagenberg GmbH, Hagenberg, Austria

‡German Aerospace Center (DLR), Institute of Software Technology, Cologne, Germany
¶c.c.com Moser GmbH, Germany

∥Gepardec IT Services, Wien, Austria
†‡University of Cologne, Cologne, Germany

ORCID: ∗0000-0002-3410-7637, †0000-0002-7713-4686,‡0000-0003-3818-4442,
§0000-0001-9903-6107,¶0009-0008-7938-3126,∥0000-0003-1659-3624

Abstract—Deviations from expected behavior during runtime,
known as anomalies, have become more common due to the
systems’ complexity, especially for microservices. Consequently,
analyzing runtime monitoring data, such as logs, traces for
microservices, and metrics, is challenging due to the large volume
of data collected. Developing effective rules or AI algorithms re-
quires a deep understanding of this data to reliably detect unfore-
seen anomalies. This paper seeks to comprehend anomalies and
current anomaly detection approaches across diverse industrial
sectors. Additionally, it aims to pinpoint the parameters necessary
for identifying anomalies via runtime monitoring data. Therefore,
we conducted semi-structured interviews with fifteen industry
participants who rely on anomaly detection during runtime.
Additionally, to supplement information from the interviews, we
performed a literature review focusing on anomaly detection
approaches applied to industrial real-life datasets. Our paper
(1) demonstrates the diversity of interpretations and examples
of software anomalies during runtime and (2) explores the
reasons behind choosing rule-based approaches in the industry
over self-developed AI approaches. AI-based approaches have
become prominent in published industry-related papers in the
last three years. Furthermore, we (3) identified key monitoring
parameters collected during runtime (logs, traces, and metrics)
that assist practitioners in detecting anomalies during runtime
without introducing bias in their anomaly detection approach
due to inconclusive parameters.

Index Terms—anomaly detection, runtime monitoring data,
parameter extraction, logs, metrics, traces, microservices

I. INTRODUCTION

In the late 1970s and early 1980s, system administrators
manually inspected printed audit logs, which often piled up
to four to five feet by week’s end, to search for suspicious
behavior. This might mark the start of software anomaly de-
tection [1]. Nowadays, frequent software changes have become
the industry norm for fixing bugs, improving performance,
and enhancing user satisfaction with new features [2]. Due to
these extensive changes, classical test suites frequently cannot

This work was supported by the Austrian Research Promotion Agency
(FFG) in the frame of the ConTest project [888127] and the SmartQuality
(SmartDelta) project [890417]. We thank the study participants, including
Vaadin, Akkodis, Turkcell Technology, Hoxhunt, and all other anonymized
partners, for their valuable insights.

prevent all potential deviations from expected behavior [3] at
runtime, often described as anomalies. Beyond software issues,
system reliance on hardware may also result in system failures
or performance declines from processing queue saturation
[4]. Mariani et al. [5] even stated that runtime anomalies
are becoming the norm rather than the exception in various
systems (e.g., ultra-large systems, system of systems, or cloud
systems). Therefore, the industry requires effective strategies
to preserve the integrity and functionality of its software
systems even during runtime.

These effective strategies must handle volatile anomalies
with different root causes and varying observable behavior.
Currently, there is no consensus on a classical notion of
software anomalies during runtime [6]. This makes it hard to
consistently identify and communicate anomalies, complicat-
ing efforts to ensure software quality, prioritize the handling
of specific anomalies, and manage risks based on severity and
impact. Thus, it is crucial to understand how the industry inter-
prets, and characterises these anomalies. In addition, gaining
more insights into potential anomalies by extending related
work [7]–[17] with further experienced real-life anomalies,
allows to enhance awareness of further potential anomalies:

RQ1: What are the prevailing interpretations, characteristics,
and examples of anomalies within the industry?

Anomaly detection during runtime involves continuously
monitoring and analyzing a system’s operations to identify the
underlying reasons, also known as root cause, for anomalies
in time or before the system is affected. Thus, developers
frequently find themselves manually examining a huge vol-
ume of runtime monitoring data, such as logs, traces (for
microservices), or metrics that exhibit big data characteristics
[18]. Not only is analyzing this runtime monitoring data labor-
intensive due to a large amount of available data and challeng-
ing due to the system’s complexity (e.g., constant changes
in traffic, scaling requirements, complex infrastructures), but
behavior that appears anomalous may not always signify an

actual anomaly [8], [16], [19]. To ease this cumbersome
work, semi-automated approaches to assist developers and
operators in detecting software anomalies during runtime exist.
These approaches rely on self-defined rules and thresholds
and Artificial Intelligence (AI) algorithms [4], [14], [20],
[21] to detect anomalies and their respective root cause. We
examine companies choices and rationales to understand why
they opted for rule-based or AI-based approaches:

RQ2: What factors influence the selection of anomaly
detection approaches in industrial settings?

Both approaches heavily rely on a high-quality dataset and
domain-specific knowledge [22], [23] where a consensus on
which runtime monitoring parameter indicates an anomaly is
missing [24]. In related work, only a few anomaly detection
algorithms explicitly indicate which parameters are used as
input dataset [10], [14], [16], [25]. Thus, it is difficult to
replicate published performance measurements (e.g., accuracy,
precision, and recall) of open-source AI-based anomaly detec-
tion methods, indicating their high dependency on optimized
hyperparameters and a comprehensive monitoring dataset that
includes all essential parameters without introducing biases
that could skew the results [8].

Parameters are extracted from runtime monitoring data,
such as logs, traces (for microservices), and metrics. Logs
consist of predefined semi-structured emitted messages with
natural language, traces are microservice-specific data types
representing the end-to-end execution of a single request,
and metrics consist of numeric time-series performance data.
By knowing which parameters are commonly considered,
anomaly detection approaches could better suit industry needs
and improve their effectiveness, leading to more robust and
targeted rules or training datasets for AI-based approaches
[26]. The importance of recognizing essential parameters
derived from runtime monitoring data is often overlooked. For
instance, related work has focused on a single type of runtime
monitoring data for detecting anomalies in microservices [13],
[20], [21], [27]–[30], and focusing on the combination of
these gain increased attention [10], [14], [17]. Understanding
the relationships between these parameters (e.g., an increased
response rate increases CPU usage) and the dependencies
among microservices is essential for avoiding false positives.
Stable relationships may indicate the absence of anomalies.
This understanding allows removing unnecessary parameters
to optimize storage and computational resources without rely-
ing on extensive manual work [8]. Thus, our RQ is:

RQ3: Which runtime monitoring data is used to identify
anomalies by industry?

The remainder of the paper is structured as follows: Section
II describes the study design of the literature review and semi-
structured interviews. Section III addresses and discusses the
RQ 1-3. Afterward, Section IV discusses potential threats,
followed by a summary and future work in Section V.

II. STUDY DESIGN

We applied two research methods to answer our defined
research questions. Firstly, we extended an existing (A) lit-
erature review with additional anomaly detection approaches
for microservices related to industry use cases and conducted
(B) semi-structured interviews. We followed the methods
regarding the Empirical Standards for Software Engineering
Research v2.0 [31]. For detailed information, please refer to
the replication package in [32]. Due to confidentiality and
company regulations, we cannot disclose the full recorded
interviews and transcripts.

A. Extended Literature Review

In February 2022, Soldani and Brogi [18] published the
first structured overview of current research regarding anomaly
detection during runtime, root cause analysis, and required al-
gorithms, specifically addressing the context of microservices.
The additional monitoring data type for microservices, traces,
is highly relevant for anomaly detection due to its popularity
in the last years [19]. However, their stated methodology was
a survey without systematically collecting literature based on a
search string, which we aim to extend upon with our approach.

Thus, we extended their list of anomaly detection ap-
proaches with the search term ”anomaly detection runtime
monitoring microservices” where the search was executed via
Google Scholar. We started in June 2023 to gain further
insights into current research gaps. To consider the latest
research advances, we again proceeded with the same literature
study from December 2023 to January 2024, where we verified
previously obtained literature and added new ones published
within this timeframe. We included peer-reviewed anomaly
detection algorithms for microservices published after 2015.
To assess if our search string includes relevant keywords to
overlap with the papers cited in Soldani and Brogi [18], we
compared our findings with their papers where we were able
to identify exactly 50%. However, we discovered 30 additional
papers published before February 2022 that Soldani and Brogi
did not include. In total, we found 92 papers focusing on
anomaly detection for microservices. Of these, 36 papers
were considered for further argumentation in this paper due
to their evaluation based on real-life datasets and industry
relevance. We excluded work that evaluated their approach
with benchmark systems due to their artificial setting and
injected anomalies. We provide details about the selection
process and the included and excluded papers in the replication
package [32].

To minimize selection bias, the second author executed
a blind review of the included and excluded papers and
categorized industry-relevant papers, where we achieved an
inter-rater reliability of 94.7%. To resolve discrepancies, we
discussed the decisions until we reached an agreement.

B. Semi-structured Interviews in Various Domains

We followed the guidelines by Runeson and Höst [33] for
our semi-structured interviews and relied on recommendations
for software engineering interviews by Hove and Anda [34].

We explicitly focused on interview participants from var-
ious company sizes (balancing between small and medium
enterprises and large companies), microservice architecture
(for tracing information), domains (holistic overview), and
experiences to gain domain unspecific insights (heterogeneous
sample), as outlined in Table I. We used purposive sam-
pling to contact companies from the authors’ network that
rely on anomaly detection during runtime. The goal was
to gain insights into experienced anomalies aiming to show
that anomalies and their effect are highly volatile and unpre-
dictable, factors influencing the selection of anomaly detection
approaches, and key monitoring parameters. Thus, the goal
is not to provide statistical inference but to gain and discuss
qualitative insights. Therefore, we asked for skilled experts
who either work as developers, data, or DevOps engineers
or ensure software quality. These interview participants need
to be involved in the manual or automated identification of
anomalies happening during runtime based on logs, traces
(for microservices), or metrics. Furthermore, along with our
request, we attached our interview guidelines.

ID Size1 Specific Domain Experience Years RU1 AI1 MS1

Fi
na

nc
e

B LC Finance Payment
B2B Provider

Linux-Sysadmin and R&D
manager

13 &
2 ✓ ∼

F LC Global Financial
Services Group

Data Engineer and Scientist for
Log Anomalies 14 ✓

M
MC Financial Service

Provider

Product Owner for Software
Quality, before Load Tester 18 ✓ ∼ ✓

N Load Tester and Release Au-
tomation Engineer 5 ✓ ∼ ✓

W
eb

A SC End-user Web Appli-
cation DevOps engineer 20 ✓

G
MC

Human Risk
Management
Platform

Junior Security Engineer skilled
in AI anomaly detection 3 ✓ ✓ ✓

J Site Reliability Engineer for
Cloud Applications 3 ✓ ✓ ✓

L MC Web Application
Framework Provider Product Developer 14 ✓ ✓

H
ar

dw
ar

e D SC Traffic Analysis Sys-
tem Provider Head of Software Engineering 16 ✓ ✓

I LC Manufacturing of
Machinery

Team Lead with focus on qual-
ity assurance for SPS 10+ ✓

O LC Global Digital Engi-
neering Company Embedded Software Team Lead 9 ✓

O
th

er

C MC Java/JEE Solutions
and Cloud Tech. Cloud Architect 5 ✓ ∼

E LC Tele. Company and
Network Provider Senior DevOps Engineer 3 ✓ ∼ ✓

H
LC

Software
Observability
Platform

System and DevOps Engineer 5 ✓ ✓ ✓

K Senior Data Scientist for uni-
variate time series 4 ✓ ✓ ✓

TABLE I
LIST OF INTERVIEW PARTICIPANTS WITH IDS ASSIGNED

ALPHABETICALLY AND LISTED CHRONOLOGICALLY.

In total, we interviewed 15 participants from 12 different
companies. Based on their products and services, the partic-
ipants can be assigned to four categories: Finance software
(software solutions for the financial sector), Web service (web-
based service for end users), Technology hardware (hardware-
based software or embedded systems), and Others (ranging
from services to develop, integrate, and maintain custom Java/-
JEE solutions and cloud technologies, telecommunication,
software observability), illustrating the variety of domains.

1Company Size based on OECD [35]: Small Comp. [employees≤49] (SC),
Medium Comp. [50≤employees≤249] (MC), Large Comp. [employees≥250]
(LC). Rule-based (RU) approach. AI-based (AI) approach [∼ = integrated
Dynatrace]. Microservice (MS).

Before the semi-structured interviews, we pilot-tested the
guidelines with two individuals. This process allowed us to
identify potential misunderstandings or comprehension dif-
ficulties and make necessary adjustments to the interview
guidelines. The first two authors were present during the
interviews, one responsible for guiding the interview and the
other for asking additional clarification questions while taking
notes. Every interview lasted at least 30 and up to 60 minutes
and was conducted between October 2023 and February 2024.

C. Data Extraction

For both RQ1 and RQ2, we applied inductive coding by ex-
tracting relevant information from the transcribed interviews,
done independently, and afterward applied color schemes.

In particular, for RQ1, we were interested in seeing how
the collected interview data compares to available standards
based on [36] and if there exist common interpretations and
characteristics among the industry. The main identified codes
are argue that it is difficult to define anomaly, deviation
of expectation, outliers of specific trends, synonym, negative
effect, unforeseen or not reproducible, examples.

For RQ2, we were interested in the type(s) of anomaly
detection approaches and their specific evaluation. Therefore,
the main identified codes are rule-based, AI-based, both and
advantage, disadvantage.

For RQ3, we executed deductive coding of the collected
papers from the literature review and transcribed interviews
because we wanted to base the identified data on preconceived
categories that are based on theory and existing knowledge.
Soldani and Brogi [18] categorized the input for anomaly de-
tection approaches into logs, traces, and metrics. Therefore, the
main identified codes for logs are static part, error/warnings,
others. For traces, the codes are HTTP status code, depth of
microservice invocation path, similarity between control flow
graph, response time, and for metrics, the codes are queues,
CPU, memory, network traffic, disk, energy consumption. In
RQ3, we present the overlap between literature and interviews,
also considering the differences in stated parameters between
literature and interview findings.

For all three RQs, if discrepancies arose, the authors re-
solved them through discussion where respective codes were
constantly reviewed and adapted to allow an accurate represen-
tation of the data. Furthermore, we evaluated the coded results
by consolidating with the interview participants afterward. We
provide all interview materials, including questions and coding
procedures, in the replication package [32].

III. FINDINGS AND DISCUSSION

In the following, we illustrate and discuss interpretations,
characteristics, and examples of anomalies by industry (RQ1)
and further elaborate existing anomaly detection approaches in
the industry with their advantages and shortcomings (RQ2).
These approaches rely on key monitoring parameters to
gain insights into deviant behavior. Therefore, (RQ3) gathers
industry-relevant parameters.

RQ1: Interpretations, Characteristics, and Examples of
Anomalies Within Industry

Even today, the original definition of ”anomaly” from the
IEEE Standard 1012 of 1990 [3] persists in active standards
such as the ISO/IEC/IEEE 24765:2017 Systems and Software
Engineering – Vocabulary. It reads as follows:

”Anything observed in the documentation or operation
of the software that deviates from expectations

based on previously verified software products or
reference documents.” [3]

Some participants [G, H, K, L] argue that it is difficult
to define anomaly for them like the one definition above.
Nevertheless, through our research, we have identified com-
monalities among the 15 interview participants and show their
resemblances.

Similarly to the IEEE definition, the aspect of deviations
from expectations is an essential characteristic of anomalies,
also mentioned by several participants [B, C, D, G, J, K, M].
This term is also expressed in a similar manner as abnormal
behavior [F] or described as behavior that is not desired [I].

An alternative perspective is a mathematical viewpoint,
characterizing abnormal data as outliers from specific trends
[E, M, H, J, M, N]. This primarily is described as data points
that are outside of general patterns, such as unusual extreme
values, exceeded thresholds, or abnormal decreases/increases.
Participant [G] mentioned a company-internal standard defini-
tion based on specific metrics, including latency, request rates,
error counts, system availability, and response times.

A recurring observation from the interviews was the depic-
tion of anomalies using synonyms, particularly failure [B, C,
D, K, F] or error [C, J, M, N]. In 2010, the standardization
committee [36] classified software anomalies, acknowledging
that the original term’s broad meaning led to imprecision and
impeded effective communication. Despite concerted efforts to
establish precise definitions, nearly every industry interview
revealed that these terms were frequently used in a manner
inconsistent with their formal definitions and often used inter-
changeably.

Another interesting observation by two participants is that
abnormal behavior is classified as an anomaly in their under-
standing when it results in a negative effect. Participant [B] de-
fined it as any catastrophic failure. In a similar context, partic-
ipant [D] linked it to disruptions in organizational operations,
which means, for instance, decreased user satisfaction, blocked
processes, or similar repercussions. Such circumstances need
fast action [A,B,C]. Participant [A] noted that when something
occurs more frequently or happens in critical situations, they
place greater emphasis on resolving it.

As outlined in Table II, the wide variety of underlying
reasons or root causes responsible for the observed anomaly
makes it difficult to identify anomalies. For instance, the root
causes might differ, but the final observed anomaly is similar,
such as in the anomaly examples [L-1] and [O-1], indicating a
deviation in the performance of I/O operations. The volatility
complicates the development of an accurate and universal

Examples
B-1 - Utilizing a NetApp storage system with Network File System (NFS),
the company established shared storage for all Virtual Machine (VM)s that
ran their services. One routine involved archiving all software versions. This
particular action led to an increase in the number of inodes over time,
resulting in higher response times across all services.
C-1 - A memory leak due to improper garbage collection occurred during a
software release. After some days in production, the application experienced
an unexpected failure. This issue remained undetected until an analysis
exposed a continuous increase in memory.
D-1 - For some microservices they have self-defined rules, e.g. Random-
Access Memory (RAM). If a microservice reaches a specific threshold, the
service is killed and restarted, executed automatically by Kubernetes.
F-1 - During an orchestrating process executed on a VM, the system
unexpectedly exhausted its heap space. The system continued to function
without any immediate errors or signs of failure. The only noticeable impact
was a substantial decrease in response speed.
F-2 - In a client-server interaction, the user requested some calculation
handing over an input entry. The number entered was so large (probably
because a key was pressed for too long) that it caused the system to crash.
A log with Japanese text showed up, indicating a memory overflow error.
J-1 - In a range of scenarios, an observable aggregation of diverse jobs
within the processing queue has been observed. This accumulation has
manifested in extended processing times, similar to increased request times.
For instance, JS-backend libraries have often been the root cause of such
queuing abnormal behavior.
L-1 - Logging was used to trace abnormal states for comprehensibility
and traceability. After implementing a new logging mechanism for anomaly
detection, the system failed due to excessive I/O operations.
M-1 Some applications in their company suffer from poor software
elasticity. For instance, the system can only support 500 users at a time. If
the 501st user tries to log in, the system becomes slow, possibly unstable,
and prone to errors. Eventually, it can crash.
O-1 A frequently executed routine on a CPU, accounting for only 2% of
operations, leading to excessive use of flash memory, hitting hardware limits.
This decreased I/O performance after 10,000 writing cycles, leading to long-
term performance degradation.

TABLE II
ANOMALY EXAMPLES STATED BY INDUSTRIAL PARTICIPANTS.

anomaly classification that should help in predicting unfore-
seeable or not reproducible [B, C, K, L, M, O] anomalies.

Takeaways RQ1: Anomalies in Industry

Most interview participants describe an anomaly as a devi-
ation from expectations where fast resolution is essential
to minimize negative effects, which complies with IEEE
definitions. Identified examples in Table II demonstrate an
extract of the variety of often unforeseeable anomalies
discovered by interview participants.

RQ2: Anomaly Detection Approaches in Industrial Settings

We distinguish two main approaches to identify anomalies
and their root causes used by the interviewees (see Table I)
and mentioned by industry papers. Anomalies detected by

• rule-based approaches rely on thresholds derived from
extensive domain knowledge and company-specific in-
sights (e.g., a range of 10% to 30% [D]), pattern matches
(e.g., within a specific time frame [F]), or statistical
principles (e.g., quantile regression [K]), while

• AI-based approaches use supervised and unsupervised
AI models [18] to detect patterns to identify deviations.

Every participant, spanning various company sizes, state to use
self-defined rule-based approaches. On the contrary, adopting
self-developed AI-based approaches was done only by two
companies [1st company: G, J, 2nd company: H, K], even

though in the last three years, 80% of identified industry papers
(e.g., [11], [14], [15], [37]) successfully applied various self-
developed AI-based algorithms. Four companies, however, do
not develop their own AI models but rely on commercially
available AI-algorithms, e.g., Dynatrace used by [B, C, E, M,
N]. One of the drawbacks mentioned with Dynatrace was the
number of false positives [B, C, E, M, N]. Participants [B,
M, N] receive emails when an anomaly is detected, but false
positive alerts caused them to ignore these emails.

Half of the participants [B, C, D, M, N, J, O] mentioned
that they prefer rule-based approaches due to the widespread
availability of established monitoring tools that gather essential
monitoring parameters and visualize them. Furthermore, they
can define rules for these parameters that trigger alerts. The
participants currently opted for this approach because they
require less computational costs than AI for training [J] (which
requires retraining to adapt to the latest input [G]) and detect
anomalies in nearly real-time [D, F, K].

On the contrary, rule-based approaches require extensive
domain knowledge and expertise to define valuable rules and
thresholds [C, D, F, H, J, M, N, O]. Thus, setting up these rules
is time-consuming, based on subjective insights, and might not
detect future anomalies. For instance, participant [H] stated
that one of their rules detected sudo operations. However, the
rule did not specify su where they missed these anomalies.
Participant [G] has experimented at his company with a self-
implemented AI approach to identify and detect irregular
patterns. Using K-means mainly allowed the company to
reasonably detect anomalies in that scope, but their approach
was not deemed production-ready due to shortcomings in their
training dataset. Thus, to effectively use AI-based approaches,
it is crucial to enhance dataset quality by understanding
input parameters [G], allowing to maximize AI approaches’
potential [F]. Additionally, participant [O] suggested that AI
could optimize the dataset size by finding relevant monitoring
parameters that do not introduce bias.

Takeaways RQ2: Anomaly Detection Approaches

While research mainly covers new implementations of AI
algorithms for anomaly detection, companies use partic-
ularly rule-based or commercially available AI-based ap-
proaches. The main reasons for the interviewed compa-
nies using rule-based approaches are that they have lower
computational costs, wider tool support, high adaptability
to domain constraints through self-defined rules, and fast
anomaly exposure. These rules, however, are tailored to
each company and hinge on a deep understanding of the
parameters and thresholds involved. Commercial AI-based
approaches might offer more flexible solutions to identify
patterns and anomalies in various contexts. Nonetheless, the
dataset’s quality limits the effectiveness of both rule-based
and AI-based approaches.

RQ3: Runtime Monitoring Data for Anomaly Detection

As identified in RQ2, the dataset’s quality is the foundation
of a good anomaly detection approach where using key mon-

itoring parameters and understanding their relationship helps
avoid false positives. For instance, participant [B] illustrated
that increased user requests resulted in slower response times.
Yet, it should not be considered an anomaly as the relationship
between these parameters remained unchanged. Therefore, this
section elaborates on key monitoring parameters extracted
from the systems’ runtime data to identify anomalies. We cat-
egorized these parameters into logs, traces, and metrics. Logs
are predefined semi-structured emitted messages that contain
a specific timestamp, verbosity level (such as INFO, WARN,
DEBUG, and ERROR), and unstructured natural language,
including comprehensive information about an event specified
by developers [C, F, H] [10]. A trace is a microservice-specific
data type that represents the end-to-end execution of a single
request, traversing through various microservices. A span is
a trace segment encompassing more specific metadata (e.g.,
start and end time). Metrics consist of numeric time series
data of system instances by collecting various performance
data via, for instance, Prometheus, [10] [C, D, E, G, H, J, L].
These three primary monitoring data types can be measured
via third-party software. For instance, participants rely on
Heroku, Dynatrace, OpenShift, Nagios, Grafana, Kubernetes,
Prometheus, Jaeger, GrayLog to collect, track and visualize
their runtime monitoring data.

Regardless of the specific third-party software or monitoring
data type, various parameters can be calculated from different
monitoring data types. For instance, response time can be
identified or calculated via logs, traces, or metrics [A, C].
Different errors are visible in logs via their verbosity level
and in traces via their HTTP status [J]. Out-of-memory issues
can be identified via logs or metrics [38].

We depict the three monitoring data types and their asso-
ciated key monitoring parameters for anomaly detection in
Figure 1, further elaborated in the following subsections.

1) Logs: Half of the participants look at logs to identify
anomalous behavior to troubleshoot their applications, and one
([F]) solely relies on logs.

Due to the semi-structured characteristics of logs and the
extensive volume [L] [37], [39], four participants [F, H, J,
O] extract the static part of logs for further processing. The
participants then either identify if this log was detected be-
forehand (true/false) [F] or look at the frequency within a time
frame [H, O] [27], [28], [37], [39], [40]. For the frequency, par-
ticipants [F, J, L] count the number of occurrences of a static
part of the log. Participant [F] mentioned two ways to count
it, either via event-based or sequence-based approaches. In his
company, they rely on event-based counts where the static log
gets counted when detected, which is feasible for their single-
threaded processes where logs occur in their sequential order.
Participant [L] chose a sequence-based approach because they
had a multi-threaded application where the order of the logs
may change. When only counting the occurrences as done
with the event-based approach and without considering the
time (fixed or sliding time frame), deadlocks, or the anomaly
example [M-1], that dynamic scaling of the thread pool slowed
down response times in Open Liberty might not get detected.

traces

static part of log

others

errors/warnings

depth of microservice
invocation path

similarity between
control flow graph

response time

Domain-unspecific Runtime Monitoring Data

frequency within
a time frame

error ratelog detected
beforhand error count

ftraces

logs

heartbeat
condition of
microservice

execution flow

queues

CPU

memory

network traffic

disk

energy consumption

pending messages
cache hit ratio

time until message
handled

connection pool utilization

energy derived from
observable parameter

energy consumption
of servers

sent bits
network package loss

latency

throughput
I/O

deviation

deviation

throughput/user requests

of queries per second

metrics

HTTP status code

Fig. 1. Runtime monitoring data types categorization into logs, traces, metrics,
and associated parameters.

In addition, thread names or their ID could be included in the
log line [L].

However, when calculating the frequency, participant [F]
mentioned that some parts of the software might not be
used as regularly as others, resulting in different numbers of
counts, where zero occurrences might also be feasible. Regular
heartbeats are recorded to counteract overseeing an involuntary
count of zero logs. Participant [O] further indicates that
looking at the condition (e.g., running, idle) of a microservice
via logs over time allows him to identify if the anticipated
conditions occurred as expected.

Another common parameter extracted from logs is looking
at errors or warnings. According to participants [E, G, J],
error-specific parameters include error rate (calculated as the
number of errors divided by the total number of occurred ver-
bosity levels indicated in percentage) and the counted number
of errors within a specific time frame [G, O]. Participant [J]
does not differentiate the type of error when counting the
occurrences. However, participant [F] states that they analyzed
this parameter in the log message because the term error does
not necessarily signify a system deviation (e.g., error handling
routine started) as indicated in the anomaly description [F-2].
This example also shows that the absence of the English term
error in the logs message does not indicate the absence of it.

Other potential approaches involve extracting ftraces to
understand kernel operations, especially since Participant [I]
utilizes Programmable Logic Controller (PLC) as their pro-
gramming language. Furthermore, logs can also capture the
execution flow of inter and intra services similarly to traces
where task or transaction IDs tie logs together [27], [28].

2) Traces: Participants [D, G, J, M, N] explicitly monitored
microservice architectures and, therefore, could also rely on

tracing information.
Similar to the error parameter extracted from logs, HTTP

status code allows interview participants [A, H, J, N] and
[10], [16] to extract the frequency of errors from endpoints,
such as 500 (internal server error) or generate insights into the
availability of services [26], such as 2xx (successful), or 4xx
(client error).

For calculating further parameters, a control flow graph
based on information regarding traces, microservices, and their
relation to each other is recreated [D, J], where literature often
specifies the graph as a directed acyclic graph [12], [15],
[20], [21], [30], [41], [42]. However, participant [N] stated
that generating the graph manually requires extensive system
knowledge.

Based on this graph, parameters such as the depth of
the microservice invocation path can be calculated [D, J].
Participant [J] stated that this parameter is essential when
diving deeper into the root cause of an anomaly. For instance,
more spans than anticipated might indicate an anomaly.

Industry papers revealed further parameters not identified
during the interviews. For instance, one parameter summarises
the similarity between the control flow graph of the mi-
croservices invocation pattern, such as if the in and outgoing
dependencies remain the same for similar requests or microser-
vices are missing within a trace [11], [43], [44].

Furthermore, the response time calculated via traces is
an indicator for anomalous behavior [11], [20], [29], [30].
For instance, several industry papers look at the deviation
of the response time when finding a matching invocation
path [15], [20], [21], [27], [28], [30]. Response times can
be measured for the whole request (calculated by the time
difference between the incoming request and the application’s
response) [E, N] or for the processing time of each microser-
vice [15], [21]. Furthermore, logs can also indicate a request
and response where the time between these logs is measured
[N]. Participant [K] also collects idle times within the response
times and latency [12]. As in the anomaly example [F-1] with
the exhausted heap space or example [B-1] with accumulated
inodes, deviations in system-wide response time could be an
early indicator of an accumulating anomaly and can prevent
system failures as in the anomaly example [M-1]. If the
response time increases, the load for one service might be
too high [A, C]. The response times of external systems, such
as a database and other systems, are of interest [E] [26].

3) Metrics: All participants mentioned several metric pa-
rameters. We assume metrics are mentioned that often because
these are already available, are intuitive, monitored over time
with a fixed interval, and do not require additional calculations.
Furthermore, we assume that because all participants use rules
and thresholds, they have more experience with metrics.

Several participants indicated that they observe different
parameters regarding their queues [F, J, L]. For instance, in
the anomaly example [J-1], a processing queue aggregated
too many jobs, indicating an anomaly. Thus, participant [F]
analyzed how many pending messages were in the queue and
looked at the number of resolved queries per second within a

queue [17]. Participants [A, E] use a similar metric but focus
on the time it takes until the server handles the message in
the queue (queue time).

In terms of CPU, a deviation or unusual pattern could signal
an anomaly [C, F, H] [14], [16]. In the case of participants
[C], a sudden or gradual increase may indicate a potential
anomaly. However, a decrease in CPU utilization might also
indicate an anomaly because participant [H] mentioned that
their CPUs are almost 100% utilized in their normal produc-
tion environment. The CPU-related parameter might further
be split into CPU user usage, CPU system usage, CPU wait,
or CPU throttling [H, K] [14]. However, participant [A] did
not consider CPU usage because this signals when resource
scaling is necessary.

When referring to memory, participants [C, D, J] and
[14] stated that they also look at deviations of memory and
memory dump. In the anomaly example [C-1], a memory leak
from improper garbage collection was detected by monitoring
memory consumption. Participant [D] monitors their sensor
memory so that they do not allocate more resources during
runtime than during testing. Kubernetes takes over the resource
allocation via soft and hard thresholds where services might
get restarted several times [D-1].

In addition, [H] indicated that the cache hit ratio, in com-
bination with response time, gives insights into anomalous
behavior. Participants [E, H, N] stated that they look at
connection pool utilization and if there is an unusual amount
of these connections, for instance, to a database service.

Participant [H] mentioned network traffic, where a change
in the transmitted bits or network package loss might indicate
an anomaly. Lee et al. [14] emphasized using network through-
put, and two participants focused on increases in network
traffic from increased user requests or timeout messages [J, L].
Participant [E] further identifies latency regarding the network
or network throughput [14], [16].

Disk parameters are also a good indication for identifying
a deviating behavior, as participants [F, H] indicated. For
instance, [H] looks at disk throughput and disk I/O, such as
I/O wait, idle, and the device read speed [14]. Participant [I]
relies on Linux-based metrics measured via iotop, watching
I/O usage information output by the Linux kernel to measure
stress and increased load on hard disks.

During the literature review, we identified that energy con-
sumption is not considered so far for anomaly detection. Thus,
we explicitly asked our interview participants if they already
employed this parameter in their anomaly detection approach.
So far, one participant has used it to measure their hardware’s
energy consumption. However, they stated that they have not
tried to measure their processors’ energy consumption, for
instance, with Running Average Power Limit (RAPL) [I].
Several participants also do not measure this type of metric
but do believe that this might be a potential indication for
anomalies and are eager to explore this additional parameter
[C, D, F, K, L].

However, participants [G, H, I, J] argued that cloud-based

deployment makes it impossible to physically measure energy
consumption, and cloud providers do not provide these pa-
rameters. For instance, AWS or Google bills based on hourly
usage without providing insights into energy consumption.
Participant [D] also mentioned lacking tools to monitor server
energy consumption.

Contrary, Participant [C] believes measuring energy could
be feasible. Participants [D, M, N] suggested that already
observable metrics, like CPU or memory, could assist with
calculating this parameter. However, optimization strategies
might distort the parameter when considering energy consump-
tion. Thus, when an increase in energy outside of the threshold
is monitored, a potential anomaly might have occurred.

Participants [K, L], however, suggested that considering
server energy consumption could provide insights into how
other systems affect the software under test. However, accurate
measurement and interpretation are crucial, as participant [B]
noted significant server and VM energy consumption fluctu-
ations. Thus, it is challenging to map energy consumption to
anomalies due to many influencing factors (e.g., energy use
by unrelated monitoring tools on the same server) [B, H].
In addition, participant [C] noted modern solutions targeting
energy reduction by shutting down unused applications and
restarting them upon demand. Consequently, zero energy usage
should not be considered an anomaly in such scenarios. In
embedded systems, measuring energy is intricate due to the
infinitesimally small units (e.g., Milliamperes) where temper-
ature might influence energy consumption [O].

4) General Remarks: We recognized that the mentioned
parameters do not differ based on the participants’ domain,
used approach, or whether they monitor a microservice or
monolithic architecture [B, D, H, M, N]. A monolith can be
seen as one microservice where logs or metrics, for instance,
cannot be assigned to one specific service but are measured for
the whole monolith (e.g., when deployed via a container [B]).
Also, microservice-based systems can first look at system-wide
parameters, diving deeper into more specific information for
each microservice [D]. However, it is essential to note that
orchestration tools, such as Kubernetes, might influence the
system behavior and, thus, ultimately, the observed param-
eters due to different scheduling of resources or automated
scaling [H]. Thus, looking at parameters in combination and
their correlation is essential to avoid identifying an anomaly
although the system performs as expected.

Moreover, as discussed by participants [H, I, K], an optimal
sampling interval is crucial, avoiding excessive fluctuation
when monitoring runtime data too frequently. Participant [H]
and [26] note that a wide sampling interval might miss
deviations, and participant [K] indicated that the interval
must be chosen sensibly to prevent excessive data collection.
Participant [M] added that the aggregation of parameters over
a time frame (e.g., average, etc.) also influences how good
anomalies are displayed.

Takeaways RQ3: Key Monitoring Parameters

Runtime monitoring data consists of three data types - logs,
traces, and metrics. Figure 1 illustrates the key monitoring
parameters to identify anomalies.

IV. THREATS TO VALIDITY

This section discusses the Threats to Validity according to
Wohlin et al. [45] and illustrates how we mitigated them.

We avoid a lack of Internal Validity by using data tri-
angulation via a literature study and interviews to provide
a definition on anomalies during runtime, identify anomaly
detection approaches that base their insights on runtime mon-
itoring data types and their respective parameters. Therefore,
we extended the literature study by [18] and included 36
industry papers. To mitigate the papers‘ selection bias, a
second author conducted a blind review as indicated in Section
II-A. Furthermore, we gained insights into 12 companies via
15 interview participants, where we mitigated coding bias
by discussing the generated codes and assignment thereof
with two authors. However, the sample size consists of 15
participants, which might limit the generalizability of the
findings. However, this study aims to gain in-depth insights
and understand the participants’ experiences and perspectives.
The focus was on exploring detailed data rather than achieving
statistical generalizability. We considered that this sample size
could emphasize atypical responses, which we mitigated by
providing the number of participants who made this statement.
Furthermore, four interview participants have under five years
of experience in this area, which might seem to render them
less suitable. However, not only did the contacted company
representative explicitly forward us these contacts, but also
participants [G, H, K] focus on research regarding enhancing
their companies’ anomaly detection approach.

We enhanced the External Validity by selecting interview
participants from different domains (Finance, Web, Hardware,
Others), company sizes, and experiences. Although partici-
pants mentioned different root causes of anomalies, especially
for the hardware domain, the observed anomalies and param-
eters were the same as in other domains. Thus, no significant
differences in the anomaly detection strategies and parameters
could be identified when analyzing a specific domain. In
addition, the literature reviews case studies further enhance the
applicability of anomaly detection approaches and parameters
in various domains.

To minimize the threat to Construct Validity, we identified
that numerous parameters could be derived from various
runtime monitoring data types depending on the interview
participants’ monitoring strategies, complicating their classi-
fication. Thus, we provided detailed parameter descriptions
with additional input when the parameter might get extracted
from other monitoring data types and calculation methods to
address this (e.g., response time calculated via logs or traces,
errors identified via logs and traces).

Regarding Conclusion Validity, the obtained key runtime
parameters are more difficult to extract from AI algorithms

presented in published literature because the authors nearly
always did not provide a dataset, code to the algorithm, or
discuss their chosen input. Furthermore, AI-based approaches
do not necessarily require dissecting the dataset into single
parameters but entrust the AI model to make sense of the
monitoring data. In addition, interview participants define
rules on their parameters, providing more knowledge of key
monitoring parameters for their anomaly detection.

V. CONCLUSION

Software systems must function reliably in industry, al-
though anomalies are becoming more prevalent. Analyzing
runtime monitoring data, including logs, traces for microser-
vices, and metrics, is challenging due to the required excessive
knowledge of the system and the huge amount of collected
monitoring data. Detecting these unpredictable anomalies as
soon as possible avoids more serious system failures. There-
fore, it’s crucial to understand anomalies in various domains,
how they are detected in the industry, and which key monitor-
ing parameters extracted from runtime monitoring data depict
anomalies to enhance anomaly detection methods.

Therefore, we extended a literature survey, resulting in 36
relevant industry papers, and executed 15 semi-structured
interviews across various domains. RQ1 identified that our
industrial interview participants describe an anomaly as a
deviation from expectations that has outliers of thresholds
in monitoring data and negatively affects the company.
These anomalies are also referred to as errors and failures
where the interview participants provided us with several
examples. Regarding RQ2, our analysis revealed that all
twelve companies applied rule-based anomaly detection,
whereas two companies developed an internal AI-based
approach and four companies relied on commercial AI-based
approaches. Notably, the existing literature predominantly
focuses on AI-based approaches. For all approaches, a
deep understanding of the key monitoring parameters and
thresholds is essential to improve both anomaly detection
approaches. Thus, based on RQ3, we provide a concise
summary of key monitoring parameters (collected in Figure
1) extracted from the runtime monitoring data types.

As identified, it is essential to understand and improve
the quality of the collected datasets by understanding key
monitoring parameters, their relationships, and their influences
on the system or microservice. Therefore, future work will
establish a statistical model based on these parameters that
provides insights into the parameters’ relationship and neces-
sity. Furthermore, cause-effect relations of an anomaly and the
resulting system behavior should be calculated. To validate
the explainability model, we will employ a benchmark sys-
tem, TrainTicket [7], with injected anomalies in a controlled
environment and a case study of real-world data comprising
logs, Jaeger, and Prometheus data. Given energy consump-
tion’s potential as a new anomaly-detection parameter, we
will consider RAPL and try to measure Watt with an external
voltage metering tool. Based on the new insights, we can make

informed decisions on their dataset and propose additional
rules for detecting anomalies in the company.

REFERENCES

[1] R. Kemmerer and G. Vigna, “Intrusion detection: a brief history and
overview,” Computer, vol. 35, no. 4, pp. supl27–supl30, 2002.

[2] B. Dornauer, M. Felderer, J. Weinzerl, M.-C. Racasan, and M. Hess,
“Sohist: A tool for managing technical debt through retro perspective
code analysis,” in Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering, ser. EASE ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
184–187. [Online]. Available: https://doi.org/10.1145/3593434.3593460

[3] I. S. Board, “Ieee standard glossary of software engineering
terminology,” Office, vol. 121990, p. 1, 1990. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=159342

[4] M. S. Islam, W. Pourmajidi, L. Zhang, J. Steinbacher, T. Erwin, and
A. Miranskyy, “Anomaly detection in a large-scale cloud platform,”
Proceedings - International Conference on Software Engineering, pp.
150–159, may 2021.

[5] L. Mariani, M. Pezzè, O. Riganelli, and R. Xin, “Predicting failures in
multi-tier distributed systems,” Journal of Systems and Software, vol.
161, p. 110464, mar 2020.

[6] D. Samariya and A. Thakkar, “A comprehensive survey of anomaly
detection algorithms,” Annals of Data Science, vol. 10, pp. 829–850,
2023. [Online]. Available: https://doi.org/10.1007/s40745-021-00362-9

[7] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji et al., “Fault Analysis and
Debugging of Microservice Systems: Industrial Survey, Benchmark Sys-
tem, and Empirical Study,” IEEE Transactions on Software Engineering,
vol. 47, no. 2, pp. 243–260, feb 2021.

[8] M. Steidl, M. Gattringer, M. Felderer, R. Ramler, and M. Shahriari,
“Requirements for Anomaly Detection Techniques for Microservices,”
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13709
LNCS, pp. 37–52, 2022.

[9] F. Silva, V. Lelli, I. Santos, and R. Andrade, “Towards a Fault
Taxonomy for Microservices-Based Applications,” ACM International
Conference Proceeding Series, pp. 247–256, oct 2022. [Online].
Available: https://dl.acm.org/doi/10.1145/3555228.3555245

[10] S. Zhang, P. Jin, Z. Lin, Y. Sun, B. Zhang et al., “Robust Failure
Diagnosis of Microservice System through Multimodal Data,” IEEE
Transactions on Services Computing, vol. 16, no. 6, pp. 3851–3864,
feb 2023. [Online]. Available: https://arxiv.org/abs/2302.10512v2

[11] Z. Xie, H. Xu, W. Chen, W. Li, H. Jiang et al., “Unsupervised
Anomaly Detection on Microservice Traces through Graph VAE,”
ACM Web Conference 2023 - Proceedings of the World Wide Web
Conference, WWW 2023, pp. 2874–2884, apr 2023. [Online]. Available:
https://dl.acm.org/doi/10.1145/3543507.3583215

[12] Z. Xie, C. Pei, W. Li, H. Jiang, L. Su et al., “From Point-wise to Group-
wise: A Fast and Accurate Microservice Trace Anomaly Detection
Approach,” ESEC/FSE 2023 - Proceedings of the 31st ACM Joint
Meeting European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1739–1749, nov 2023.
[Online]. Available: https://dl.acm.org/doi/10.1145/3611643.3613861

[13] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan et al., “CloudRanger: Root cause
identification for cloud native systems,” Proceedings - 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CC-
GRID 2018, pp. 492–502, jul 2018.

[14] C. Lee, T. Yang, Z. Chen, Y. Su, Y. Yang, and M. R.
Lyu, “Heterogeneous Anomaly Detection for Software Systems via
Semi-supervised Cross-modal Attention,” Proceedings - International
Conference on Software Engineering, pp. 1724–1736, feb 2023.
[Online]. Available: https://arxiv.org/abs/2302.06914v1

[15] S. Zhang, Z. Pan, H. Liu, P. Jin, Y. Sun et al., “Efficient and robust trace
anomaly detection for large-scale microservice systems,” Proceedings -
International Symposium on Software Reliability Engineering, ISSRE,
pp. 69–79, 2023.

[16] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang et al., “Practical Root
Cause Localization for Microservice Systems via Trace Analysis,” 2021
IEEE/ACM 29th International Symposium on Quality of Service, IWQOS
2021, jun 2021.

[17] D. Liu, C. He, X. Peng, F. Lin, C. Zhang et al., “MicroHECL: High-
efficient root cause localization in large-scale microservice systems,”
Proceedings - International Conference on Software Engineering, pp.
338–347, may 2021.

[18] J. Soldani and A. Brogi, “Anomaly Detection and Failure Root Cause
Analysis in (Micro) Service-Based Cloud Applications: A Survey,”
ACM Computing Surveys, vol. 55, no. 3, p. 39, feb 2022. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/3501297

[19] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie et al., “Enjoy
your observability: an industrial survey of microservice tracing and
analysis,” Empirical Software Engineering, vol. 27, no. 1, pp. 1–28,
jan 2022. [Online]. Available: https://link.springer.com/article/10.1007/
s10664-021-10063-9

[20] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen et al., “Unsupervised
detection of microservice trace anomalies through service-level deep
bayesian networks,” Proceedings - International Symposium on Software
Reliability Engineering, ISSRE, vol. 2020-Octob, pp. 48–58, oct 2020.

[21] M. Jin, A. Lv, Y. Zhu, Z. Wen, Y. Zhong et al., “An Anomaly Detection
Algorithm for Microservice Architecture Based on Robust Principal
Component Analysis,” IEEE Access, 2020.

[22] A. Ikram, S. Chakraborty, S. Mitra, S. K. Saini, S. Bagchi, and M. Ko-
caoglu, “Root Cause Analysis of Failures in Microservices through
Causal Discovery,” in Advances in Neural Information Processing Sys-
tems (NeurIPS), 2022.

[23] J. Chen, F. Liu, J. Jiang, G. Zhong, D. Xu et al., “TraceGra: A trace-
based anomaly detection for microservice using graph deep learning,”
Computer Communications, vol. 204, pp. 109–117, apr 2023.

[24] M. de Silva, S. Daniel, M. Kumarapeli, S. Mahadura, L. Rupasinghe,
and C. Liyanapathirana, “Anomaly Detection in Microservice Systems
Using Autoencoders,” 4th International Conference on Advancements in
Computing, ICAC 2022 - Proceeding, pp. 488–493, 2022.

[25] M. V. Mäntylä, M. M. Fi, and Y. Wang, “LogLead – Fast and
Integrated Log Loader, Enhancer, and Anomaly Detector,” nov 2023.
[Online]. Available: https://arxiv.org/abs/2311.11809v2

[26] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “AutoMAP:
Diagnose Your Microservice-based Web Applications Automatically,”
The Web Conference 2020 - Proceedings of the World Wide Web
Conference, WWW 2020, pp. 246–258, apr 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3366423.3380111

[27] T. Jia, L. Yang, P. Chen, Y. Li, F. Meng, and J. Xu, “LogSed: Anomaly
Diagnosis through Mining Time-Weighted Control Flow Graph in Logs,”
IEEE International Conference on Cloud Computing, CLOUD, vol.
2017-June, pp. 447–455, sep 2017.

[28] T. Jia, P. Chen, L. Yang, Y. Li, F. Meng, and J. Xu, “An Approach
for Anomaly Diagnosis Based on Hybrid Graph Model with Logs
for Distributed Services,” Proceedings - 2017 IEEE 24th International
Conference on Web Services, ICWS 2017, pp. 25–32, sep 2017.

[29] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection and clas-
sification using distributed tracing and deep learning,” Proceedings -
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2019, pp. 241–250, may 2019.

[30] “Anomaly detection from system tracing data using multimodal
deep learning,” IEEE International Conference on Cloud Computing,
CLOUD, vol. 2019-July, pp. 179–186, jul 2019.

[31] P. Ralph, N. bin Ali, S. Baltes, D. Bianculli, J. Diaz et al., “Empirical
Standards for Software Engineering Research,” oct 2020. [Online].
Available: https://arxiv.org/abs/2010.03525v2

[32] M. Steidl and B. Dornauer, “Replication Package - How Industry
Tackles Anomalies during Runtime: Approaches and Key Monitoring
Parameters,” May 2024. [Online]. Available: https://zenodo.org/doi/10.
5281/zenodo.10637562

[33] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, apr 2009. [Online]. Available:
https://link.springer.com/article/10.1007/s10664-008-9102-8

[34] S. E. Hove and B. Anda, “Experiences from conducting semi-structured
interviews in empirical software engineering research,” Proceedings -
International Software Metrics Symposium, vol. 2005, pp. 10–23, 2005.

[35] OECD, Entrepreneurship at a Glance 2017. OECD, 9 2017.
[36] S. E. S. C. of the IEEE Computer Society, “Ieee std 1044-2009

(revision of ieee std 1044-1993), ieee standard classification for software
anomalies,” 2010.

[37] M. Catillo, A. Pecchia, and U. Villano, “AutoLog: Anomaly detection by
deep autoencoding of system logs,” Expert Systems with Applications,
vol. 191, p. 116263, apr 2022.

[38] J. Huang, Y. Yang, H. Yu, J. Li, and X. Zheng, “Twin Graph-Based
Anomaly Detection via Attentive Multi-Modal Learning for Microser-
vice System,” Proceedings - 2023 38th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2023, pp. 66–78, 2023.

[39] M. Cinque, R. Della Corte, and A. Pecchia, “Micro2vec: Anomaly
detection in microservices systems by mining numeric representations
of computer logs,” Journal of Network and Computer Applications, vol.
208, p. 103515, dec 2022.

[40] H. Shan, Y. Zhang, Y. Chen, X. Xiao, H. Liu et al., “ϵ-
Diagnosis: Unsupervised and real-time diagnosis of small-window
long-tail latency in large-scale microservice platforms,” The Web
Conference 2019 - Proceedings of the World Wide Web Conference,
WWW 2019, pp. 3215–3222, may 2019. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3308558.3313653

[41] L. Meng, F. Ji, Y. Sun, and T. Wang, “Detecting anomalies in microser-
vices with execution trace comparison,” Future Generation Computer
Systems, vol. 116, pp. 291–301, mar 2021.

[42] T. Wang, W. Zhang, J. Xu, and Z. Gu, “Workflow-Aware Automatic
Fault Diagnosis for Microservice-Based Applications with Statistics,”
IEEE Transactions on Network and Service Management, vol. 17, no. 4,
pp. 2350–2363, dec 2020.

[43] R. Ding, C. Zhang, L. Wang, Y. Xu, M. Ma et al., “TraceDiag:
Adaptive, Interpretable, and Efficient Root Cause Analysis on Large-
Scale Microservice Systems,” ESEC/FSE 2023 - Proceedings of the
31st ACM Joint Meeting European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp.
1762–1773, nov 2023. [Online]. Available: https://dl.acm.org/doi/10.
1145/3611643.3613864

[44] A. Bento, J. Correia, R. Filipe, F. Araujo, and J. Cardoso,
“Automated Analysis of Distributed Tracing: Challenges and Research
Directions,” Journal of Grid Computing, vol. 19, no. 1, pp. 1–15,
mar 2021. [Online]. Available: https://link.springer.com/article/10.1007/
s10723-021-09551-5

[45] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

https://doi.org/10.1145/3593434.3593460
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342
https://doi.org/10.1007/s40745-021-00362-9
https://dl.acm.org/doi/10.1145/3555228.3555245
https://arxiv.org/abs/2302.10512v2
https://dl.acm.org/doi/10.1145/3543507.3583215
https://dl.acm.org/doi/10.1145/3611643.3613861
https://arxiv.org/abs/2302.06914v1
https://dl.acm.org/doi/abs/10.1145/3501297
https://link.springer.com/article/10.1007/s10664-021-10063-9
https://link.springer.com/article/10.1007/s10664-021-10063-9
https://arxiv.org/abs/2311.11809v2
https://dl.acm.org/doi/10.1145/3366423.3380111
https://arxiv.org/abs/2010.03525v2
https://zenodo.org/doi/10.5281/zenodo.10637562
https://zenodo.org/doi/10.5281/zenodo.10637562
https://link.springer.com/article/10.1007/s10664-008-9102-8
https://dl.acm.org/doi/10.1145/3308558.3313653
https://dl.acm.org/doi/10.1145/3308558.3313653
https://dl.acm.org/doi/10.1145/3611643.3613864
https://dl.acm.org/doi/10.1145/3611643.3613864
https://link.springer.com/article/10.1007/s10723-021-09551-5
https://link.springer.com/article/10.1007/s10723-021-09551-5

VI. RESPONSE LETTER TO THE REVIEWERS

Thank you for your concrete and constructive feedback, which we used to enhance and improve our paper. We took all
comments of the meta-review, as well as the comments from each reviewer, into consideration and adapted the paper as follows:

A. add background

Due to the constraints of the paper’s length, we added more background information directly into the introduction section.
Therefore, we provided more information as follows:

• what software anomaly detection during runtime is
• added an explanation why a consensus regarding interpretation, characteristics, and examples of anomalies is important
• additional related work that identifies algorithms for anomaly detection
• details about the runtime monitoring data (logs, traces, metrics)
Thus, in total, we now include information regarding the need for anomaly detection within the industry, what anomaly

detection is, a description of approaches that allow developers and operators to detect software anomalies, and a description
regarding runtime monitoring data (logs, traces, and metrics). However, this should just give an overview and emphasize the
need to define anomalies answered in RQ1, the rationale to understand why rule-based or AI-based approaches are used in
industry in RQ2, and the different parameters extracted from runtime monitoring data set in RQ3.

B. provide details on the literature review

We provide further details about the literature review by ...
• describing why we have chosen the paper by Soldani and Brogi [18] as our base for extending the survey by our literature

review
• providing information on why the literature study stretched over 8 months

C. add interview questions (e.g., as link to online material)

We further enhanced our replication package [32] with the following information:
• Further details about the interviews (participant selection, interview guidelines, interview questions).
• Description regarding the applied purposive sampling strategy
• Coding Schema and colored highlighting for our data extraction

D. clarify the description of your research method/experimental design: the process of selecting companies and how results
were analyzed and related (interviews vs. literature)

Based on your feedback, we described ...
• the identification of companies and respective participants via purposive sampling where we wanted to balance SME

and large companies, microservice architectures, and various domains. We stated that for this study the goal was to gain
qualitative insights rather than statistical inference.

• the data extraction. Therefore, we added a subsection to the Study Design where we specifically presented our data
extraction, once for RQ1 and RQ2, via inductive coding because the main goal was to derive codes from the data without
having any predefined codes that could limit the findings and interpretations of the interview participants’ statements. For
further visibility and understanding of how the results were obtained, we added the color schemes for the codes in the
replication package as well. For RQ3, we elaborated on how we derived the codes from interviews and literature and
combined these findings.

E. add threats to validity related to participant selection and sample size

We further considered your valuable remark about potential biases due to the sample size. Therefore, we specified that
statistical generalizability was not the main goal but to achieve a thorough understanding of the participants’ experiences and
perspectives. Furthermore, we considered that this sample size could emphasize atypical responses, which we mitigated by
stating the number of participants who made this statement. In addition, we stated why four participants have less than five years
of experience and that we did not want to exclude them because not only did the people we contacted from the company highly
recommend talking to these people, but also three participants were tasked to enhance their companies’ anomaly detection
approach.

	Introduction
	Study design
	Extended Literature Review
	Semi-structured Interviews in Various Domains
	Data Extraction

	Findings and Discussion
	Logs
	Traces
	Metrics
	General Remarks

	Threats to Validity
	Conclusion
	References
	Response letter to the reviewers
	add background
	provide details on the literature review
	add interview questions (e.g., as link to online material)
	clarify the description of your research method/experimental design: the process of selecting companies and how results were analyzed and related (interviews vs. literature)
	add threats to validity related to participant selection and sample size

