Unveiling Data Preprocessing Patterns
in Computational Notebooks

Valentina Golendukhina
Computer Science Department
University of Innsbruck
Innsbruck, Austria
valentina.golendukhina@uibk.ac.at

Abstract—Data preprocessing, which includes data integration,
cleaning, and transformation, is often a time and effort-intensive
step due to its fundamental importance. This crucial phase is inte-
gral for ensuring the quality and suitability of data for subsequent
stages, such as feature engineering and model training. This pa-
per explores the current state of data preprocessing in the context
of Machine Learning (ML) and data-driven systems. With a focus
on Python-based notebooks, we investigate how prevalent data
preparation practices are in computational notebooks focused
on ML model development. The paper presents the results of
the analysis of 149,048 computational notebooks collected from
Kaggle, a platform hosting data science competitions. Despite
the crucial role played by data preprocessing in guaranteeing
the effectiveness of model performance, our results expose a
significant lack of emphasis on data preprocessing activities in the
examined notebooks. Notably, users holding the highest rankings
tend to skip data preprocessing steps and focus on model-related
activities. Although other users exhibit more frequent incorpo-
ration of data preprocessing methods, the overall prevalence
remains relatively limited. We discovered that data preparation
practices such as missing values are present in 20% to 60% of the
notebooks depending on a competition, whereas outliers handling
are only present in less than 20% of the analyzed scripts. The
most frequently and consistently applied practices are the data
transformation methods.

Index Terms—Data Quality, Data Cleaning, Machine Learning

I. INTRODUCTION

With the advances and implementation of Machine Learn-
ing (ML) and data-driven systems in various industries and
domains, the importance of ensuring the quality of input data
has become increasingly pronounced. As these technologies
enter fields ranging from healthcare to finance, the need for
a comprehensive understanding of data preparation becomes
imperative. Data preprocessing, also known as data wrangling,
is a process of bringing the raw data into an appropriate form
for further usage including such steps as data integration,
data cleaning, and data transformation [1]. This step, highly
important for the final results, is often both time and effort-
intensive [2].

The transition from traditional software engineering to the
development of data-driven systems, featuring ML models,
results in new software referred to as Software 2.0 [3]. This

This work was supported by the Austrian Research Promotion Agency
(FFG) in the frame of the project ConTest [888127]

Michael Felderer
German Aerospace Center (DLR)
University of Cologne
Cologne, Germany
michael.felderer@dlr.de

paradigm shift not only encompasses alterations in the devel-
opment lifecycle and the libraries employed but also introduces
changes in the tools used throughout the process. Notably,
computational notebooks have emerged as a tool of choice
for data scientists and practitioners engaged in data analysis
and model construction, including Jupyter notebooks' [4]. The
notebooks integrate code, visualizations, and markdown text
within the same environment allowing developers to achieve
faster feedback and a greater level of process understanding.

Due to a rather model-oriented approach to ML devel-
opment, many studies have focused on the analysis of ML
models and ML development workflows [3], [5], [6], whereas
less focus has been on data preprocessing. Studying the data
preparation process is essential not only for comprehending
the underlying patterns but also for enabling requirements
engineers to more effectively formulate data-related specifica-
tions concerning data collection, data formats, and data range
considerations [7]. Moreover, in a landscape where ML models
are increasingly trained on vast open-source datasets including
computational notebooks [5], [8], there arises a critical need
to assess the quality and characteristics of such data.

In this research, we aim to provide a baseline for further
examination of the data preprocessing stage by collecting and
providing an extensive list of data preprocessing functions
for the keyword-based static code analysis. Furthermore, we
applied the keyword-based approach to answer the following
research questions:

1) What data preprocessing methods are the most applied

for tabular data?

2) Do data preprocessing practices correlate with the expe-

rience of the ML developers?

3) What are the variations observed across different com-

petitions on Kaggle?

In our investigation, we prioritize addressing context-
independent errors such as duplicates and missing values and
aim to analyze data preprocessing as an integral part of the
ML development flow, executed within the same file as the
model construction. Examining competition notebooks serves
as a practical illustration, offering a trade-off between more
complex projects tailored for real-world applications and those

Uhttps://jupyter.org

o

g Data processing N

1]

Vo 4 Data preprocessing N\ |

1 éﬁ 1

Vg = '

E = Data integration Data cleaning Data transformation § E
7]

1 3 (O o= '
S : o . & ‘
—>» 2 > « Data merge « Missing values « Data type handling —» 5 —>
' Pom + Redundancies treatment o Normalization o .
1 chs removal « Noise treatment 2 !
P g

__

Fig. 1. Typical steps of data preparation workflow with corresponding activities

designed as assignment notebooks or toy projects and provides
practices of both experienced ML developers and beginners.

The remainder of this paper is structured as follows. Sec-
tion II introduces the main concepts and reviews the related
work. Section III provides the methodology of data selection,
collection, and analysis procedures. Subsequently, Section IV
presents the results derived from the analysis. Section V
discusses the findings, highlights future work, and identifies
potential threats to validity. Finally, Section VI summarizes
the results and concludes the paper.

II. BACKGROUND AND RELATED WORK

This section provides background information on key as-
pects: data cleaning and preparation, computational notebooks
such as Jupyter notebooks, and the Kaggle platform (Sec-
tions II-A and II-B). Following the background, Section II-C
presents an overview of earlier work related to this paper.

A. Data Preparation

Data preprocessing is one of the most time and effort-
intensive stages of the data processing pipeline [1]. This stage
contains several tasks such as data integration, cleaning, and
transformation, and prepares the data for subsequent stages,
including feature engineering and model training. Figure 1
shows a typical data processing pipeline. Depending on the
type of data, different data preprocessing is required to ensure
data quality. For the purposes of this paper, we focus on
structured and semi-structured data and do not cover issues
associated with labeling.

According to Abedjan et al., there are four types of data
errors: outliers, duplicates, rule violations, and pattern vio-
lations [9]. Outliers refer to data points that deviate from
the established distribution of the dataset, while duplicates
involve fully or partially replicated entities representing the
same real-world entity. Rule violations are violations of in-
tegrity constraints, including such issues as missing values.
Pattern violations encompass values that violate syntactic and
semantic constraints, such as those related to data types or
formatting.

In this study, we focus on context-independent issues in-
cluding missing values, duplicated values, outliers, and data

type issues, thus covering data integration, cleaning, and
transformation stages.

B. Computational Notebooks and Kaggle

A computational notebook is a coding environment that
offers interactive tools for collaborative data analysis and
combines executable scripts, immediate code outputs, visu-
alizations, and written text [10]. One type of computational
notebook is Jupyter notebook widely adopted by data scientists
and ML engineers [4] due to its interactive and collaborative
nature.

Kaggle? is a platform for data science competitions where
individuals and teams of different experience levels compete
and learn to develop predictive models for a given dataset.
It provides datasets, a cloud-based coding environment, and
a collaboration and knowledge-sharing community of data
scientists and machine learning practitioners. The Kaggle
platform facilitates the creation and execution of scripts and
computational notebooks authored in either R or Python within
its work environment encouraging the participants to learn
from and reuse computational notebooks.

A ranking system within Kaggle provides an understand-
ing of users’ skills and experience. There are currently five
tiers: novice, contributor, expert, master, and grandmaster. The
progress is calculated based on tournaments and challenges
won, submitted notebooks, and their quality.

Mining Jupyter notebooks is a commonplace practice for
gaining insights not only into characteristics of computational
notebooks [11], [12] but also into prevailing programming
practices [5], [6]. By examining Jupyter notebooks, researchers
can collect valuable information about data preprocessing,
model development, and other aspects of the computational
workflow [5], [13], while also uncovering broader trends in
coding practices within the programming community.

C. Related Work

Several authors analyzed distinct data preprocessing steps
by computational notebook mining. Yan and He [8] crawled
through four million Jupyter notebooks to analyze data frame

2www.kaggle.com

transformations and data preparation choices of data scientists
to create an automated data preparation-oriented recommen-
dation system specifically focusing on seven API calls from
Pandas library. Negrini et al. [14] proposed a static analysis
method for tracking data transformations focusing on Pan-
das data frame transformations. By examining and executing
public notebooks, Yang et al. [13] investigated data leakage
in notebooks. Their analysis included Kaggle notebooks and
showed that more than 55% of competition notebooks tend to
have preprocessing leakage due to data transformation issues.

Several authors focused on the analysis of ML workflows
including the data preparation stage. Dilhara et al. [3] analyzed
ML libraries usage, challenges, and trends within the ML
development workflow. They identified the most popular ML
libraries used for data cleaning (Keras, Sklearn, and Ten-
sorflow) and analyzed the libraries within the development
stages by searching for certain API calls. However, the main
focus of the research was on the model-related stages, whereas
only 12 data-related APIs were identified. Braiek et al. [15]
examined the state of ML frameworks integration in open
source repositories, the contributions of companies and the
ML community, and top-10 company and community-driven
frameworks. Ramasamy et al. [5] manually annotated the data
science steps of each cell in 470 Jupyter notebooks from
GitHub repositories and assigned them to one of the ML
development stages including data-related steps such as data
exploration and data preprocessing.

Several papers investigated the state of ML development
by analyzing computational notebooks. Psallidas et al. [6]
analyzed over 8 million notebooks and 2 million enterprise ML
pipelines developed within Microsoft to investigate the most
used ML libraries, top learners, and transformers. Choetkier-
tikul et al. [10] mined Jupyter notebooks to understand the
characteristics of data science projects and their connection to
the ranking of notebook contributors.

To the best of our knowledge, this paper is the first study to
comprehensively collect data preprocessing API calls and in-
corporate all data preprocessing stages in the analysis, aiming
to estimate the extent of their application within the domain
of ML model development.

III. METHODOLOGY

Initially, we analyzed over 200,000 notebooks from Kaggle.
In this section, we discuss the data collection procedures and
data analysis methods applied in the study.

A. Data Collection

In our analysis, we use publicly available computational
notebooks from Kaggle with scripts written in Python, which
has currently shown to be the most used language for data sci-
ence and ML projects [15], and in Jupyter notebooks format,
which is the primary environment for data science developers
utilizing ML components [4]. To enhance transparency and
reproducibility of the results, we used the KGtorrent dataset
[16] that comprises computational notebooks and their meta-
data collected from Kaggle and widely used in academia for

TABLE I
CATEGORIES OF DATA PREPROCESSING ACTIVITIES

Category
Duplicates

Description
APIs in this category focus on identifying and han-
dling duplicated entries within datasets, ensuring
data integrity by addressing redundancy.
Functions that manage and manipulate the index of
data frames, including setting, resetting, and modi-
fying index values for efficient data access.
Functions designed to detect, impute, or remove
missing or null values in the dataset to maintain data
completeness and accuracy.
Functions that preprocess text data.
Keywords for *Outlier’ aim to identify lines of code
handling outliers - data points that deviate signifi-
cantly from the expected distribution.
This category describes statistical data transforma-
tion APIs for scaling and normalization of values.
APIs in the *Transform’ category specialize in data
transformation processes, enabling the conversion or
manipulation of data to meet specific requirements
or formats.
APIs categorized under 'Type’ address issues related
to data types, ensuring consistency and correctness
by managing the format and representation of differ-
ent data types within datasets.
Functions that ensure that certain fields or records
are unique within the dataset.
This category encompasses APIs that can address
more than one data issue including such methods
as .replace, .map, .apply.

Index

Missing values

NLP
Outlier

Statistical

Transformation

Type

Uniqueness

Other

computational notebooks mining [17], [18]. For our study, we
retrieved information about the users, their experience tier,
points, competition titles, script languages, and if a notebook
was forked.

To filter toy projects, and tutorials, and avoid copied
projects, we established several inclusion criteria:

o The file has an extension .ipynb.

o The notebook has at least 10 cells of code to filter out
empty and unfinished notebooks.

o The notebook was not forked from another repository to
avoid repetitive notebooks.

o Python is a declared programming language.

 Input data is in tabular form.

After analyzing the main packages used in the notebooks,
we discovered that Pandas is one of the most frequently used
packages (used in more than 90% of all projects) and can
be considered as an identifier for projects focusing on tabular
data.

After applying inclusion criteria to 250,000 randomly se-
lected notebooks, 184,570 notebooks were left for analysis.
For the code analysis extraction, we followed the procedure
described in the study by Psallidas et al. [6]. Since Jupyter
supports different cell types such as text and code, we parsed
the downloaded files and extracted code cells from the json
files. After the extraction, we could estimate the number of
lines of code and code cells in each notebook. To analyze the
code patterns, we omitted the output cell and markdown text
but included commented code in the code cells.

B. API Calls Collection

The collection of the data preprocessing API calls was
performed in two rounds. Firstly, we looked into 20 popular
ML libraries identified by Braiek et al. [15] to find data-related
APIs. Furthermore, we identified the most popular libraries
within the collected notebooks, such as Pandas and Numpy,
for further manual labeling. Secondly, we went through 100
randomly selected notebooks with at least 50 lines of code
to identify missing APIs. All data cleaning methods were
assigned to categories depending on the type of data issue
they target resulting in 79 preprocessing functions assigned to
10 categories described in Table I: duplicates, index, missing
values, natural language processing (NLP), outliers, statistical,
transformation, type, uniqueness, and other. Some of these
issues can be addressed by methods provided in libraries,
e.g., .dropna or .drop_duplicates are standard APIs
for missing values and duplicate handling. However, other
issues such as outliers do not have a well-known standardized
solution. Such issues were searched using keywords, for
example, outlier handling lines were identified with keywords
suchas outlier, quantile, percentile, igr and
zscore. Notably, most of the collected APIs for data prepro-
cessing come from the Pandas library (36).

C. Data Analysis

Our analysis included several steps. Firstly, after the code
extraction from computational notebooks, we explored the data
and conducted a high-level examination of notebook properties
and characteristics to see the general insights, tendencies, and
variability. Secondly, we conducted a fine-grained analysis of
the preprocessing methods applied and the types of data issues
addressed by searching for the identified data preprocessing-
related APIs and categories. To see the differences among
different datasets, we then compared the results for different
competitions. Finally, we analyzed in detail how the missing
values are handled in the notebooks. The list of the data
preprocessing methods collected for the analysis and the
analysis script can be found in the replication package?.

IV. RESULTS

During the initial analysis of the notebook code, we found
that 24% of all notebooks were generated by a Kaggle bot, it
automatically provides a distribution and correlation analysis
of datasets for quick initial insights. These bot-generated note-
books were excluded from further analysis, leaving us with
138,376 notebooks. Additionally, we discovered that only 62%
of the remaining notebooks contained an ML model, while
the rest were created solely for data exploration purposes.
Consequently, we analyzed these two groups separately to
better understand their distinct preprocessing patterns and
usage contexts.

3https://zenodo.org/records/11396773

Notebooks with ML Notebooks without ML
.append .groupby
.astype(.sort_values
.isnull .append
.concat .dropna
fillna .reset_index
scale -apply(
.apply(.unique
.groupby .isnull
.sort_values .astype(
.split .replace

0 20000 0 5000 10000
Fig. 2. Top-10 data preprocessing methods used in the computational

notebooks with and without ML models

A. RQI: Data Cleaning Methods

To understand which data issues are being addressed the
most frequently and which methods are applied, we searched
for data preprocessing-related methods in every collected com-
putational notebook. For the identified methods from different
libraries, we used regular expressions to find the methods
being implemented. However, when there was no distinct
method, we searched for keywords. The top-10 identified
methods are presented in Figure 2. We found methods from
all categories in the notebooks, except for the statistical and
outliers categories where only related keywords were found
in the code. Next, we describe the main findings from each
category. The complete distribution of methods can be found
in the replication package.

1) Transformation: The transformation category stands out
as having the largest number of identified methods, showing
a higher need for data transformation processes in note-
books. In notebooks oriented towards ML, the top five data
transformation methods include .append (38%), .concat
(27%), .groupby (23%), and .split (10%). In notebooks
without ML models, the primary data transformation methods
comprise similar methods in a different order with . groupby
(26%) being the most found, followed by .sort_values
21%), .append (19%), and .split (10%).

2) Type: In ML notebooks, the prominence of the
.astype method stands out, constituting a substan-
tial proportion at 30%, which is notably larger than
other type-related methods including .to_numeric (1%),
.to_categorical (2%), and .to_datetime (6%). In
notebooks without ML models, the usage of type-related
methods is less frequent, with .astype indicated in 13% of
notebooks and .to_datetime found in 9% of notebooks.

A detailed analysis of the . astype function revealed that
its application is not highly varied. In 46% of all cases, it
was used to convert variables into integers. Another 28% of

0
37%
mean 999,
% 7
1
21:/0/{,;J 'unknown'
o "Sll
5% 999
0 -1
14% 3%2% ffill
4% 4% "none"
median "
g None

Fig. 3. Top-15 missing values fillers

instances involved converting variables to float values, while
12% of the cases were for converting to strings. Conversions
to categorical variables accounted for only 7% of the applica-
tions, and boolean conversions were the least common, making
up just 2% of the cases.

3) Missing values: For notebooks with ML models, preva-
lent methods included .isnull (29%), .fillna (25%),
and .dropna (12%), indicating that a focus on addressing
missing values in the preprocessing stage is present in less
than a third of notebooks. Interestingly, notebooks with ML
models exhibited higher usage percentages for these methods
compared to notebooks without ML models. The latter note-
books demonstrated a lower usage of .fillna (11%), but
higher application of .dropna (18%) method.

We analyzed in more detail how .fillna is applied, the
top-15 most frequently used values to fill missing values are
presented in Figure 3. Among these, 37% of the instances
utilized the value 0, and 22% employed the mean value of
the column. Additionally, 14% of cases used the median. The
remaining cases involved string values such as ’s’, unknown’,
’na’, dummy values such as 999, or an empty string.

4) Uniqueness: Unlike the duplicates, uniqueness-checking
functions are more frequently applied. .unique is used in
with 18% and 14% in notebooks containing ML models and
notebooks without ML models respectively and is applied
frequently for the indexes validation.

5) Index: Application of index-related methods signalizes
data integration activities such as the unification of disparate
datasets based on common indices or keys, dataset alignment
and merge, as well as aggregation and grouping. Index oper-
ations show similar results for both types of notebooks with
17% and 15% for reset__index and similar results for the
other APIs such as . set_index (6%) and . reindex (1%).

6) Statistical: The statistical methods indicate the biggest
difference between the types of notebooks. In notebooks with

ML models, the prevalent methods include RobustScaler
(1%), MinMaxScaler (4%), and StandardScaler (8%).
The keywords normalize and scale are found in (12%)
and (25%) of notebooks respectively. Unlike model-oriented
notebooks, we did not find any scaling or normalization
methods in notebooks without ML models. The keywords
normalize and scale appear in a smaller percentage of
notebooks: 4% and 8% which can indicate both less focus
on data normalization methods for non-ML model-oriented
notebooks or application of custom scale and normalization
techniques for the data.

7) Duplicates, NLP, Outliers: These categories belong
to the methods the least represented in the code. Dupli-
cates handling functions such as .drop_duplicates and
.duplicated only appear in 1% to 3% of the analyzed
notebooks. This group of API calls is the least represented in
the notebooks.

The outliers category, where only keywords were identified,
is the second least represented category overall. Mentions of
outliers appear in only 5% of the notebooks with ML models
and 2% of those without.

Logically, NLP functions are not frequently found in the
notebooks, which can be explained by the specific nature of
data required for these methods; they are designed to work
with natural language text, whereas a significant proportion
of data on Kaggle is tabular and numerical. Nevertheless,
the most frequently used NLP method is . lower, appearing
in 7% of the notebooks with ML models and 4% of those
without.

8) Other: In notebooks with ML models, various other
data manipulation methods were identified, including . where
(6%), .map (15%), .replace (15%), and .apply (23%).
In notebooks without ML models, similar methods were
found, albeit with lower usage percentages: .where (2%),
.map (8%), .replace (11%), and .apply (15%). The
differences in usage percentages suggest that while certain
methods are common across both types of notebooks, ML-
focused notebooks may exhibit a higher prevalence of specific
techniques such as .map and .apply, which are often used
for complex transformations and feature engineering in ML
scenarios.

B. RQ2: Data Handling by Ranking

To understand if there are differences in data handling
among the users from different performance tiers, we analyzed
notebooks in each group. The result of the analysis is pre-
sented in Table II. The provided table presents the percentage
of notebooks with specific methods or keywords from data
preprocessing categories across different user tiers, ranging
from novice (Tier 1) to grandmaster (Tier 5). Overall, the
analysis included 46,694 notebooks created by novices, 16,536
notebooks of contributors, 4,202 notebooks of experts, 1,921
masters’ notebooks, and 554 grandmaster notebooks which
aligns with the increasing number of users in each tier. 79,125
notebooks did not have the tier indicator.

TABLE II
PERCENTAGE OF NOTEBOOKS WITH IDENTIFIED METHODS FROM A CORRESPONDING DATA PROCESSING CATEGORY IN GROUPS OF USERS WITH
DIFFERENT RANKINGS WHERE 1 IS NOVICE, 2 IS CONTRIBUTOR, 3 IS EXPERT, 4 IS MASTER, AND 5 IS GRANDMASTER.

Tier Duplicates Index NA NLP Other Outlier Statistic Transform Type Uniqueness
1 0.045 0.211 0.449 0.089 0.396 0.073 0.272 0.717 0.329 0.221
2 0.051 0.248 0.402 0.102 0.404 0.070 0.268 0.722 0.334 0.238
3 0.038 0.290 0.362 0.095 0.386 0.067 0.307 0.726 0.342 0.235
4 0.040 0.336 0371 0.098 0.369 0.073 0.290 0.720 0.366 0.246
5 0.006 0.093 0.197 0.048 0.186 0.013 0.099 0.326 0.130 0.125
Notably, the data preparation behavior of users from the Data preparation across different competitions
first four tiers does not show large differences, unlike the
results of the grandmasters tier. The latter group shows a 08
significantly lower percentage of notebooks containing data- °
related activities. This applies to the methods from the majority oo ° L
of the categories: duplicates, NLP, other, outliers, statistic, 04 ; ° o
transformation, and uniqueness.
Transformation methods are the most consistently utilized o2 o

among all notebooks, indicating a common practice irrespec-
tive of the user expertise. They were found in the majority of
notebooks, more than 70%, for all users except grandmasters,
who use transformation methods in 33% of the notebooks.

The index category is the category that shows significantly
increasing application of indexing methods among users from
tiers 1, 2, 3, and 4, indicating a potential correlation between
expertise and index manipulation in data handling.

On the contrary, missing values handling methods show a
decreasing trend. In the novice users (Tier 1) group, there is
a higher percentage (45%) of notebooks addressing missing
values. As expertise increases, this percentage decreases across
higher tiers and drops to 20% for grandmasters.

Overall, the most identified category across all tiers is
transformation followed by missing values, statistical, and
other. The rarest categories are outliers, indexes, and du-
plicates.

Despite observed trending differences in data preprocess-
ing practices among different user tiers in computational
notebooks, Spearman’s rank correlation analysis indicated no
significant correlation larger than 0.35 for the given data. This
suggests that the identified trends in data handling and cleaning
across user tiers may not exhibit strong linear relationships.
Moreover, users from tiers 1-4 show very similar behavior
towards data preprocessing methods.

C. RQ3: Differences in Competitions

Lastly, to determine if the low application of certain meth-
ods is specific to particular datasets or if it varies across
different competitions, we compared data preprocessing cat-
egory distribution among the sets of notebooks created for
specific competitions. We manually selected 30 competitions
with structured and semi-structured datasets. For each compe-
tition, we calculated the percentage of notebooks containing
data preprocessing methods of corresponding categories. The
aggregation of the results among 30 projects is shown in
Figure 4. The analysis reveals that the application of data
preprocessing methods is consistently medium to low across
most competitions.

0

Other Outliers StatisticTransform Type Uniqueness

0.0 %

Duplicates Index NA

NLP

Fig. 4. Distribution of data preprocessing steps among 30 competitions.

The transformation category emerged as the most frequently
employed in notebooks in all analyzed competitions, which
confirms the emphasis on transforming and reshaping data to
meet specific requirements. Notably, outlier detection exhib-
ited consistently low usage across all competitions except for
an outlier competition where outlier-related keywords were
mentioned in 40% of the notebooks. The handling of indexes,
missing values, and type categories exhibited high variance
across competitions, suggesting a contextual dependency on
the specific requirements and characteristics in each competi-
tion.

Strong correlations were observed between certain data
preparation categories. Notably, uniqueness and index han-
dling demonstrated a correlation of 0.76, implying that projects
containing uniqueness checks also tend to have index handling
methods. Similarly, a strong positive correlation of 0.74 was
found between index handling and the transformation category,
since transformation activities are often followed by reindex-
ing methods.

V. DISCUSSION

In the discussion section, we highlight and discuss the key
findings of our research.

Data preprocessing in notebooks: The analysis reveals
that the code within computational notebooks on Kaggle often
lacks extensive lines dedicated to data preprocessing. This
trend suggests that data preparation is a relatively underem-
phasized aspect of the notebook development process.

After analyzing notebooks created for ML models training
and notebooks without ML models, there is little relative
difference in the share of data preparation code within the
notebooks. However, ML-focused notebooks tend to employ

more sophisticated methods, such as scaling and normaliza-
tion, prior to model training. This implies a shift towards
comprehensive data preprocessing in ML-centric workflows,
although data preprocessing steps in both types of notebooks
on average do not exceed 10%.

In our analysis, data preprocessing was considered as all
lines before model training, which cannot predict all data
preprocessing steps since ML workflow is not always a linear
process with data preprocessing followed by ML training and
earlier stages might repeat later in the code [19]. Thus, our
finding shows even lower results than Ramasamy et al. who
found that data preprocessing activities take 23.5% of an ML
workflow [5].

Notably, duplicates and outliers handling methods are the
least applied in the notebooks, while the most frequently
encountered APIs focus on dataset transformation, missing
values, and data types handling. Moreover, we discovered
poor practices while examining the missing values handling
including the replacement of missing values with string values
and 0, which accounts for more than half of all analyzed code
samples. Such replacements, also known as data smells [20],
while common, are generally considered poor practices as they
can introduce inconsistencies and inaccuracies into the dataset
and lead to errors in the data analysis.

The percentages of notebooks featuring duplicates, indexes,
missing values, and type handling vary depending on the
competition, indicating a contextual dependence on domain
and data type. While these findings hint at potential trends,
further investigation is required to establish more concrete
patterns in data handling across different domains.

User Ranking Impact: Except for grandmaster users, there
is no significant difference in data handling among users with
different rankings. Grandmasters stand out by applying data
preprocessing functions less frequently, proceeding directly
to model training. These results confirm the results of the
study that showed that both beginners and expert developers
are prone to use poor data preprocessing practices leading to
data leakage problems [13]. This divergence can be explained
in several ways. Experienced users might perform their data
exploration and cleaning activities off Kaggle platform and
upload only model-related code. On the other hand, it un-
derlines the model-centric approach dominating the Kaggle
community.

Another reason, why data handling steps are skipped is the
nature of Kaggle competitions and datasets. Some datasets
are provided in the preprocessed form, whereas users are
encouraged to focus solely on the model building. However,
such data processing steps are not documented leaving room
for potentially not detected data issues. Additionally, not all
provided datasets are curated and an increasing percentage
of notebooks applying data preprocessing methods in some
competitions implies a need for data cleaning in corresponding
datasets. Nevertheless, even in such competitions missing
values handling does not exceed 90% of all notebooks (60%
on average).

A. Research Implications

There are several practical implications for researchers and
practitioners.

While it is a common practice to reference the code of
higher-ranked users for learning purposes, our findings in-
dicate a noteworthy observation regarding grandmasters, the
highest-ranked users on Kaggle. Contrary to the expecta-
tion that top-tier users might exemplify comprehensive data
preprocessing practices, our analysis reveals that the codes
of grandmasters might often lack essential data integration,
cleaning, and transformation steps. While it is common to
reference higher-ranked users’ code for learning, they may not
include all necessary steps for thorough ML training and often
place less emphasis on data validation.

Another implication of our findings pertains to the rising
popularity of ML models trained on open-source notebooks
[8], [18]. As these models learn from the information available
on platforms like Kaggle including diverse datasets and code
snippets, our findings highlight a deficiency in representing
the data preprocessing steps within these open-source datasets.
Understanding open-source notebooks may shed some light
on the limitations and characteristics of the trained models to
improve interpretability and explainability. It is also impor-
tant to emphasize the need for improved documentation and
transparency in the data preprocessing phase of open-source
notebooks.

B. Threats to Validity

To mitigate potential sampling bias, an expansive sample
of over 200,000 notebooks was analyzed. Nonetheless, it is
important to note an inherent imbalance in the distribution
of notebooks, with a prevalence of projects by beginners
compared to those by higher-level users.

During the API calls collection process, we examined all
major libraries and enriched the final list with the manual
examination of the notebooks. While acknowledging that
our compilation may not include every existing method, our
concerted effort aimed to cover the primary and prevalent data
preprocessing practices for tabular data.

The results of this study can only be generalized to note-
books aiming at ML model development. The primary focus
on developing precise and accurate models on Kaggle contrasts
with the multifaceted requirements of ML code intended
for real-world products. In a production setting, ML code
necessitates additional data preprocessing steps, often tailored
to specific domains and encompassing considerations related
to larger volumes of data. Furthermore, the characteristics of
the Kaggle users might differ from the broader population of
data scientists or machine learning practitioners.

C. Future Work

One of the promising directions for future work involves an
in-depth exploration of preprocessing activities across diverse
domains. Since this study only covered tabular data, different
data types such as visual data should be investigated as

well. Moreover, extending the research to target ML in real-
world products and production pipelines would be beneficial.
This exploration can provide insights into the distinctive
preprocessing challenges and practices that arise in practical,
applied settings, offering valuable guidance for practitioners
navigating the transition from model-centric environments,
such as Kaggle, to deployment in real-world scenarios.

Finally, the robustness of different ML models to non-
contextual data issues, such as missing values or duplicates,
can be further investigated. Conducting experiments to gauge
the extent to which models withstand these challenges will
contribute to a nuanced understanding of model resilience and
guide the development of strategies to enhance robustness in
the face of diverse data anomalies.

VI. CONCLUSION

This paper presents our findings from the examination of
data preprocessing practices in computational notebooks from
Kaggle. We based our analysis on 138,376 notebooks to un-
derstand the trends in the landscape of ML model development
and data exploration. To analyze the data preprocessing steps,
we performed a keyword-based analysis based on the list of
79 data preprocessing-related API calls.

Despite the foundational role of data preprocessing in
ensuring robust model performance, our findings reveal a
notable underrepresentation of data preprocessing activities
within the analyzed notebooks. Particularly intriguing is the
observation that users with the highest rankings tend to bypass
data preprocessing steps. While other users demonstrate a
higher frequency of implementing data preprocessing methods,
the overall prevalence remains modest.

This study underscores the contextual nature of data pre-
processing, revealing a dependency on the specific dataset and
competition in which users engage. Users tailor their approach
based on the distinct characteristics and challenges posed by
Kaggle competitions.

As the field of machine learning continues to evolve, our
findings prompt further inquiry into the factors influencing
the observed patterns and the potential implications for model
performance and interpretability. Future research should ex-
plore the data preprocessing choices for different data types
and investigate how these practices align with real-world
ML development scenarios. Ultimately, our study contributes
valuable insights into the dynamics of data preprocessing
within the Kaggle community, offering a foundation for fu-
ture investigations aimed at refining and optimizing the data
science workflow.

REFERENCES

[1] H. Foidl, V. Golendukhina, R. Ramler, and M. Felderer, “Data pipeline
quality: Influencing factors, root causes of data-related issues, and
processing problem areas for developers,” Journal of Systems and
Software, vol. 207, p. 111855, 2024.

[2] M. Steidl, V. Golendukhina, M. Felderer, and R. Ramler, “Automation
and development effort in continuous ai development: A practitioners’
survey,” in 2023 49th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pp. 120-127, IEEE, 2023.

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

M. Dilhara, A. Ketkar, and D. Dig, “Understanding software-2.0: A
study of machine learning library usage and evolution,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 30,
no. 4, pp. 1-42, 2021.

J. M. Perkel, “Why jupyter is data scientists’ computational notebook
of choice,” Nature, vol. 563, no. 7732, pp. 145-147, 2018.

D. Ramasamy, C. Sarasua, A. Bacchelli, and A. Bernstein, “Workflow
analysis of data science code in public github repositories,” Empirical
Software Engineering, vol. 28, no. 1, p. 7, 2023.

F. Psallidas, Y. Zhu, B. Karlas, J. Henkel, M. Interlandi, S. Krishnan,
B. Kroth, V. Emani, W. Wu, C. Zhang, et al., “Data science through
the looking glass: Analysis of millions of github notebooks and ml. net
pipelines,” ACM SIGMOD Record, vol. 51, no. 2, pp. 30-37, 2022.

N. Nahar, H. Zhang, G. Lewis, S. Zhou, and C. Kistner, “A meta-
summary of challenges in building products with ml components—
collecting experiences from 4758+ practitioners,” arXiv preprint
arXiv:2304.00078, 2023.

C. Yan and Y. He, “Auto-suggest: Learning-to-recommend data prepa-
ration steps using data science notebooks,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data,
pp- 1539-1554, 2020.

Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani,
P. Papotti, M. Stonebraker, and N. Tang, “Detecting data errors: Where
are we and what needs to be done?” Proceedings of the VLDB
Endowment, vol. 9, no. 12, pp. 993-1004, 2016.

M. Choetkiertikul, A. Hoonlor, C. Ragkhitwetsagul, S. Pongpaichet,
T. Sunetnanta, T. Settewong, V. Jiravatvanich, and U. Kaewpichai, “Min-
ing the characteristics of jupyter notebooks in data science projects,”
arXiv preprint arXiv:2304.05325, 2023.

J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-
scale study about quality and reproducibility of jupyter notebooks,”
in 2019 IEEE/ACM 16th international conference on mining software
repositories (MSR), pp. 507-517, IEEE, 2019.

A. Rule, A. Tabard, and J. D. Hollan, “Exploration and explanation in
computational notebooks,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, pp. 1-12, 2018.

C. Yang, R. A. Brower-Sinning, G. Lewis, and C. Kistner, “Data leakage
in notebooks: Static detection and better processes,” in Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, pp. 1-12, 2022.

L. Negrini, G. Shabadi, and C. Urban, “Static analysis of data trans-
formations in jupyter notebooks,” in Proceedings of the 12th ACM
SIGPLAN International Workshop on the State Of the Art in Program
Analysis, pp. 8-13, 2023.

H. B. Braiek, F. Khomh, and B. Adams, “The open-closed principle
of modern machine learning frameworks,” in Proceedings of the 15th
International Conference on Mining Software Repositories, pp. 353-363,
2018.

L. Quaranta, F. Calefato, and F. Lanubile, “Kgtorrent: A dataset of
python jupyter notebooks from kaggle,” in 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories (MSR), pp. 550—
554, IEEE, 2021.

H. Dong, S. Zhou, J. L. Guo, and C. Kistner, “Splitting, renaming, re-
moving: a study of common cleaning activities in jupyter notebooks,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW), pp. 114-119, IEEE, 2021.

S. Chen, N. Tang, J. Fan, X. Yan, C. Chai, G. Li, and X. Du, “Haipipe:
Combining human-generated and machine-generated pipelines for data
preparation,” Proceedings of the ACM on Management of Data, vol. 1,
no. 1, pp. 1-26, 2023.

D. Ramasamy, C. Sarasua, A. Bacchelli, and A. Bernstein, “Visualising
data science workflows to support third-party notebook comprehension:
an empirical study,” Empirical Software Engineering, vol. 28, no. 3,
p. 58, 2023.

H. Foidl, M. Felderer, and R. Ramler, “Data smells: categories, causes
and consequences, and detection of suspicious data in ai-based systems,”
in Proceedings of the Ist International Conference on Al Engineering:
Software Engineering for Al, pp. 229-239, 2022.

