
Ernst Denert Software Engineering Award 2022

Eric Bodden, Michael Felderer, Wilhelm Hasselbring, Paula Herber, Heiko
Koziolek, Carola Lilienthal, Florian Matthes, Lutz Prechelt, Bernhard Rumpe, Ina
Schaefer

Abstract The Ernst Denert Award is already existing since 1992 which does not only
honour the award winners, but also the Software Engineering field in total. Software
Engineering is a vivid and intensively extending field that regularly spawns new
sub-fields such as Automotive Software Engineering, Research Software Engineer-
ing, or Quantum Software Engineering covering specific needs, but also generalizing
solutions, methods, and techniques when they become applicable. This is the intro-
ductory chapter of the book on the Ernst Denert Software Engineering Award 2022.
It provides an overview of the five nominated PhD theses.

1 Introduction

Software-based products, apps, systems or other services are influencing all areas of
our daily life. They are the basis and central driver for digitization and all kinds of
innovation. This makes software engineering a core discipline to drive technical and
societal innovations in the age of digitization [5].

As of 2023, software engineering operates in many new or significantly changed
application domains, such as the Internet of Things (IoT), Smart Manufacturing, Au-
tonomous Systems, Machine Learning, Artificial Intelligence (AI), and even Quan-
tum Computing. Surveys argue that more than 90% of research projects use software
for gaining new insights, managing their results, understanding the research topic,
controlling the physical gadgets, etc. Researchers of nearly all domains are signifi-
cantly developing software within their research. Model-driven software and systems
engineering approaches nowadays support handling the ever-growing complexity of
modern systems. Sophisticated static analysis tools identify more and more faults in
the code and can mitigate the rising cyber-security challenges by identifying secu-
rity vulnerabilities early or monitoring the system during runtime for a safe, reliable,
robust, and secure operation.

1



2 Bodden et al.

A rather strong recent trend, which affects software engineering practices, is the
advent of Generative AI, thanks to Large Language Models (LLMs) based on the
transformer architecture [10]. These models were popularized in recent months by
publicly available, easy-to-use tools (e.g., GitHub CoPilot, ChatGPT, Bard). Such
tools can generate source code based on natural language queries, but can also in-
terpret, fix, or document existing code. Trained with a vast data set including many
popular libraries, such LLMs can potentially relieve software engineers from many
accidental complexities and focus on the essential complexities of solving comput-
ing problems. Early experiments at Microsoft Research demonstrated a 55 percent
developer productivity increase from using GitHub CoPilot for web programming,
signifying promising potential for advancing software development practices [7].

While some authors already pro-claim ”the end of programming” [9], the tech-
nology is still under development. LLMs sometimes find very helpful sentences
and programs, but sometimes only hallucinate. Generated source code thus may
be partially semantically incorrect, or doing something completely wrong. We will
have to evaluate the new technology carefully. It will affect software engineering
research to utilize generative AI for the development of programs, models, and the
understanding of requirements to the fullest. It may be that the new approaches will
leverage methods from psychology, where intelligent interrogation allows to reveal
how an AI really works.

We see a forthcoming challenging and very interesting future for software engi-
neering research, not only for the application of AI models for software development
but also for specific upcoming domains, such as Research Software Engineering [2]
or Quantum Computing [8].

It is important to recall, that the IEEE Standard Glossary of Software Engineering
Terminology [6] defines software engineering as follows:

(1) The application of a systematic, disciplined, quantifiable approach to the de-
velopment, operation, and maintenance of software; that is, the application of
engineering to software.

(2) The study of approaches as in (1).

It defines software engineering as an engineering discipline (”application of en-
gineering to software”) with its own methodology (”systematic, disciplined, quan-
tifiable approach”) applied to all phases of the software life cycle (”development,
operation, and maintenance of software”). The two-part structure of the definition
of software engineering also makes the tight integration of software engineering (1)
and software engineering research (2) explicit.

Therefore, the Ernst Denert Software Engineering Award specifically rewards
researchers who value the practical impact of their work and aim to improve current
software engineering practices [4]. Creating tighter feedback loops between profes-
sional practitioners and academic researchers are essential to make research ideas
ready for industry adoption. Researchers who demonstrate their proposed methods
and tools on non-trivial systems under real-world conditions in various phases of the
software lifecycle shall be supported, so that the gap between research and practice
can be decreased.



Ernst Denert Software Engineering Award 2022 3

Overall, five PhD theses that were defended between September 1, 2021 and Octo-
ber 31, 2022 were nominated and finally presented during the Software Engineering
Conference SE 2023.

All submissions fulfill the ambitious selection criteria of the award defined in
detail in the book for the Ernst Denert Software Engineering Award 2019 [3]. These
criteria include, among others, practical applicability, usefulness via tools, theoretical
or empirical insights, currentness, and contribution to the field. In a nutshell, ”The
best submissions are those that will be viewed as important steps forward even 15
years from now.” [4].

In this introductory chapter, we give an overview of the nominated five PhD
theses, present the work of the award winner, and outline the structure of the book.

2 Overview of the Nominated PhD Theses

As previously mentioned, the Ernst Denert Software Engineering Award 2022 com-
mittee identified five worthy nominations for PhD theses that were eligible to receive
the Ernst Denert Award. These theses encompass a wide range of research in the field
of software engineering, highlighting its diverse applications across various domains.
They also demonstrate the vibrancy and diversity of the field through the utilization
of different research methods, including formal methods, design science, and quanti-
tative and qualitative empirical methods. Furthermore, these theses address various
activities in the software lifecycle, such as analysis, design, programming, testing,
deployment, operation, and maintenance. This section provides a brief overview of
the nominated PhD theses. They will be presented in alphabetical order based on
the names of the respective nominees, accompanied by a concise summary of the
chapters contributed by each thesis to this book.

The chapter of Jannik Fischbach and Andreas Vogelsang entitled ”Conditional
Statements in Requirements Artifacts: Logical Interpretation, Use Cases for
Automated Software Engineering, and Fine-Grained Extraction” provides read-
ers with an understanding of (1) the notion of conditionals in RE artifacts, (2) how
to extract them in fine-grained form, and (3) the added value that the extraction of
conditionals can provide to RE. Jannik Fischbach is the winner of the Ernst Denert
Software Engineering Award 2022 and we present his work in more detail in the
next section.

The chapter of Jörg Christian Kirchhof entitled ”From Design to Reality: An
Overview of the MontiThings Ecosystem for Model-Driven IoT Applications”
proposes a model-driven process for rapid development of IoT applications. The
chapter gives an overview of how to develop, deploy and analyze distributed IoT
applications using MontiThings. MontiThings demonstrates the benefits of a model-
driven development approach not only in the initial conceptualization of the applica-
tion, but also in later development phases (e.g., deployment), leading to an app store
concept that separates hardware from software development.



4 Bodden et al.

The chapter of Sven Peldszus entitled ”Security Compliance in Model-driven
Development of Software Systems in Presence of Long-Term Evolution and
Variants (Summary)” provides an approach for tracing and verifying security re-
quirements in the model-driven development of software-intensive systems. Early
security considerations based on the principle of security by design are part of many
modern development processes, but to ensure the security of the final product, which
may even comprise an entire product line, it is essential to check each individual
product for compliance with the planned security design. To this end, the thesis inves-
tigates the systematic traceability of security requirements throughout the software
development lifecycle and how this traceability can be used for automated security
compliance checking. The individual solutions were validated against 18 objectives
and the overall approach was demonstrated on two open source case studies.

The chapter of Florian Rademacher et al., entitled ”Model-Driven Engineering
of Microservice Architectures—The LEMMA Approach”, investigates the appli-
cation of Model-Driven Engineering (MDE) to the design, development, and opera-
tion of software systems that are based on Microservice Architecture (MSA). From
a set of well-known challenges in MSA engineering as well as real-world microser-
vice architectures and approaches to the modeling of service-oriented architectures,
Rademacher et al. derive a set of integrated, stakeholder-oriented MSA modeling
languages. Furthermore, they accompany these languages with a framework for the
implementation of model processors that is oriented towards technology-savvy MSA
stakeholders without an MDE background. Finally, Rademacher et al. present and
discuss the application of their MSA modeling languages and framework for the
(i) extensible generation of microservice code; (ii) microservice architecture recon-
struction; (iii) quality assessment of microservices; (iv) microservice architecture
defect resolution; and (v) establishment of a common architecture understanding
among distributed MSA teams.

Finally, the chapter of Alexander Trautsch entitled ”Usefulness of Automatic
Static Analysis Tools: Evidence from Four Case Studies” presents results from
multiple empirical studies in the context of software engineering research. The
studies explore an automated static analysis tool and its impact on quality in a broad
overview from multiple perspectives. The chapter contains studies that focus on
the evolution of static analysis warnings, static analysis warnings in the context of
software defects as well as the context of developer intent.

3 The Work of the Award Winner

We congratulate Jannik Fischbach, his advisor Andreas Vogelsang and his Alma
Mater Universität zu Köln for winning the Ernst Denert Software Engineering Award
2022 for the PhD thesis ”Why and How to Extract Conditional Statements From
Natural Language Requirements”. Dr. Jannik Fischbach focuses on conditionals (e.g.,
If the system detects an error, an error message shall be shown) in requirements and



Ernst Denert Software Engineering Award 2022 5

highlights why and how Requirements Engineering can benefit from the automated
extraction of conditionals. Specifically, he makes the following contributions:

1. He presents empirical results on the prevalence and logical interpretation of con-
ditionals in RE artifacts. Jannik Fischbach found that conditionals in requirements
mainly occur in explicit, marked form and may include up to three antecedents and
two consequents. Hence, the extraction approach must understand conjunctions,
disjunctions, and negations to fully capture the relation between antecedents and
consequents. He also found that conditionals are a source of ambiguity, and there
is not just one way to interpret them formally. This affects any automated analysis
that builds upon formalized requirements (e.g., inconsistency checking) and may
also influence guidelines for writing requirements.

2. Jannik Fischbach presents his tool-supported approach CiRA capable of detecting
conditionals in NL requirements and extracting them in fine-grained form. For the
detection, CiRA uses syntactically enriched BERT embeddings combined with a
softmax classifier and outperforms existing methods. His experiments show that
a sigmoid classifier built on RoBERTa embeddings is best suited to extract con-
ditionals in fine-grained form. CiRA is available at http://www.cira.bth.se/demo/.

3. He highlights how extracting conditionals from requirements can help create ac-
ceptance tests automatically. Specifically, Jannik Fischbach shows how extracted
conditionals can be mapped to a Cause-Effect-Graph from which test cases can
be derived automatically. He demonstrates the feasibility of his approach in a
case study with three industry partners. In his study, out of 578 manually created
test cases, 71.8 % can be generated automatically. Furthermore, his approach
discovered 80 relevant test cases missed in manual test case design.

His findings prove that automated conditional extraction can contribute to im-
plementing automatic acceptance test creation. However, he does not achieve full
automation of acceptance test generation mainly due to (1) incomplete requirements
and (2) errors of his approach in interpreting conditionals that contain three or more
consequents. Hence, Jannik Fischbach suggests using CiRA to supplement the exist-
ing manual creation process to make test designers aware of all test cases that should
be tested from a combinatorial point of view. He hypothesizes that this will help
to reduce the risk of missed negative test cases significantly. The work of Jannik
Fischbach is presented in more detail in Chapter 2 of this book.

4 Structure of the Book

The remainder of the book is structured into five chapters, one for the work of each
nominee listed above. Each nominee presents in his chapter

• an overview and the key findings of the work,
• its relevance and applicability to practice and industrial software engineering

projects, and



6 Bodden et al.

• additional information and findings that have only been discovered afterwards,
e.g. when applying the results in industry or when continuing research.

The chapters of the nominees are based on their PhD theses and arranged in
alphabetic order.

As already highlighted in the introductory book chapter of the Ernst Denert
Software Engineering Award 2019 [4] and by Prof. Denert’s reflection on the field [1],
software engineering is teamwork. Outstanding research with high impact is also
always teamwork, which somewhat conflicts with the requirement that a doctoral
thesis must be the work of a single author.

Thanks

We again thank Professor Ernst Denert for all his help in making this award a success,
and the Gerlind & Ernst Denert-Stiftung for the kind donation of the first price and
the overall support. We thank the team of the Software Engineering Conference
SE 2023, which was organized by Gregor Engels, Stefan Sauer, Regina Hebig and
Matthias Tichy at Paderborn University, to host the presentations of the nominees
and the award ceremony. We also thank the German, Austrian and Swiss computer
science societies, i.e., the GI, the OCG, and the SI, respectively, for their support
in making the Ernst Denert Software Engineering Award 2022 a success. Finally,
we thank all the people that helped in its organization, including Christian Kirchhof
and Florian Rademacher (both RWTH Aachen University) who supported in the
organization of this book.

References

1. Denert, E.: Software Engineering. In: Ernst Denert Award for Software Engineering 2019, pp.
11–17. Springer (2020)

2. Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A.L., Rumpe, B.:
Toward Research Software Engineering Research (2023). DOI 10.5281/zenodo.8020525.
URL https://doi.org/10.5281/zenodo.8020525

3. Felderer, M., Hasselbring, W., Koziolek, H., Matthes, F., Prechelt, L., Reussner, R., Rumpe, B.,
Schaefer, I.: Ernst Denert Award for Software Engineering 2019: Practice Meets Foundations
(2020)

4. Felderer, M., Hasselbring, W., Koziolek, H., Matthes, F., Prechelt, L., Reussner, R., Rumpe,
B., Schaefer, I.: Ernst Denert Software Engineering Awards 2019. In: Ernst Denert Award for
Software Engineering 2019, pp. 1–10. Springer (2020)

5. Felderer, M., Reussner, R., Rumpe, B.: Software Engineering und Software-Engineering-
Forschung im Zeitalter der Digitalisierung. Informatik Spektrum 44(2), 82–94 (2021)

6. IEEE: IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990
pp. 1–84 (1990)

7. Peng, S., Kalliamvakou, E., Cihon, P., Demirer, M.: The impact of ai on developer productivity:
Evidence from github copilot. arXiv preprint arXiv:2302.06590 (2023)



Ernst Denert Software Engineering Award 2022 7

8. Schaefer, I.: Quantum software engineering - quo vadis? In: G. Engels, R. Hebig, M. Tichy
(eds.) Software Engineering 2023, Fachtagung des GI-Fachbereichs Softwaretechnik, 20.-24.
Februar 2023, Paderborn, LNI, vol. P-332, pp. 19–20. Gesellschaft für Informatik e.V. (2023).
URL https://dl.gi.de/20.500.12116/40069

9. Welsh, M.: The end of programming. Communications of the ACM 66(1), 34–35 (2022)
10. Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K., Ji, C., Yan, Q., He, L., et al.: A

comprehensive survey on pretrained foundation models: A history from bert to chatgpt. arXiv
preprint arXiv:2302.09419 (2023)


