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Abstract. Microservices reliability is critical, but runtime anomalies are
increasingly common due to system complexity. Rule-based and AI-based
anomaly detection methods assist practitioners in analyzing runtime
monitoring data (logs, traces, metrics) to identify anomalies. However,
these methods rely on high-quality datasets and deep domain knowledge
to deliver accurate results. Thus, a significant challenge lies in the lack of
consensus on which runtime monitoring parameters effectively represent
the system and microservices, reliably indicate anomalies, or distinguish
deviations that genuinely signal anomalies. A thorough understanding of
the dataset, key monitoring parameters, and microservice dependencies
is crucial to minimize bias and false positives, ultimately improving the
effectiveness of anomaly detection methods.

Thus, we investigate whether structural equation modeling can describe
the system’s or microservices’ behavior via indicators extracted from
runtime monitoring data and identify their causal relationships. We used
EvoMaster to simulate user behavior in TrainTicket and extract runtime
monitoring data to test our model. Our results show that the identified
indicators effectively describe microservices’ behavior, but network indi-
cators alone are insufficient for describing the whole system’s behavior.
The model can also identify microservices that significantly influence the
whole system’s behavior.
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· traces · metrics · microservice · structural equation model · PLS-SEM
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1 Introduction

Frequent software changes are crucial for fixing bugs, adding features, and im-
proving performance. These changes in microservices must be tested to pre-
serve reliability and functionality during runtime. However, microservice sys-
tems’ complexity, diverse languages, and independent components make quality
assurance challenging, as comprehensive test suites often fail to cover all runtime
deviations [15,11,12].

Thus, anomaly detection techniques, such as rule-based or AI-based methods
for microservices, are increasingly researched to find unexpected deviations dur-
ing runtime, called anomalies [11,10]. These methods use runtime monitoring
data, such as logs, traces, and metrics, to analyze the system’s and microser-
vice’s behavior [11]. Their effectiveness and accuracy in reducing false positives
depend on the dataset quality and understanding of the respective runtime mon-
itoring parameters. For instance, increased user requests or Kubernetes scaling
can affect response times without indicating anomalies if the relationship of spe-
cific parameters remains stable [11,10]. Several authors emphasize the need to
retain key monitoring parameters for anomaly detection while removing irrele-
vant ones, making it challenging to identify the right combination that captures
diverse anomalies and their impact on the system and microservice [9,14,5,17].

Therefore, this paper aims to apply statistical methods to model the complex
causal relationships between multiple microservices and their influence on the
whole system’s behavior. Furthermore, we want to identify essential parameters,
also called indicators, that depict the behavior of the system and microservices.
Therefore, this paper provides preliminary results if this research goal can be
achieved via specifying a Structural Equation Modeling (SEM).

1.1 Structural Equation Modeling (SEM)

We opted for SEM because it is a robust statistical method for analyzing com-
plex, multivariate data. It is particularly useful for exploring relationships and
patterns among constructs, which are not directly measurable but can be esti-
mated via multiple indicators [2,3,8]. For instance, the overall system’s behavior
cannot be observed via a single parameter. Still, it can be estimated using a
combination of runtime monitoring data, such as resource utilization, response
time, and error rate. SEM allows us to model the interconnection through paths
(or hypotheses) of constructs and their multiple indicators, and the complex re-
lationships are not limited to a single type [2,3,4].

More specifically, we opted for Partial Least Square-Structural Equation
Modeling (PLS-SEM) because compared to other SEM approaches, like Co-
variance based-Structural Equation Modeling (CB-SEM), Partial Least Square-
Structural Equation Modeling (PLS-SEM) is a causal-predictive approach to
SEM and is particularly suited for exploratory research and theory development
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where initially it is unclear how various constructs relate. PLS-SEM is more ef-
fective at identifying significant relationships and allows for greater flexibility in
introducing or omitting constructs [4,8]. PLS-SEM allows us to simultaneously
estimate complex models with many constructs and indicators in one coherent
model and provides causal explanations [2,3,4]. Also, the data does not need
normal distribution [2,3].

2 Research Approach

We follow the systematic approach by Russo and Stol [8] for a PLS-SEM analysis
and review in software engineering, consisting of 2.1) specification of structural
model, 2.2) specification of measurement model, 2.3) data collection, 2.4) as-
sessment of measurement model, and 2.5) assessment of structural model. In the
following subsection, we will concisely state the applied methodology and pre-
liminary results and discuss limitations that should be resolved by future work.
Please refer to our replication package [13] for insights, including details about
the specification of the models and their assessment and analysis.

2.1 Specification of Structural Model

Method: This step identifies relevant constructs and their relationships by es-
tablishing hypotheses. These should be based on prior theory or empirical obser-
vations [8]. In previous work [11], we conducted a systematic literature review
of 92 papers, including 36 with industry-related use cases and 15 interviews on
runtime anomaly detection. For this paper, we used them to extract information
relevant to the structural and measurement models inductively.
Results: It is crucial to look at microservices individually, as not all anomalies
are apparent at the system-wide level [14,6]. Half of the interview participants
stated that understanding each microservice’s impact helps identify critical mi-
croservices and their role in anomalies. Therefore, we treat the entire system and
its microservices as constructs and hypothesize that a microservice significantly
affects the system’s behavior (H1a).

An anomaly in one observed microservice might influence other microservices
[14,6]. Anomaly propagation can be unclear due to the subtle and non-obvious
ways anomalies spread [14]. Therefore, examining various anomalies and their
effects on microservices helps understand the system’s behavior. We hypothesize
that the anomalous microservice impacts other connected microservices (H1b).

2.2 Specification of Measurement Model

Method: In this step, we extract multiple indicators to measure the previ-
ously defined constructs (system’s and microservices’ behavior), which cannot
be measured directly [8]. These indicators are based on key runtime monitoring
parameters from the literature review and interviews on anomaly detection sum-
marized in our previous work [11]. The identified parameters cover logs, traces,
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and metrics. Logs are semi-structured messages with timestamps, verbosity lev-
els (e.g., INFO, WARN, DEBUG, ERROR), and natural language descriptions.
Traces show the request’s execution path through microservices, with spans as
trace segments containing metadata like start and end times. Metrics are nu-
meric time series data reflecting system or microservice performance [11].
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Fig. 1. Runtime monitoring data [11] with whole system indicators (solid & white box)
and microservice indicators (dashed & grey box)

Results: Figure 1 shows the indicators extracted from Logger (logs), Jaeger
(traces), and Prometheus (metrics), and how they are mapped to the previously
discovered parameters. We chose multiple indicators to reduce standard error and
iteratively refine the measurement model by discarding inadequate ones [8]. Our
replication package provides further description of the extracted indicators [13].
We opted for reflective indicators because a change in the construct (whole sys-
tem’s or microservice’s behavior) causes a change in its indicators. Furthermore,
the indicators are interchangeable (e.g., several indicators describe CPU usage),
where dropping an indicator does not alter the meaning of the construct [8,2].

Focusing on relevant indicators and removing irrelevant ones enhance dataset
quality and anomaly detection methods [5,11,10]. For instance, it is unclear if
high granular or specific indicators help identify anomalies more reliably [16].
In addition, indicator usefulness varies by anomaly type, often requiring domain
knowledge for selection. Some anomalies manifest through subtle indicator shifts,
and single monitoring data types may be insufficient for detection [5,11]. Statisti-
cal assessment of indicator impact on the system or microservice can guide their
selection process [16]. In assessing the measurement model, we aim to determine
if the proposed indicators impact the system or microservice (H2a).

Furthermore, understanding the relationship of indicators is required [16,11].
By identifying correlations, we can pinpoint specific indicators that share sim-
ilarities, allowing us to detect changes in their relationship that may signal an
anomaly [8,5,16]. For example, indicators such as CPU user usage, CPU system
usage, and CPU wait, describe and influence CPU performance [5,16]. Thus, we
determine if the measurement model identifies a correlation between its indica-
tors of the runtime monitoring data (H2b).
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Figure 2 illustrates a conceptual version of the described structural and mea-
surement model. The structural model consists of the constructs (whole system’s
and microservices’ behavior) and their paths (hypotheses). The measurement
model includes each construct’s currently used measurable indicators (extracted
from runtime monitoring data).
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Fig. 2. PLS-SEM with constructs (circles) and reflective indicators (rectangles)

2.3 Data Collection

Method: We extracted runtime monitoring data from TrainTicket6, a widely
studied microservice benchmark application for anomaly detection [1,17]. To
simulate the load, we used EvoMaster, an open-source AI-driven tool that auto-
matically creates and executes system-level tests 7. We ran TrainTicket without
anomalies as a baseline to assess the feasibility of PLS-SEM for runtime moni-
toring data and identify anticipated relationships between constructs. We created
ten runtime monitoring datasets with injected anomalies for future work (see [13]).
Results: The collected runtime monitoring data consists of metric data with ra-
tio measurements required for the indicators in PLS-SEM [8,4,2]. However, we
had to apply data transformation to merge logs, traces, and metrics where one
sample is represented in one row. Please refer to the GitHub repository for the
code that extracts these system and microservice indicators8. This code scans
the input, prints statistics about the input data, and clears the output folder.
After that, it parses logs (via logparser [18]9), Jaeger traces, and Prometheus
metrics associated with the whole system or specific microservices and concate-
nates them based on their timestamps. Prometheus collects metrics at regular
intervals, while Jaeger and the Logger record traces and logs as they occur. As a
result, logs and traces may not align perfectly with Prometheus timestamps, re-
quiring rounding or an asof-join. For better visualization, we generate a graph of

6 https://github.com/FudanSELab/train-ticket, accessed 13.05.2024
7 https://github.com/WebFuzzing/EvoMaster, accessed 29.07.2024
8 https://github.com/moniSt13/ConTest-Parsing.git, accessed 08.08.2024
9 https://github.com/logpai/logparser?tab=readme-ov-file, accessed 01.08.2024

https://github.com/FudanSELab/train-ticket
https://github.com/WebFuzzing/EvoMaster
https://github.com/moniSt13/ConTest-Parsing.git
https://github.com/logpai/logparser?tab=readme-ov-file
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the microservices via HTML-rendered graphs with neo4j and vis.js. Finally, we
transform the data by transposing each trace and its respective log and metric
information into a single line (sample), with each span appended to this one-line
trace. We were able to extract over 25000 samples, which minimizes the risk
of a wrong representation or sample size issue and increases precision, such as
consistency [8,2].

2.4 Assessment of (Reflective) Measurement Model

Method: We used SmartPLS[7] to calculate the consistent PLS-SEM algorithm
for the monitoring data of the anomaly-free runtime monitoring dataset to val-
idate and improve the established model, and create a baseline regarding con-
structs and indicators used for future research. For the model’s setup, we had
to follow three rules: indicators must have non-zero variance and no perfect
collinearity for the same construct, and the sample should be ten times the num-
ber of structural paths [8]. Thus, we need a minimum of 400 samples because
of the potential involvement of 40 TrainTicket’s microservices. Nevertheless, we
included 25000 samples for our assessment.

We evaluate the reflective measurement model based on Russo and Stol’s [8]
evaluation criteria, such as internal consistency reliability, convergent validity,
and discriminant validity.
Results: The internal consistency reliability assesses whether the con-
struct’s indicators consistently measure the same underlying concept, ensuring
valid interpretations. Therefore, we use Cronbach’s alpha to evaluate the con-
sistency of the results across indicators. This is satisfactory and significant (p-
value: 0.000) for all microservices that fulfilled the rules to be included in the
model, except ts-cancel-service. Nonetheless, its value is between 0.6 and 0.7
(0.690), considered acceptable for exploratory research [4,8]. Cronbach’s alpha
of the whole system equals 1, indicating that its indicators seem redundant and
measure the same phenomenon.

For convergent validity, we examined the outer loadings of the indicators.
We found that most outer loadings for metric-based indicators fulfill the required
0.7, whereas indicators calculated based on logs (number of unique static parts
of logs) or traces (trace duration or depth of microservices) do not perform
well in explaining the construct. Russo et al. [8] noted that constructs under
development often have loadings below 0.7 and may be considered for removal
if it improves the Average variance extracted (AVE). Thus, removing the trace
duration increased the AVE to over 0.5, indicating that this indicator reduced
the construct’s overall explanatory power. However, the microservice ts-cancel-
service still has a AVE of 0.364, indicating that its indicators share only 36% of
their variance and require further refinement.

For the discriminant validity, we identified that the measured microser-
vices and the whole system are not conceptually similar (conservative cut-off
should be below 0.85 for the heterotrait-monotrait ratio (HTMT) and confidence
interval via bootstrapping does not contain 1.0), indicating that the identified
constructs are unique in relation to each other where the ts-order-service and
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system-wide seem to be most similar with 0.831.
Discussion, limitations, and future research: Based on the results, we can
discuss H2a regarding the impact of proposed indicators on the system’s or mi-
croservices’ behavior. While construct results for the measurement model seem
promising, log-based and trace-based indicators need further improvement due
to their low outer loadings. This may be because most traces in the used dataset
contain only one span, making the depth of the microservice nearly always 0.
This can artificially reduce the outer loading due to low variability. We used the
unique static parts of logs to count unique eventIds before a timestamp, noting
that this indicator always increases. Thus, implementing a sliding time window
could better capture actual behavior for future work. Furthermore, anomalies
might manifest in a continuous change of the indicator, making it necessary to
consider indicators over time.

To address H2b, we examined residuals to see how indicators correlate with
alternative indicators [2,8]. For this dataset, indicators for the same construct
often correlate, with memory-related indicators correlating negatively with CPU-
related ones. Network indicators also exhibit a strong correlation, indicating that
they may not fully represent the entire system’s behavior since they share some
of their variance. Thus, in the future, we will introduce additional indicators to
better explain the constructs. For instance, we could extract error and warning
counts, disk-related indicators (like throughput or I/O), or energy consumption
to extend potential indicators. After establishing a more comprehensive set of in-
dicators, we will assess this measurement model with anomaly-injected datasets,
as indicators react differently to various anomalies. Thus, the interpretation may
vary [12,11].

2.5 Assessment of Structural Model

Method: We evaluated the structural model, based on Russo and Stol’s [8] eval-
uation criteria, to gain insights about the predictive power and significance of
the relationship between constructs [8].
Results: The collinearity among constructs represents the relationship be-
tween constructs. We achieved approximately a Variance inflation factor (VIF)
value of 1 for all constructs in the structural model, indicating that our cho-
sen constructs do not represent similar concepts and, thus, are not biased. The
model’s explanatory power for the system-wide construct results in 0.712, in-
dicating that 71.2% of the variation in this construct is explained by the mi-
croservices pointing to the whole system. Regarding the path significance,
we identified that one microservice (ts-order-service) strongly and statistically
significantly relates to the whole system with a path coefficient of over 0.8 and a
p-value of 0.000 calculated via consistent bootstrapping. Furthermore, this is the
only microservice that has a large effect size (f2) on the system-wide construct.
Discussion, limitations, and future research: This study demonstrates how
SEM provides insights into the causal relationship and influence between the
whole system’s and microservices’ behavior measured via runtime monitoring
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data. We can answer H1a that the construct indicating the behavior of the mi-
croservice ts-order-service statistically significantly influences the whole system’s
behavior. Other microservices do not influence the whole system’s behavior.

However, we had to exclude some of TrainTicket’s microservices as constructs
due to zero variance in their indicators in the used dataset. This occurs because
EvoMaster executes system tests for one microservice at a time, resulting in
some microservices not receiving load for the two-hour test period. However, mi-
croservices that are not invoked do not influence the system’s behavior or other
microservices as they are not required for the observed operations. For future
work, we want to use other runtime monitoring datasets to have more complex
hypothesized structural relationships between the microservices. Furthermore,
since we have assessed the model using a dataset without injected anomalies
to establish a baseline for the structural and measurement model, future work
will analyze runtime monitoring data with various injected anomalies. This will
address H1b regarding the impact of the anomalous microservice on other con-
nected microservices.

3 Conclusion

Frequent microservice updates are vital for fixing bugs and improving perfor-
mance, but they must maintain system and microservice reliability. Traditional
test suites often overlook runtime anomalies, making advanced anomaly detec-
tion techniques necessary. These methods use runtime monitoring data (logs,
traces, metrics) to understand the system’s and microservices’ behavior. The
main challenge is selecting relevant indicators to accurately measure these be-
haviors and identify causal relationships between the system and microservices.

Thus, this paper specifies Partial Least Square-Structural Equation Modeling
(PLS-SEM) to model these relationships and improve the understanding of how
runtime monitoring data assesses system and microservice behavior.

We identified that metric-based indicators describe the microservice behavior
well, where CPU and memory have a statistically significant negative correlation
for our generated TrainTicket dataset. Future research should refine indicators
based on logs and traces as well as indicators describing the system’s behavior.
Furthermore, the established PLS-SEM can identify microservices with a strong
relationship and influence on the system’s behavior. Thus, we plan to utilize
additional runtime monitoring datasets to explore more complex hypothesized
structural relationships between anomalous microservices.
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