GoSpeechlLess: Interoperable Serverless ML-based Cloud Services

Sashko Ristov
sashko.ristov@uibk.ac.at
University of Innsbruck
Innsbruck, Tyrol, Austria

David Meyer
david.meyer@student.uibk.ac.at
University of Innsbruck
Innsbruck, Tyrol, Austria

ABSTRACT

Recently, Backend-as-a-Service (BaaS)-enabled serverless functions
have been rapidly gaining traction. However, the dependence on
specific provider features and configurations still leads to challenges
in terms of portability, underlying platform heterogeneity, and ven-
dor lock-in. To bridge this gap, this poster introduces GoSpeechLess!,
a GoLang-library for serverless functions that allows developers
to code portable functions with interoperable Baa$ services in a
uniform manner. GoSpeechLess thereby is able to reduce develop-
ment effort by improving maintainability index by up to 40 % and
reducing LOC by up to 75 %.

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Soft-
ware and its engineering — Interoperability.

ACM Reference Format:

Sashko Ristov, Philipp Gritsch, David Meyer, and Michael Felderer. 2024.
GoSpeechLess: Interoperable Serverless ML-based Cloud Services. In Pro-
ceedings of 46th International Conference on Software Engineering (ICSE
2024). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

Function-as-a-Service (FaaS) is an emerging programming para-
digm in cloud computing which simplifies the management and
administration of cloud computing resources because developers
can simply publish their code in the form of functions while the in-
frastructure management is delegated to the cloud providers. With
serverless computing being increasingly applied in a wider set of
use cases, the need to create more complex functions which can
interact with external services [2] naturally arises. We refer to such
functions as BaaS-enabled FaaS functions because they typically

!https://github.com/FaaSTools/GoText2Speech

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE 2024, April 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Philipp Gritsch
philipp.gritsch@uibk.ac.at
University of Innsbruck
Innsbruck, Tyrol, Austria

Michael Felderer
michael felderer@dlr.de
German Aerospace Center (DLR)
Cologne, Germany

rely on auxiliary cloud services (BaaS) such as AWS S3, GCP Text-
to-Speech, etc., to perform those tasks. Developers deploy their
serverless applications across multiple cloud providers to reduce
cost [1], or improve performance with higher scalability [4].

However, current serverless applications are still largely depen-
dent on the specific cloud provider service offerings and imple-
mentations. Porting serverless applications across clouds requires
development and integration effort that is only partially diminished
by current state-of-the-art approaches. Serverless programming
models address portability by offering abstractions at the func-
tion level but would require additional development effort also to
address intra-function portability. Hence, dealing with underly-
ing platform heterogeneity and inherent vendor lock-in requires
addressing many serverless-specific issues. For one, services of
different providers comprise different feature sets, like volume or
audio encoding for services that offer Text-To-Speech conversion.
For another, different providers offer different SDKs, requiring de-
velopers to either read the documentation of every used provider
or abstain from using the services of other providers.

To bridge these gaps in state-of-the-art approaches for the realis-
tic use cases "serverless = FaaS + BaaS" [3] in federated Faas, this
poster introduces GoSpeechLess, a multi-cloud library that allows de-
velopers to code portable BaaS-enabled functions with portable and
dynamic Text-To-Speech Baa$ service implementations. GoSpeech-
Less allows developers to write serverless functions without being
tied to the specific SDKs of various cloud (and BaaS) providers. The
library provides portability and interoperability by dynamically
invoking different BaaS implementations with a single API call.
Its programming abstractions simplify the development process
and open new doors for flexibility and efficiency in deploying and
managing serverless applications.

2 GOSPEECHLESS APPROACH

Figure 1 shows how GoSpeechLess performs syntactic input adapta-
tions from the common input format of the service into the specific
input syntax of the selected Baa$ service implementation. More-
over, different BaaS service implementations also differ in semantic
requirements. For example, GCP’s Text-To-Speech implementa-
tion supports volume configuration, while AWS’s implementation
supports adjusting the volume by providing and modifying the
Speech-Synthesis-Markup-Language (SSML). Our library opaquely
translates the input to the provider-specific semantics.

When all adaptations of the inputs are done, GoSpeechLess uses
the specific SDK of the selected provider to invoke the concrete

https://orcid.org/0000-0003-1996-0098
https://orcid.org/0009-0008-9435-7364
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/FaaSTools/GoText2Speech
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2024, April 2024, Lisbon, Portugal

Baas federation

»{GCP resp

GCP Request

AWS Request AW AWS Response
Input Output Output

Input
feature 2

feature 1

AWS GCP

request adapter response adapter

[GoSpeechLess Request] [GoSpeechLess Response]

Input || features: 1, 2
Output
Text-To-Speech
A
<

Figure 1: GoSpeechLess high-level approach.

implementation of the BaaS service. Our library calls the BaaS
service with the adapted input for the BaaS service of the already
selected provider, additionally regarding the supported format of
the input data. If a requested feature (e.g., a specific audio encoding)
isn’t available for one provider, GoSpeechLess will automatically
invoke the BaaS service implementation that supports the requested
feature. Analog to reformatting the syntax and semantics of the
input, GoSpeechLess adapts the output of the selected Baa$S service
implementation into the commonly defined output format, which
is exposed to the developer.

GoSpeechLess supports the developer to specify the location
where the input and result of the BaaS service should be stored. If
this option is used, GoSpeechLess stores the output on the storage
in a transparent way, regardless of the location and the provider
of the selected BaaS service, the function that invokes it, and the
location of the input and output data.

3 RESULTS AND DISCUSSION

We implemented GoSpeechLess library in GoLang, offering develop-
ers a Text-To-Speech Baa$ service abstraction. The library currently
supports AWS Polly and GCP Speech Synthesis. To maximize the
coverage of our evaluation, we considered various metrics to evalu-
ate GoSpeechLess. We evaluated GoSpeechLess with different input
and output data locations and required features. For this purpose,
we evaluated the following four metrics: LoC, maintainability in-
dex?, and overhead.

Our observations indicate that GoSpeechLess requires signifi-
cantly less LoC for all providers. It reduces LoC between 56.7 % and
75.4 % for AWS and from 59.4 % and up to 73.9 % for GCP.

The maintainability index is increased by 17.86 % for AWS and
17.59 % for GCP. Notably is the improvement of the maintainabil-
ity index by 23.19 % for the configuration in which the function
accesses the storage for both input and output. Moreover, 4 out of 6
native implementations are difficult to maintain, while all GoSpeech-
Less’s implementations are moderately maintainable.

Cyclomatic complexity is reduced from 8.7 to 5 for AWS (42.31 %)
and from 8 to 3 for GCP functions (62.5 %). The Halstead volume
is also reduced from 1,676.5 to 1,061.5 for AWS (36.68 %) and from
1,755.6 to 1,051.1 for GCP functions (40.13 %).

Since GoSpeechLess integrates dependencies of both providers,
we evaluate the overhead that GoSpeechLess causes to functions

Zhttps://github.com/yagipy/maintidx

Sashko Ristov, Philipp Gritsch, David Meyer, and Michael Felderer

that use the library. We observe that, in general, GoSpeechLess
increases the runtime. The functions using GoSpeechLess reported
an overhead of 9.21 % and 1.13 % on AWS and GCP, respectively.

GoSpeechLess’s Service abstraction enables applications to trans-
parently and interoperably use different BaaS service implemen-
tations without requiring additional development. GoSpeechLess
is designed to simplify the extension of new BaaS service imple-
mentations, that is, to add a BaaS service implementation of a new
provider, such as Azure, IBM, or Alibaba. Furthermore, if a provider
changes their SDK, only the GoSpeechLess code needs to be updated,
without requiring rewriting of any function that already used the
defined interfaces.

4 CONCLUSION AND FUTURE WORK

We introduced GoSpeechLess, a novel library that significantly re-
duces development efforts to code serverless functions that federate
BaaS$ services of various providers. The current implementation
of GoSpeechLess supports Text-To-Speech Baa$ services from two
providers, AWS and GCP.

To the best of our knowledge, GoSpeechLess is the first frame-
work that exposes common APIs to the developer that hide the
heterogeneity of SDKs for BaaS services, providing fully interop-
erable and portable serverless applications using Baa$S services.
Additionally, the library integrates the features that are supported
by different providers and transparently calls the fitting BaaS ser-
vice implementation. We believe that it will be used by developers,
and we invite the research community to join in its extension for
other providers and BaaS services. We will publish all follow-up
extensions on the same GitHub organization.

GoSpeechLess significantly reduces development effort in terms
of LoC from 56.7 % compared to coding a single SDK, by up to
75.4 %. It also increases the maintainability index (Halstead volume)
by up to 40.13 %. The trade-off is an imposed runtime overhead up
t0 9.21 %.

We will extend our work in several directions. First, we will ana-
lyze the differences between other Baa$ services and add support
in the GoSpeechLess library. Secondly, we will integrate support
for the same BaaS services of other providers. Finally, we will im-
plement GoSpeechLess in other programming languages, such as
Python, Node.js and Java, which are widely used to code functions.

REFERENCES

[1] Juan].Durillo, Radu Prodan, and Jorge G. Barbosa. 2015. Pareto tradeoff scheduling
of workflows on federated commercial Clouds. Simulation Modelling Practice and
Theory 58 (2015), 95-111. https://doi.org/10.1016/j.simpat.2015.07.001 Special
Issue on TECHNIQUES AND APPLICATIONS FOR SUSTAINABLE ULTRASCALE
COMPUTING SYSTEMS.

[2] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru Iosup. 2022. The
State of Serverless Applications: Collection, Characterization, and Community
Consensus. IEEE Transactions on Software Engineering 48, 10 (2022), 4152-4166.
https://doi.org/10.1109/TSE.2021.3113940

[3] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[4] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2023. xAFCL: Run
Scalable Function Choreographies Across Multiple FaaS Systems. IEEE Transactions
on Services Computing 16, 1 (2023), 711-723. https://doi.org/10.1109/TSC.2021.
3128137

Shttps://github.com/FaaSTools

https://github.com/yagipy/maintidx
https://doi.org/10.1016/j.simpat.2015.07.001
https://doi.org/10.1109/TSE.2021.3113940
https://doi.org/10.1109/TSC.2021.3128137
https://doi.org/10.1109/TSC.2021.3128137
https://github.com/FaaSTools

	Abstract
	1 Introduction
	2 GoSpeechLess approach
	3 Results and Discussion
	4 Conclusion and future work
	References

