
An Overview of Microservice-Based Systems Used for Evaluation
in Testing and Monitoring: A Systematic Mapping Study

Stefan Fischer
Pirmin Urbanke
Rudolf Ramler

Software Competence Center
Hagenberg GmbH (SCCH)

Hagenberg, Austria
{firstname.lastname}@scch.at

Monika Steidl
Monika.Steidl@uibk.ac.at
University of Innsbruck

Innsbruck, Austria

Michael Felderer
Michael.Felderer@dlr.de

German Aerospace Center (DLR),
Institute for Software Technology

Cologne, Germany

ABSTRACT
Microservice-based systems have emerged as an effective architec-
ture for countless industry applications. They provide applications
as small, independent, and modular services. With the increasing
interest in such systems, it is important to tackle challenges related
to their quality assurance. However, to advance research in this
area, systems are required to evaluate new approaches and tools.
In this paper, we perform a systematic literature search for systems
used in research for testing and monitoring microservice-based sys-
tems to aid future research. We provide an overview of the found
studies and the systems used in their evaluation. We compose a
list of publicly available systems and their characteristics, like size,
available tests, and technologies used. Finally, we investigated the
context in which these systems were used to provide insights in
their usage and additional data that is available for them.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Monitors.

KEYWORDS
microservice-based systems, mapping study, testing, monitoring

ACM Reference Format:
Stefan Fischer, Pirmin Urbanke, Rudolf Ramler, Monika Steidl, and Michael
Felderer. 2024. An Overview of Microservice-Based Systems Used for Eval-
uation in Testing and Monitoring: A Systematic Mapping Study. In 5th
ACM/IEEE International Conference on Automation of Software Test (AST
2024) (AST ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3644032.3644445

1 INTRODUCTION
Microservice-based systems enable the organization of distributed
applications as a collection of possibly stateless services, to achieve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AST ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0588-5/24/04. . . $15.00
https://doi.org/10.1145/3644032.3644445

scalability, separation of concerns, andmaintainability [7]. Such sys-
tems are widely used by companies such as Netflix and Amazon [25].
Although microservice-based systems have many advantages over
monolithic architectures, such as scalability and independent de-
ploying and managing of services, they come with challenges that
stem from the complex integration of numerous services [19].

Quality assurance of microservice-based systems must grap-
ple with these challenges. Hence testing needs to understand the
concurrent behaviors of the various microservices and interac-
tions between them [24]. Moreover, to improve testing processes of
microservice-based systems, monitoring of microservices in opera-
tion is an important capability [7]. In addition to testing, research in-
dicates encouraging outcomes in the identification of faults within
microservice-based systems through the analysis of monitoring
data [18]. Therefore, we consider testing and monitoring the two
most important practices for quality assurance.

Although microservice-based systems are becoming increasingly
prevalent, and testing and monitoring them is considered crucial,
research results in these areas are still limited. Partly, this is due to
the lack of suitable and widely available microservice-based bench-
mark systems and data for research. Moreover, existing research in
these areas is often performed separately on testing and monitoring
with little overlap. However, we believe that these two fields can
benefit from each other’s work, and bringing testing and monitor-
ing together can lead to more reliable systems. To support this goal,
in this paper, we perform a systematic literature search for testing
and monitoring of microservice-based systems. We are specifically
interested in research on software testing of microservice-based
systems and utilizing monitoring data to identify faults. In our work,
thus, we identify microservice-based systems used for evaluation
in the analyzed scientific literature. We compile a list of systems
and additional datasets, valuable for testing as well as monitoring
research. This outcome is intended as basis for selecting benchmark
systems for future research, guided by a description of their charac-
teristics, additional data sets, as well as the context in which they
have been used before. The contributions of our work are:

• A comprehensive overview of publicly available (open-source)
systems found in research related to testing and monitoring
of microservice-based systems.

• An annotated list of open-sourcemicroservice-based systems
suitable for evaluation, replication, and benchmarking in
future testing and monitoring research.

https://orcid.org/0000-0002-4715-3384
https://orcid.org/0009-0005-1868-3078
https://orcid.org/0000-0001-9903-6107
https://orcid.org/0000-0002-3410-7637
https://orcid.org/0000-0003-3818-4442
https://doi.org/10.1145/3644032.3644445
https://doi.org/10.1145/3644032.3644445

AST ’24, April 15–16, 2024, Lisbon, Portugal Fischer et al.

• A taxonomy of the research performing evaluations with
commonly used microservice-based systems to enable the
identification of related artifacts and data-sets.

2 BACKGROUND
In this section, we discuss the necessary background for our work
and the motivation behind performing this search.

2.1 Microservice-Based Systems
A microservice-based system comprises several microservices —
compact, self-contained software units that collaborate with one an-
other and can be independently upgraded and replaced. A microser-
vice should be focused on a single responsibility and have fine gran-
ularity [3]. Additionally, a microservice should be "autonomous" in
that it should (i) be largely independent from other services and (ii)
be independent of technologies used [19]. A microservice runs in its
own process and communicates with other microservices through
lightweight protocols, like RESTful or RPC-based APIs [25]. It is
important to distinguish microservice-based systems from Service-
Oriented Architectures (SOA) [19]. Microservice-based systems
emerged from SOA as a composition of lightweight and independent
services, but they differ in terms of containing more fine-grained
services, that communicate through an API layer and not through
an Enterprise Service Bus (ESB). Additionally, microservices tend to
provide better scalability, decoupling, and control over application
implementation than SOA [24].

2.2 Testing and Monitoring of
Microservice-Based Systems

Due to their complex nature and dynamic behavior microservice-
based systems pose significant challenges for testing [24]. Complex
deployment of numerous diverse services makes test automation
challenging. The inter-communication between these services poses
additional challenges, due to the complexity of many interoperable
services [24]. Other challenges are due to unreliable feedback from
testing frameworks or the need to manually analyze logs across
numerous microservices to localize faults [24].

Many of these challenges can be addressed with monitoring
and tracing solutions, which enables developer to understand the
concurrent behaviors of the various microservices and interactions
between them [4]. For instance, anomaly detection on system mon-
itoring has been used to identify issues with microservice-based
systems early on [20]. Moreover, monitoring data from operation
may be used to improve in-house testing [7]. Finally, research has
shown that field faults are inevitable, no matter how advanced
the in-house testing is [8]. Therefore, monitoring the system in
operation is an essential part of quality assurance.

2.3 Benchmark Systems for Evaluation
Benchmarks are useful to evaluate and compare different approaches,
techniques, or tools for empirical software engineering [10]. Ad-
ditionally, the use of benchmarks in research communities have
shown to increase technical progress and cohesiveness in the com-
munity [17]. To this end, several benchmarks or benchmark ap-
plications have been proposed in different research communities.

For instance, Arcuri et al. proposed a benchmark for testing REST-
ful application interfaces [1]. Artho et al. performed a literature
search to identify benchmarks used to evaluate test generation
techniques and reported their characteristics [2]. For research on
microservice-based systems, Zhou et al. developed TrainTicket,
which is a fictitious railway ticketing system consisting of 41 mi-
croservices in a layered architecture [27]. Similarly, Kistowski et
al. introduced TeaStore as an artificial microservice-based refer-
ence system to perform experiments with [22]. Gan et al. proposed
DeathStarBench, an open-source benchmark suite consisting of six
microservice-based systems to use for analysis [6].

Wilkinson et al. introduced the FAIR Guiding Principles for re-
searchers to enhance the reusability of their reported data [26]. FAIR
stands for Findable, Accessible, Interoperable, and Reusable, which
are the principles they describe in their work to make research
data useful for other researchers and practitioners. Hirsch et al.
applied the FAIR principles to evaluate benchmarks for debugging
approaches [11]. They evaluated the principles in the following
manner:

• Findable: based on the storage location and how perma-
nent it is. Additionally, they considered the likelihood that
it might be deleted in the future, for instance, if space in a
Google drive was needed. Moreover, they checked the data
that is stored if everything required to use the benchmark
is contained or if they link to other sources that might be
deleted or moved in the future.

• Accessible: was evaluated based on the public availability
of the benchmark or if it is only available upon request.

• Interoperable: based on the file formats used in the bench-
mark data. A higher rating is given to standardized formats
that can be easily processed for future research. Conversely,
if formats require substantial manual effort to convert data
into a machine-readable form a lower rating is assigned.

• Reusable: pertains to the documentation of the benchmark
and the license used to publish or modify the benchmark.

• Reproducible: evaluated if the benchmark is provided in a
version control system with a full version history to repro-
duce experiments on a specific version of the benchmark.
Note: this principle was added to the FAIR Principles by
Hirsch et al. in their work [11].

3 METHOD
In this section, we discuss our research aims, by means of our
research questions, and describe our search and data extraction
processes.

3.1 Research Questions
First, we set to review the scientific literature for references to
microservice-based systems (RQ1) and, based on our findings, we
identify commonly used systems suitable for experimentation (RQ2).

3.1.1 Systems used for Experimentation. Initially, our focus is on
the systems documented in the literature. The goal here is to pro-
vide an overview over all the relevant systems we identified in our
literature search and describe their most important characteristics.
To facilitate further research, our emphasis lies in systems that are
publicly available and widely utilized to provide a strong basis for

An Overview of Microservice-Based Systems Used for Evaluation in Testing and Monitoring: A Systematic Mapping Study AST ’24, April 15–16, 2024, Lisbon, Portugal

the evaluation of future testing and monitoring approaches. The
final goal of this set of research questions is a list of publicly avail-
able microservice-based systems, which are useful for researchers
in their future endeavors, by supporting them to identify the most
appropriate choice of systems to evaluate their research.

RQ1. Which systems are used in experiments for testing and
monitoring of microservice-based systems?
RQ1.1Which systems are available with an open source license?
RQ1.2 What is the distribution of publicly available systems

across the primary studies?
RQ1.3 Which publicly available systems use a microservice

architecture?

3.1.2 Common Microservice-Based Systems. Next, we want to filter
out the systems that are most commonly used in experiments and
we assess as the most relevant for future work in the research areas.
For an easier selection of relevant systems for future researcher we
also want to provide the system’s characteristics and technologies
used. To evaluate the collection of systems we identified in our
search we apply the FAIR Guiding Principles, similar to [11]. This
allows us to provide qualitative criteria on the systems used in
literature, to enable readers to select the correct systems for their
research easily. Finally, we want to provide the context in which
these most relevant systems were used in and create a taxonomy of
this literature. Additionally, we check these publications for links to
additional data-sets that might be useful for future research, using
these systems.

RQ2. Which microservice-based systems are most commonly
used for experimentation?
RQ2.1. What are characteristics (e.g., size, technology, etc.) of

microservice systems used for experimentation?
RQ2.2. What FAIR Guiding Principles are honored by microser-

vice systems used for experimentation?
RQ2.3. In what context were these systems used for testing and

monitoring in the respective experiments?

3.2 Overview of Literature Search and Mapping
Figure 1 shows the overall process of our research approach based
on the process for performing systematic review and mapping [13].
In order to cover the two areas of testing andmonitoring thoroughly
and to compare the results from both areas we conduct one search
process for each area. After the initial search (Step 1) and filtering
(Step 2), we apply back- and forward snowballing (Step 3) and
filter (Step 4) to obtain our final set of studies. We perform the
snowballing steps until we find no further relevant studies. From
both sets of final primary studies, we extract the systems used
(Step 5), which we merge and filter (Step 6) to finally obtain a list
of microservice-based systems. We provide the exact search strings
and intermediate results in our online appendix1. The following
subsections provide details on each of these steps.

1https://github.com/software-competence-center-hagenberg/2024-AST-
Microservices-QA

3.3 Apply Search (Step 1)
Based on our research questions (Section 3.1), we defined two sets
of keywords:
Testing: “software test", “software testing", “test automation", “test

oracle", “test generation", “system test", “system tests", “sys-
tem testing"

Monitoring: “benchmark", “fault localization", “root cause anal-
ysis", “tracing", “anomaly", “dynamic analysis", “telemetry
data", “case study", “fault injection"

We combined these keywords with various spellings of the term
“microservice" in order to create the final search strings. We per-
formed the queries on well established sources for scientific litera-
ture, i.e., Scopus, IEEE, ACM and Springer. For Scopus, IEEE, ACM
we filtered the studies based on title, abstract and keywords. For
ACM we searched in the ACM Guide to Computing Literature which
offers a larger search space than the ACM Full-Text Collection. As of
writing the search engine of Springer only supports either search-
ing in the publication titles or the full text. We choose to search in
the full text at the cost of irrelevant results instead of missing out
relevant studies. We conducted the search in the end of June and
beginning of July 2023 without limiting the publication year, which
returned a total of 349 studies for the testing search and 507 for the
monitoring search.

3.4 Deduplicate & Filter Results (Step 2)
We first deduplicated the raw results based on the digital object
identifier (DOI) and title, which removed 41 studies for testing
and 80 for monitoring. Next, we imported the result sets into a
spreadsheet solution for applying inclusion and exclusion criteria.
Inclusion Criteria.We included a study if the following criteria
were fulfilled:

• Conference papers, journal/magazine articles
• For testing: deals with testing of microservice systems or
has a relation to testing of such systems

• For monitoring: deals with or has a relation with fault local-
ization or root cause analysis in microservice systems

• Only for snowballing: Reference publications, i.e., publica-
tions presenting a benchmark system

Exclusion Criteria.We excluded a study if one of the following
criteria is applicable:

• Not written in English
• Conference summaries, talks, books, master doctoral thesis
• Does not have any evaluation with a system i.e., we exclude
studies, which only present a concept or only use a set of
data for evaluation

• For Testing: testing of SOA systems or GUI testing. Studies
included by the "monitoring search"

• For Monitoring: does not have any relation with fault lo-
calization or root cause analysis in microservice systems.
Studies included by the "testing search"

Note that the last inclusion criterion contradicts the third exclu-
sion criterion. However, we argue that this exception enables us
to find further studies using such benchmark systems and thereby
giving a more accurate picture of the popularity of the systems.
One of the authors evaluated the criteria based on title and abstract

https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA

AST ’24, April 15–16, 2024, Lisbon, Portugal Fischer et al.

-296

+2992

-2944

2. Deduplicate &
Filter Results

1. Apply Search

53
Studies

3. Back-& Forward
Snowballing

4. Deduplicate &
Filter Results

3045
Studies

101
Studies

3x

Testing

-466
2. Deduplicate &

Filter Results

507
Studies

+2373

-2344

1. Apply Search

3. Back-& Forward
Snowballing

4. Deduplicate &
Filter Results

Monitoring

4x

349
Studies

41
Studies

2414
Studies

70
Studies

5. Extract
Systems

5. Extract
Systems

112
Systems

-3

-102

6c. Verify Open-
source License

6b. Find &
Access Sources

53
Studies

32
Systems

28
Systems

6. Merge &
Filter Systems

29
Systems

-10
6d. Verify Microservice

Architecture
19 Microservice-
based Systems

-6
6a. Merge &
Deduplicate

134
Systems

Figure 1: Overview on the search and filtering process.

of the results. When in doubt about including or excluding, the
author consulted the full text of the study. This step left us with 53
publications for testing and 41 for monitoring.

3.5 Backward & Forward Snowballing (Step 3)
Since relevant literature might refer to further important studies, we
used the references included in the 53 and 41 studies for backward
snowballing via Scopus. During backward snowballing we only
included studies published after 2011. We made this restriction by
searching for "microservice" in different spellings in Scopus and
found it to first appear in this year. The selected studies might
also be cited by other relevant studies, hence we also performed
forward snowballing, by using Scopus to find studies, which cite one
of the initial studies. We applied back- and forward snowballing in
multiple iterations until we did not find any more relevant studies.
Overall the snowballing added total of 2992 raw studies in three
iterations to the testing result and 2373 raw studies in four iteration
to the monitoring result.

3.6 Deduplicate & Filter Results (Step 4)
After each round of snowballing, we deduplicated and filtered the
results and only used the new relevant studies for the next round of
snowballing. For the sake of brevity, we did not depict this process
in detail in Figure 1. By deduplication and application of in- and
exclusion criteria, we reduced the set down to 101 studies for testing
and 70 studies for monitoring.

3.7 Extract Systems (Step 5)
From the full text of final sets of primary studies for testing and
monitoring, we extracted the systems used in experimentation
and evaluation. We extracted the names of the systems and when
possible, references or URLs pointing to publications or websites
of these systems. This left us with 112 systems used in the testing
studies and 28 systems from the monitoring studies. These systems
include proprietary systems used in industry, publicly available
APIs, demonstrators, and dedicated benchmark systems. Note that
some studies from the testing search test web APIs (mostly REST
APIs) and mine API repositories such as www.apis.guru to perform
tests on a large number of subjects. For each such study we only

www.apis.guru

An Overview of Microservice-Based Systems Used for Evaluation in Testing and Monitoring: A Systematic Mapping Study AST ’24, April 15–16, 2024, Lisbon, Portugal

increase the system count by one, because they would significantly
inflate and thereby distort the system count and the concrete APIs
is mostly not available. Ultimately these APIs are not that relevant
in this work, because we search for systems where the researchers
can have complete control. We count studies using one or more
systems from the Evo Master Benchmark (EMB) [1] to the usage of
EMB to properly reflect the popularity of this benchmark suite.

3.8 Merge & Filter Systems (Step 6)
Wemerged (Step 6a) the found systems based on their names, which
reduced the set of systems from 140 by 6 to 134. Then we applied the
following four-tiered filter, where each layer is a Boolean question:
Findable (Step 6b): Is there a reference or link to the system in

the paper? 82 of 134 systems fulfilled this criterion.
Accessible (Step 6b): Is the reference actually working such that

we have access to the system and its implementation (i.e.,
source code)? 32 of 82 systems fulfilled this criterion.

Open-source (Step 6c): Is the system released under a license that
permits usage in experimentation (i.e., open-source licenses
like MIT, Apache 2.0)? 29 of 32 systems fulfilled this criterion.

Microservice-based (Step 6d): Is the system described as a mi-
croservice system? 19 of 29 systems fulfilled this criterion.

For the 19 microservice systems we gather information from the
source code repositories on the characteristics of the system and
the used technologies. In the following sections we use both the
results from the OSS and the Microservice filter for further analysis.

3.9 Data Extraction
To answer RQ2.3 we performed a detailed screening of the literature
that contained experiments using the most relevant microservice-
based systems. We extracted the research aims and system data
used in the studies to create two taxonomies in an iterative process.
Moreover, during the screening of the studies we looked for links
to replication packages or other supplementary data for the used
microservice-based systems.

4 RESULTS
In this section, we discuss the results of our literature search and
the extracted data.

4.1 Found Primary Studies
First, we present an overview of the identified studies in our search
results. Figure 2 depicts the number of studies per year they have
been published. The first paper in our results was published in 2011
and focused on testing of web services. Studies with the focus on
monitoring of microservice-based systems appear first in 2018 in
our results, which appears to be the year that started a general
uptick in research in testing and monitoring of such systems. Note
that the numbers for 2023 are not complete, due to the search being
performed in that year.

4.2 Found Systems
We identified 134 systems used in primary studies for experiments
and evaluation. Out of these, references and links to find the actual
system were provided in 82 cases and 29 of them are available under

20
11

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

0

5

10

15

20

25

30

St
ud

ie
s

Testing
Monitoring

Figure 2: Amount of primary studies per year.

an open source license. Table 1 lists these 29 systems along with the
number of publications in testing and monitoring, the years when
they were used, and their classification as a microservice-based
systems. Moreover, we show the last commit, the forks and stars of
the GitHub repository (as of July 2023), and the license under which
the systems are published. In the table, the names of the systems are
linked to the source repositories. The most frequently used systems
(top three) highlighted for testing (blue) and monitoring (orange).

We were not able to report forks and stars for the system Elas-
ticPress, which is not hosted on GitHub, and for systems that are
distributed over multiple repositories (Corona Warn App and Open-
MRS) or which are part of a larger repository (Book Info).

5 DISCUSSION
In this section, we discuss our findings in relation to our initial
goals and answer our research questions.

5.1 RQ1: Systems used for Experimentation
We checked all identified systems in the relevant studies if they are
publicly available under an open source license.

Answering RQ1.1 Open source systems: Our search resulted in
29 open source systems that have been used in the relevant
literature for experiments. These systems are listed in Table 1.

We analyzed the frequency and consistency over the years that a
system is used in research studies, as well as the research area. Fig-
ure 3 shows the distribution of systems over the years. Train Ticket
and Sock Shop are the most common systems, both consistently
used in studies over the last few years. They are mostly used in
studies about monitoring, but some studies also use them in testing
research. The third most common systems is EMB, the EvoMaster
Benchmark, which is exclusively used in testing research. Tea Store
and Hipster Shop are also used in both research areas, even though
in fewer studies. Finally, DeathStarBench has been used six times,
but only in monitoring research. The remaining systems have been
used less frequently, with 20 out of the 29 systems only appearing
in one or two studies.

AST ’24, April 15–16, 2024, Lisbon, Portugal Fischer et al.

Table 1: Available systems used in evaluations (as of July 2023)

Usage in Years Micro- LastSystem T M SUM of use Service Commit Forks Star License

AWS demo 1 - 1 2020 2022-03 175 413 MIT
Book Info 1 1 2 2021 2023-05 - - Apache 2.0
ChaosEcho - 1 1 2021 2021-11 0 1 MIT
CloudStore - 1 1 2022 2016-08 3 8 EPL 1.0
Corona Warn App 1 - 1 2022 2023-07 - - Apache 2.0
customers and orders 1 - 1 2020 2023-05 224 464 Apache 2.0
DeathStarBench [6] - 6 6 2021-2022 2023-06 324 555 Apache 2.0
ElasticPress 1 - 1 2016 2023-07 - - GPLv2
Elgg - 1 1 2019 2023-07 686 1600 MIT
EMB [1] 16 - 16 2017-2023 2023-04 12 18 Apache 2.0
FTGO 1 - 1 2022 2022-09 1200 3100 Apache 2.0
Full Teaching 2 - 2 2021-2023 2020-04 27 29 Apache 2.0
Hipster Shop 1 5 6 2021-2023 2023-05 20 37 Apache 2.0
Jenkins 1 - 1 2020 2023-07 8200 21200 MIT
OnlineBoutique - 2 2 2021-2022 2023-07 5200 14500 Apache 2.0
OpenMRS - 1 1 2022 2023-07 - - MPL 2.0
Petstore 3 - 3 2021-2023 2023-03 262 172 Apache 2.0
Piggy Metrics 2 1 3 2020-2023 2021-11 5900 12500 Apache 2.0
Prestashop 1 - 1 2022 2023-07 4600 7300 OSL-3.0
PyMicro - 4 4 2018-2023 2015-11 8 34 MIT
restaurant management 1 - 1 2020 2017-01 107 206 Apache 2.0
Rideshare 2 - 2 2019-2022 2019-04 0 1 MIT
RobotShop - 1 1 2021 2023-03 1100 708 Apache 2.0
Sock Shop 4 20 24 2018-2023 2021-08 2600 3500 Apache 2.0
SockPong - 1 1 2021 2021-07 0 0 MIT
T2 - 1 1 2022 2022-09 0 0 Apache 2.0
Tea Store [22] 4 3 7 2019-2022 2022-08 116 101 Apache 2.0
Train Ticket [27] 8 20 28 2018-2023 2022-11 256 567 Apache 2.0
Transaction service 1 - 1 2020 2017-01 957 3000 Apache 2.0

Answering RQ1.2 Distribution of systems: We observed varying
usage of systems across studies and years. Some systems were
frequently utilized over several years, while most (20 out of
29) were used only in one or two years with limited study
representation. Moreover, 6 systems have been used in both
research areas of testing and monitoring, while others are used
only in testing (13 systems) or only in monitoring (10 systems).

We further analyzed the pool of systems for those that use a
microservice architecture. We found 19 microservice-based systems.

Answering RQ1.3 Microservice-based systems: We identified 19
microservice-based systems released under an open source li-
cense. These systems are marked with a check-mark in Table 1.

5.2 RQ2: Common Microservice-Based Systems
To compile a list of most commonly used systems for research
in testing and monitoring, we filtered for systems that appear in
at least two studies and consist of more than four services. The
resulting list of 9 system is described below:

• Train Ticket: is a dedicated benchmark system for research
on microservice-based systems. It is a platform for booking
train tickets and provides extensive documentation with a

dedicated Wiki. Additionally, it provides 22 optional faulty
services that can be used for research.

• Sock Shop: is a web shop for demonstration and testing of
microservice-based systems. Implementations of services are
individual Github repositories with one repository dedicated
to documenting the complete system.

• Tea Store: is a benchmark system in the form of a web shop
for buying tea. It was created for the purpose of testing and
benchmarking for microservice research.

• DeathStarBench: is a collection of microservice applica-
tions with various sizes, developed for use in research. Cur-
rently three systems are released, with three more being
reported as in progress.

• Hipstershop: is a fork of the web shop OnlineBoutique for
demonstrating monitoring and tracing with OpenCensus,
Prometheus and Jaeger.

• PyMicro: is a very rudimentary microservice-based system
implemented in Python. It can be configured in a single file
and the topology and number of services can be adapted
easily.

• Piggy Metrics: is a financial advisor application for demon-
strating microservice architecture. The project was intended
as a tutorial for a microservice-based system using Spring
technology.

https://github.com/aws-samples/aws-microservices-deploy-options
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/di-unipi-socc/chaos-echo
https://github.com/CloudScale-Project/CloudStore
https://github.com/corona-warn-app
https://github.com/eventuate-tram/eventuate-tram-sagas-examples-customers-and-orders
https://github.com/delimitrou/DeathStarBench
https://wordpress.org/plugins/elasticpress
https://github.com/elgg/elgg
https://github.com/EMResearch/EMB
https://github.com/microservices-patterns/ftgo-application
https://github.com/OpenVidu/full-teaching
https://github.com/census-ecosystem/opencensus-microservices-demo
https://www.jenkins.io
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/OpenMRS
https://github.com/swagger-api/swagger-petstore
https://github.com/sqshq/piggymetrics
https://github.com/PrestaShop/PrestaShop
https://github.com/rshriram/pymicro
https://github.com/eventuate-examples/eventuate-examples-restaurant-management
https://github.com/AITestingOrg/microservices-sandbox
https://github.com/instana/robot-shop
https://github.com/microservices-demo/microservices-demo
https://github.com/di-unipi-socc/failure-causalities/tree/main/data
https://github.com/t2-project/t2-project
https://github.com/DescartesResearch/TeaStore
https://github.com/FudanSELab/train-ticket
https://github.com/cer/event-sourcing-examples

An Overview of Microservice-Based Systems Used for Evaluation in Testing and Monitoring: A Systematic Mapping Study AST ’24, April 15–16, 2024, Lisbon, Portugal

AW
S d

em
o

Boo
k In

fo

Cha
osE

cho

Clou
dS

tor
e

Coro
na

 W
arn

 App

cus
tom

ers
 an

d o
rde

rs

Dea
thS

tar
Ben

ch

Ela
stic

Pre
ss Elg

g
EM

B
FTG

O

Ful
l Te

ach
ing

Hips
ter

 Sh
op

Jen
kin

s

Onlin
eB

ou
tiq

ue

Ope
nM

RS

Pet
sto

re

Pig
gy

 Metr
ics

Pre
sta

sho
p

PyM
icr

o

res
tau

ran
t m

an
ag

em
en

t

Ride
sha

re

Ro
bo

tSh
op

So
ck

Sh
op

So
ckP

on
g T2

Tea
 St

ore

Tra
in

Tic
ket

Tra
nsa

cti
on

 se
rvi

ce

2016

2017

2018

2019

2020

2021

2022

2023

Sum

1

1

2

2

1

1

1

1

1

1

1

1

2

4

6

1

1

1

1

1

2

1

1

6

5

16

1

1

1

1

2

1

3

2

6

1

1

1

1

2

1

1

1

2

3

2

1

3

1

1

1

1

1

1

4

1

1

1

1

2

1

1

2

3

2

5

8

4

24

1

1

1

1

1

1

2

3

7

1

1

4

5

12

5

28

1

1

Figure 3: Identified open source systems and their usages over years. The bottom row shows the sum of usages, the segments of
the pies show the distribution of usages between the testing (blue) and monitoring (orange) studies.

• OnlineBoutique: is a microservice demonstration appli-
cation in form of a web shop. Beside the use in research,
this system is used by Google to demonstrate cloud related
technologies.

• Rideshare: is a ride-sharing platform developed for com-
paring testing tools. Implementation and documentation is
spread across different repositories and publications by its’
authors.

Table 2 provides further details about each of these nine most
commonly used systems (in case of DeathStarBench, details are
given for each of the three released systems it contains). We show
the number of services reported for each system. In case this num-
ber was not provided in the related documentation or publications,
we analyzed the related repositories (Sock Shop, Hotel Reservation,
Piggy Metrics, and Rideshare). We depict the main development
languages, contained testing and monitoring technologies, the pro-
vided container deployment technologies, communication tech-
niques between services, assessments of their documentation and
if their repository provides version tags.

Answering RQ2.1 System characteristics and technologies: Our
search identified systems of different size (from 5 to 41 mi-
croservices), using a variety of languages (e.g., Java, JS, Go)
and related testing and monitoring technologies (see Table 2).

To further evaluate the potential for reusability of the systems,
we adopted the FAIR Guiding Principles similar to Hirsch et al. [11].
We base our following evaluation on Table 1 and 2.

• Findable: The top nine commonly used microservice-based
systems are hosted on GitHub, lacking a globally unique
and persistent identifier. However, Hirsch et al. [11] assume

that the storage remains secure and accessible in the fore-
seeable future. We assess if the source code is complete and
self-contained. We found that nearly all systems contain all
source files in one repository, whereas Rideshare and Sock
Shop only provide deployment configurations in their repos-
itory, and the code is spread over several repositories.

• Accessible: All nine systems are hosted on GitHub and
publicly accessible, allowing direct access to the source code.

• Interoperable: Hirsch et al. [11] investigated the used data
formats. In analogy, we investigated containerization meth-
ods for system deployment, ensuring compatibility across en-
vironments. Seven systems employ either docker or docker-
compose. Additionally, six systems opt for Kubernetes, a
robust orchestration platform.

• Reusable: Regarding documentation, we verified that all sys-
tems provide a README file containing set-up information.
Train Ticket and Sock Shop additionally provide a wiki with
detailed information. Most systems include a microservice
description covering at least the architecture (Tea Store, Social
Network, Hipstershop, PyMicro, OnlineBoutique). For systems
using REST communication we found an API documentation
in their repositories except for Tea Store. Documentation re-
garding monitoring is mostly related to information on how
to access tracing and infrastructure monitoring data, with
the exception of PyMicro, which omits monitoring informa-
tion. Train Ticket, Sock Shop, and Tea Store further provide
information about their testing approach.
All nine systems are published under open source licenses
(see Table 1); seven systems use the Apache 2.0 license and
two (PyMicro and Rideshare) use the MIT license.

• Reproducible: While each of the nine systems offers ver-
sion control through their GitHub commits, determining the

AST ’24, April 15–16, 2024, Lisbon, Portugal Fischer et al.

Table 2: The most commonly used microservice-based systems in literature

R
ep

or
te
d
Se
rv
ic
es Technologies

Language Testing Monitoring Container Co. Docs.

Ve
rs
io
n
Ta

gs

System

Ja
va JS

Py
th
on C#

C/
C+

+
Go

Lo
ad

Ge
n.

JU
ni
t/

xU
ni
t

Py
th
on

Te
st
s

Go
Te
st
s

M
oc
ha

Cy
pr
es
s

Ka
rm

a
Pr
ot
ra
ct
or

Ja
eg
er

Pr
om

et
he
us

Zi
pk

in
O
pe
nT

el
em

et
ry

El
as
tic

Ki
ek
er

St
ac
kd

riv
er

do
ck
er

do
ck
er
-c
om

po
se

ku
be
rn
et
es

sk
aff

ol
d

O
pe
nS

hi
ft

RE
ST

RP
C

Te
st
in
g

M
on

ito
rin

g
M
ic
ro
se
rv
ic
es

W
ik
i

Train Ticket 41
Sock Shop 9
Tea Store 5
DeathStarBench
Social Network 36
Media Service 38
Hotel Reservation 18
Hipstershop 10
PyMicro 16
Piggy Metrics 8
OnlineBoutique 11
Rideshare 13

precise version for referencing can be unclear. Specific sys-
tems utilize version tags or releases to address this, ensuring
a clear indication of the intended version. The systems that
do not provide version tags or releases are Media Service,
HipsterShop, PyMicro, Rideshare.

Answering RQ2.2 FAIR Guiding Principles: All systems honor the
FAIR Guiding Principles [11], with some shortcomings related
to GitHub hosting and versioning, as well as documentation.

Finally, we looked at the studies that use these systems to de-
termine in what context they were used in and to identify some
additional data-sets. The first thing that became clear when doing
this was that the systems have been used in more monitoring re-
search than testing research. Of the 73 paper that use at least one of
the eleven systems, 18 are from the testing search and 55 are from
the monitoring search results.

Table 3 shows the taxonomy of testing research the identified sys-
tems have been used in. We group the research into their research
methods, by solution proposals (i.e., research proposing novel so-
lutions for problems) and validation research (i.e., performing ex-
periments to validate existing research or tool, or investigating
existing issues) [13]. The most papers we identified here, propose
solutions for test case generation and we therefore split them up
into smaller groups to better differentiate them. We distinguish gen-
eration from field data (i.e., ex-vivo testing) or with combinatorial
approaches and generation for reliability or performance testing.
The first thing we notice by doing this is that the top three systems
in our list have been used in various different research areas within
testing. On the other hand, some systems have only been used
in some specific use cases. For instance, Rideshare has been used
only in two studies comparing testing tools, by the same group of
researchers [T19], [T33]. Similarly, Piggy Metrics was only used
in two studies by the same researches, proposing and approach to
generate test cases from field data [T37], [T43].

We show our taxonomy of the monitoring research using the
systems in Table 4. Similar to the testing taxonomy, we grouped
the research into their research methods, but found that all but

Table 3: Taxonomy of system usage for testing

Research Goals Studies Systems

so
lu
ti
on

test case generation
ex-vivo testing [T37], [T39], [T43] Train Ticket, Piggy Metrics
reliability testing [T7], [T39], [T353],

[T549] Train Ticket, Hipstershop
performance testing [T7], [T256] Train Ticket, Sock Shop
combinatorial [T45], [T402] Train Ticket, Sock Shop
test case selection [T4], [T30] Train Ticket, Tea Store
debugging [T1625] Train Ticket

va
li
da

ti
on

comparing tools [T19], [T33], [T193] Sock Shop, Rideshare
fault tolerance [T65], [T74] Sock Shop, Tea Store
performance testing [T85] Tea Store

one paper are proposing a solution. The only one that we consider
validation research is comparing different approaches for anomaly
detection in monitoring data and defining requirements for such
approaches from their results [M10]. The remaining studies pro-
pose solutions to identify faults in microservice-based systems. The
majority of these proposed approaches focus on detecting anom-
alies in monitoring data and identifying the root-causes of these
anomalies and faults. To accomplish this, different types of moni-
toring data are analyzed. Commonly metrics (i.e., performance and
communication metrics) are monitored as a data source for these
approaches. Other approaches use topology information, logs, or
trace data to identify faults and their root-causes. Therefore, we
classified the research in the types of faults that they aim to identify
in our taxonomy in Table 4. The fault types we identified are:

• Performance: abnormal increases in service response times,
typically resulting from resource anomalies (e.g., CPU, mem-
ory, disk, network).

• Availability: failed service invocations typically caused by
defects in the service or anomalies in the operating environ-
ment.

• Bugs: caused by faulty requests (e.g., 4XX errors), or errors
in the business logic like incorrect response values.

• Communication: a significant increase in the number of
service requests or an increase in service packet loss, which
is typically caused by network anomalies between services.

https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T19
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T33
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T37
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T43
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T37
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T39
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T43
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T7
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T39
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T353
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T549
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T7
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T256
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T45
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T402
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T4
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T30
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T1625
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T19
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T33
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T193
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T65
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T74
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T85
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M10

An Overview of Microservice-Based Systems Used for Evaluation in Testing and Monitoring: A Systematic Mapping Study AST ’24, April 15–16, 2024, Lisbon, Portugal

Table 4: Taxonomy of system usage for monitoring

Research Goals Studies Systems

so
lu
ti
on

Performance [M7], [M591], [M640], [M670], [M1559] Tea Store, DeathStarBench
|-CPU hog
| |–Toolkit [M8], [M11], [M37], [M46], [M49], [M52], [M53], [M55], Train Ticket, Sock Shop, DeathStarBench,
| | [M56], [M62], [M66], [M93], [M102], [M109], [M405], [M478], Hipstershop, OnlineBoutique
| | [M498], [M541], [M592], [M626], [M679], [M731], [M1319]
| |–change sources [M80], [M1320] Train Ticket, Sock Shop, Tea Store
|-memory usage [M15], [M485], [M487], [M560] Train Ticket, Sock Shop, Hipstershop
| |–Toolkit [M8], [M11], [M49], [M55], [M66], [M102], [M109], [M478], Train Ticket, Sock Shop, DeathStarBench
| | [M498], [M541], [M592], [M626], [M731], [M1319]
| |-change sources [M53], [M80] Train Ticket, Sock Shop, Social Network (DSB)
|-disk usage [M15], [M485] Sock Shop, Hipstershop
| |–Toolkit [M46], [M109], [M498], [M679] Train Ticket, DeathStarBench, Hipstershop
| |–change sources [M1320] Tea Store
|-network response delay [M5], [M15], [M57], [M405], [M450], [M485], [M487], Train Ticket, Sock Shop, Hipstershop,
| | [M560], [M582] PyMicro, OnlineBoutique
| |–Toolkit [M11], [M46], [M52], [M56], [M62], [M66], [M93], [M102], Train Ticket, Sock Shop, DeathStarBench,
| | [M109], [M478], [M498], [M541], [M592], [M679] Hipstershop, OnlineBoutique
| |–change data records [M584] Train Ticket
| |–change sources [M464], [M785], [M1320] Train Ticket, Sock Shop, Tea Store
|-DB delay [M582] OnlineBoutique
Availability [M15], [M17] Train Ticket, Sock Shop
|-service [M53], [M57], [M487], [M560], [M582] Train Ticket, Sock Shop,
| | Social Network (DSB), OnlineBoutique
| |–Toolkit [M8], [M14], [M62], [M112], [M592], [M626] Train Ticket, Sock Shop
| |–container shutdown/shutdown [M52], [M405], [M760] Sock Shop, PyMicro, OnlineBoutique
| |–change data records [M584] Train Ticket
|-resource
| |–permission change [M785] Piggy Metrics
| |–change sources [M14], [M80] Train Ticket, Sock Shop
Bugs [M15], [M17], [M485] Train Ticket, Sock Shop, Hipstershop
|-request error
| |–change sources [M14], [M626] Train Ticket
|-business logic errors [M560]
| |–Toolkit [M56] Train Ticket
| |–change sources [M498], [M626] Train Ticket
Communication
|-package loss [M8], [M15], [M57], [M485], [M487], [M592], [M626], Train Ticket, Sock Shop,
| | [M707], [M785] Hipstershop, Piggy Metrics
|-call frequency [M8], [M53], [M450], [M560] Sock Shop, Social Network (DSB)
Operations
|-swap or add calls [M584] Train Ticket
Architecture [M12], [M29] Train Ticket
Unclear [M3], [M21], [M74], [M84], [M620], [M1173] Sock Shop, Hipstershop, PyMicro

v Comparison of approaches [M10] Train Ticket

• Operations: a change in operation sequences like swapping
call orders or additional calls between services.

• Architecture: anti patterns in the system that reveal archi-
tectural smells.

We further distinguished by the method used to inject faults in
the microservice-based systems in the research evaluation. Most
commonly the research uses Chaos Engineering Toolkits (likeChaos-
Blad2 or Chaos Mesh3), stress testing tools (like stress-ng4), or net-
work emulation tools (like tc-netem5) to introduce anomalies in the
recorded data from monitoring. Other experiments introduce faults
directly into the system’s source code or change configurations to
lead to anomalies in the data records.

Finally, we checked the papers for links to additional data-sets.
Many of these links contained source code of the approaches or for
evaluation, additional result data, or plots the authors could not
fit into the publication. However, some papers link to replication

2https://github.com/chaosblade-io/chaosblade
3https://github.com/chaos-mesh/chaos-mesh
4https://aur.archlinux.org/packages/stress-ng
5https://man7.org/linux/man-pages/man8/tc-netem.8.html

packages containing data we considered potentially useful for other
research. We list these data-sets in Table 5. We identified trace data
for Train Ticket, test scenarios used to generate a load on systems,
faults that were injected into systems to evaluate approaches, and
other monitoring data like performance and access logs.

Answering RQ2.3 Usage context: We identified a variety of re-
search using the systems to identify faults in them, either by
testing (Table 3) or monitoring (Table 4). Some systems (esp.
Train Ticket) were used in a wide variety of contexts and stud-
ies. From our taxonomy, we were able to identify data-sets (e.g.,
traces, faults) useful for future research (see Table 5).

5.3 Threats to Validity
We face similar threats to validity as other systematic mapping
studies. The first threat to validity is the completeness of the list of
studies and systems. To address this, we searched for literature in
the most well-known digital libraries to get a representative pool of
studies. Moreover, we selected our search terms by checking related

https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M7
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M591
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M640
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M670
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1559
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M8
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M11
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M37
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M46
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M49
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M52
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M53
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M55
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M56
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M62
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M66
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M93
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M102
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M109
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M405
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M478
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M498
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M541
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M592
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M626
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M679
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M731
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1319
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M80
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1320
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M15
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M485
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M487
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M560
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M8
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M11
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M49
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M55
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M66
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M102
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M109
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M478
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M498
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M541
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M592
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M626
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M731
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1319
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M53
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M80
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M15
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M485
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M46
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M109
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M498
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M679
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1320
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M5
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M15
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M57
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M405
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M450
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M485
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M487
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M560
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M582
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M11
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M46
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M52
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M56
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M62
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M66
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M93
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M102
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M109
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M478
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M498
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M541
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M592
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M679
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M584
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M464
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M785
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1320
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M582
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M15
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M17
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M53
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M57
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M487
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M560
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M582
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M8
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M14
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M62
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M112
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M592
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M626
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M52
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M405
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M760
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M584
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M785
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M14
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M80
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M15
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M17
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M485
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M14
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M626
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M560
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M56
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M498
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M626
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M8
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M15
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M57
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M485
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M487
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M592
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M626
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M707
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M785
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M8
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M53
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M450
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M560
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M584
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M12
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M29
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M3
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M21
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M74
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M84
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M620
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1173
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M10
https://github.com/chaosblade-io/chaosblade
https://github.com/chaos-mesh/chaos-mesh
https://aur.archlinux.org/packages/stress-ng
https://man7.org/linux/man-pages/man8/tc-netem.8.html

AST ’24, April 15–16, 2024, Lisbon, Portugal Fischer et al.

Table 5: Additional data-sets for our list of systems

Study Data Link
Train Ticket
[M10] trace data https://zenodo.org/records/6979726
[M46] trace data https://github.com/NetManAIOps/TraceAnomaly
[M56] trace data https://github.com/NetManAIOps/TraceRCA
[M464] trace data https://github.com/SEALABQualityGroup/replication_delag
[M626] trace data https://fudanselab.github.io/PUTraceAD
[T43] test scenarios https://gitlab.com/learnERC/exvivomicrotest

[M592] performance data,
injected faults https://zenodo.org/records/6955909

Sock Shop
[M478] performance data https://github.com/AXinx/CausalRCA_code
[M1319] performance data https://github.com/azamikram/rcd
Tea Store
[M1320] access logs https://doi.org/10.5281/zenodo.5659008
Hipstershop
[T353] injected faults https://github.com/rkarn/automated-testing-resciliency
Piggy Metrics
[T43] test scenarios https://gitlab.com/learnERC/exvivomicrotest
OnlineBoutique

[M582]
injected faults,
topology,
service calls

https://github.com/IntelligentDDS/GIED

literature [4, 24, 25] and refined them by checking the search results
for relevant papers. A second threat to validity is the selection of
research questions. To minimize this threat we had several discus-
sions about the questions and goals of our search. We argue the
research questions reflect the goals of our work. A third threat to
validity is related to the extraction of data from the studies and
for the systems. During data extraction we recorded the data in
spreadsheets and when necessary studies were reread to clarify
some doubt about the data. We had many meetings and discussions
about the extraction of the data. The fourth threat to validity is
the evaluation of the systems using the FAIR evaluation criteria.
This evaluation is based on subjective judgement and some of the
rating criteria might be outdated in a few years as best practices
and technology continue to evolve. To minimize this, we used the
same FAIR evaluation criteria as in related research [11].

6 RELATEDWORK
Several mapping studies have been performed on research for
microservice-based systems [5, 9, 12, 23]. Most of the publications
found in these studies focuses on the architecture and design of such
systems [12, 23]. As a result of these research interests, additional
mapping studies have been published, centering their attention on
the architecture of microservice-based systems [21, 25]. In contrast
to our work, these studies did not focus on the systems used for
experiments, but rather to summarize existing research and identify
trends and gaps in existing research.

For research specific to testing microservice-based systems,
Waseem et al. performed a systematic mapping study [24]. Their
pool of primary sources overlaps with the studies we identified
in our search, but their study was performed in 2019 and there-
fore does not contain the newer publications we identified. More-
over, they did not focus on the systems used in the evaluations of
their identified studies. Additionally, a mapping study about test-
ing microservice-based systems by Panahandeh et al. is currently
available as a pre-print [14]. They compiled a list of research on
testing microservice-based systems along with a taxonomy further
breaking down the actual research performed. One of the research
questions in this study also pertained to the systems used in the

evaluation of the publications. We differ from their work in the
identified systems and the analysis performed on the available
technologies and documentation.

Rahman et al. compiled microservice-based systems from
GitHub [15], contrasting with our systematic search in digital li-
braries. Despite some overlap between their dataset and our find-
ings, differences in search methods yield divergent results, allowing
their data to complement our search results.

Silva et al. [16] performed a literature search of faults in microser-
vice systems. They created a taxonomy classifying 117 different
fault types, grouped into different subcategories. These categories
are similar to the fault types we identified in our taxonomy over
the monitoring research. However, the faults identified by Silva et
al. are more detailed, which was out of the scope of our work.

Hirsch et al. conducted a systematic review on debugging bench-
marks, comparing their size and data availability [11]. They also
assessed these benchmarks using FAIR principles, akin to our study.
Unlike our work, which sought research proposing and evaluating
solutions for quality issues in microservice-based systems, they
specifically searched for publications for benchmarks or datasets.

7 CONCLUSIONS
We performed a systematic literature search for systems used in
research for testing and monitoring of microservice-based systems.
The goal of our work was to provide a list of publicly available
microservice-based systems that can be used for experimentation
in future research in both fields, testing and monitoring.

A large number of systems have been used in research over the
years. In total, we found 134 systemsmentioned in the literature; 112
systems in the testing studies and 28 systems in monitoring studies,
with 6 of them related to both fields. However, the vast majority
of these systems are proprietary or lack relevant information how
to get access for using them in research. In our review we were
able to identify only 29 systems (22%) that provide access to the
source code released under an open-source license that permits
using them freely in experiments. Out of these, only 19 systems
(14%) are actually based on microservices.

From the pool of microservice-based systems suitable for re-
search we selected the nine most commonly used ones and describe
them in detail to support their selection for experiments in future
research. Additionally, we mapped these systems to existing re-
search on testing and monitoring to highlight previous results as
well as available data sets for benchmarking.

ACKNOWLEDGMENTS
This work has been funded by the Austrian Research Promotion
Agency FFG (FFG grant no. 888127), as well as the Austrian min-
istries BMK and BMAW, and the State of Upper Austria in the
frame of the SCCH competence center INTEGRATE (FFG grant no.
892418) part of the FFG COMET Competence Centers for Excellent
Technologies Programme.

DATA AVAILABILITY STATEMENT
The used search queries and results of our search process are openly
available in the GitHub repository at https://github.com/software-
competence-center-hagenberg/2024-AST-Microservices-QA.

https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M10
https://zenodo.org/records/6979726
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M46
https://github.com/NetManAIOps/TraceAnomaly
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M56
https://github.com/NetManAIOps/TraceRCA
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M464
https://github.com/SEALABQualityGroup/replication_delag
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M626
https://fudanselab.github.io/PUTraceAD
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T43
https://gitlab.com/learnERC/exvivomicrotest
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M592
https://zenodo.org/records/6955909
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M478
https://github.com/AXinx/CausalRCA_code
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1319
https://github.com/azamikram/rcd
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M1320
https://doi.org/10.5281/zenodo.5659008
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T353
https://github.com/rkarn/automated-testing-resciliency
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesTesting.md#T43
https://gitlab.com/learnERC/exvivomicrotest
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA/blob/main/PrimarySourcesMonitoring.md#M582
https://github.com/IntelligentDDS/GIED
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA
https://github.com/software-competence-center-hagenberg/2024-AST-Microservices-QA

An Overview of Microservice-Based Systems Used for Evaluation in Testing and Monitoring: A Systematic Mapping Study AST ’24, April 15–16, 2024, Lisbon, Portugal

REFERENCES
[1] Andrea Arcuri, Man Zhang, Amid Golmohammadi, Asma Belhadi, Juan P. Ga-

leotti, Bogdan Marculescu, and Susruthan Seran. 2023. EMB: A Curated Cor-
pus of Web/Enterprise Applications And Library Support for Software Test-
ing Research. In IEEE Conference on Software Testing, Verification and Vali-
dation, ICST 2023, Dublin, Ireland, April 16-20, 2023. IEEE, 433–442. https:
//doi.org/10.1109/ICST57152.2023.00047

[2] Cyrille Artho, Adam Benali, and Rudolf Ramler. 2021. Test Benchmarks: Which
One Now and in Future?. In 21st IEEE International Conference on Software Quality,
Reliability and Security, QRS 2021, Hainan, China, December 6-10, 2021. IEEE, 328–
336. https://doi.org/10.1109/QRS54544.2021.00044

[3] Sasa Baskarada, Vivian Nguyen, and Andy Koronios. 2020. Architecting Mi-
croservices: Practical Opportunities and Challenges. J. Comput. Inf. Syst. 60, 5
(2020), 428–436. https://doi.org/10.1080/08874417.2018.1520056

[4] Antonia Bertolino, Guglielmo De Angelis, Micael Gallego, Boni García, Francisco
Gortázar, Francesca Lonetti, and Eda Marchetti. 2019. A Systematic Review on
Cloud Testing. ACM Comput. Surv. 52, 5 (2019), 93:1–93:42. https://doi.org/10.
1145/3331447

[5] Roberta Capuano and Henry Muccini. 2022. A Systematic Literature Review
on Migration to Microservices: a Quality Attributes perspective. In IEEE 19th
International Conference on Software Architecture Companion, ICSA Companion
2022, Honolulu, HI, USA, March 12-15, 2022. IEEE, 120–123. https://doi.org/10.
1109/ICSA-C54293.2022.00030

[6] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for Mi-
croservices and Their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2019, Providence,
RI, USA, April 13-17, 2019. ACM, 3–18. https://doi.org/10.1145/3297858.3304013

[7] Luca Gazzola, Maayan Goldstein, Leonardo Mariani, Marco Mobilio, Itai Segall,
Alessandro Tundo, and Luca Ussi. 2023. ExVivoMicroTest: ExVivo Testing of
Microservices. J. Softw. Evol. Process. 35, 4 (2023). https://doi.org/10.1002/smr.2452

[8] Luca Gazzola, Leonardo Mariani, Fabrizio Pastore, and Mauro Pezzè. 2017. An
Exploratory Study of Field Failures. In 28th IEEE International Symposium on
Software Reliability Engineering, ISSRE 2017, Toulouse, France, October 23-26, 2017.
IEEE Computer Society, 67–77. https://doi.org/10.1109/ISSRE.2017.10

[9] Sara Hassan, Rami Bahsoon, and Rick Kazman. 2020. Microservice transition
and its granularity problem: A systematic mapping study. Softw. Pract. Exp. 50, 9
(2020), 1651–1681. https://doi.org/10.1002/spe.2869

[10] Wilhelm Hasselbring. 2021. Benchmarking as Empirical Standard in Software
Engineering Research. In EASE 2021: Evaluation and Assessment in Software
Engineering, Trondheim, Norway, June 21-24, 2021. ACM, 365–372. https://doi.
org/10.1145/3463274.3463361

[11] Thomas Hirsch and Birgit Hofer. 2022. A systematic literature review on bench-
marks for evaluating debugging approaches. J. Syst. Softw. 192 (2022), 111423.
https://doi.org/10.1016/j.jss.2022.111423

[12] Claus Pahl and Pooyan Jamshidi. 2016. Microservices: A Systematic Mapping
Study. In CLOSER 2016 - Proceedings of the 6th International Conference on Cloud
Computing and Services Science, Volume 1, Rome, Italy, April 23-25, 2016. SciTePress,
137–146. https://doi.org/10.5220/0005785501370146

[13] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64 (2015), 1–18. https://doi.org/10.1016/j.
infsof.2015.03.007

[14] Mohammad Imranur Rahman and James Miller. 2023. A Systematic Review on
Microservice Testing. PREPRINT (Version 1) available at Research Square (2023).
https://doi.org/10.21203/rs.3.rs-3158138/v1

[15] Mohammad Imranur Rahman, Sebastiano Panichella, and Davide Taibi. 2019. A
curated Dataset of Microservices-Based Systems. CoRR abs/1909.03249 (2019).
arXiv:1909.03249 http://arxiv.org/abs/1909.03249

[16] Francisco Silva, Valéria Lelli, Ismayle de Sousa Santos, and Rossana M. de Cas-
tro Andrade. 2022. Towards a Fault Taxonomy for Microservices-Based Applica-
tions. In SBES 2022: XXXVI Brazilian Symposium on Software Engineering, Virtual
Event Brazil, October 5 - 7, 2022, Marcelo de Almeida Maia, Fabiano A. Dorça,
Rafael Dias Araújo, Christina von Flach, Elisa Yumi Nakagawa, and Edna Dias
Canedo (Eds.). ACM, 247–256. https://doi.org/10.1145/3555228.3555245

[17] Susan Elliott Sim, Steve M. Easterbrook, and Richard C. Holt. 2003. Using
Benchmarking to Advance Research: A Challenge to Software Engineering.
In Proceedings of the 25th International Conference on Software Engineering,
May 3-10, 2003, Portland, Oregon, USA. IEEE Computer Society, 74–83. https:
//doi.org/10.1109/ICSE.2003.1201189

[18] Jacopo Soldani and Antonio Brogi. 2023. Anomaly Detection and Failure Root
Cause Analysis in (Micro) Service-Based Cloud Applications: A Survey. ACM
Comput. Surv. 55, 3 (2023), 59:1–59:39. https://doi.org/10.1145/3501297

[19] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan van den Heuvel. 2018.
The pains and gains of microservices: A Systematic grey literature review. J. Syst.
Softw. 146 (2018), 215–232. https://doi.org/10.1016/j.jss.2018.09.082

[20] Monika Steidl, Marko Gattringer, Michael Felderer, Rudolf Ramler, and Mostafa
Shahriari. 2022. Requirements for Anomaly Detection Techniques for Mi-
croservices. In Product-Focused Software Process Improvement - 23rd International
Conference, PROFES 2022, Jyväskylä, Finland, November 21-23, 2022, Proceed-
ings (Lecture Notes in Computer Science, Vol. 13709). Springer, 37–52. https:
//doi.org/10.1007/978-3-031-21388-5_3

[21] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2018. Architectural Pat-
terns for Microservices: A Systematic Mapping Study. In Proceedings of the
8th International Conference on Cloud Computing and Services Science, CLOSER
2018, Funchal, Madeira, Portugal, March 19-21, 2018. SciTePress, 221–232. https:
//doi.org/10.5220/0006798302210232

[22] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In 26th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, MASCOTS 2018, Milwaukee, WI, USA,
September 25-28, 2018. IEEE Computer Society, 223–236. https://doi.org/10.1109/
MASCOTS.2018.00030

[23] Hulya Vural, Murat Koyuncu, and Sinem Guney. 2017. A Systematic Literature
Review on Microservices. In Computational Science and Its Applications - ICCSA
2017 - 17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part
VI (Lecture Notes in Computer Science, Vol. 10409). Springer, 203–217. https:
//doi.org/10.1007/978-3-319-62407-5_14

[24] Muhammad Waseem, Peng Liang, Gastón Márquez, and Amleto Di Salle. 2020.
Testing Microservices Architecture-Based Applications: A Systematic Mapping
Study. In 27th Asia-Pacific Software Engineering Conference, APSEC 2020, Singapore,
December 1-4, 2020. IEEE, 119–128. https://doi.org/10.1109/APSEC51365.2020.
00020

[25] Muhammad Waseem, Peng Liang, and Mojtaba Shahin. 2020. A Systematic
Mapping Study on Microservices Architecture in DevOps. J. Syst. Softw. 170
(2020), 110798. https://doi.org/10.1016/j.jss.2020.110798

[26] Mark DWilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3, 1 (2016), 1–9.

[27] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Benchmarking microservice systems for software engineering research. In
Proceedings of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM,
323–324. https://doi.org/10.1145/3183440.3194991

https://doi.org/10.1109/ICST57152.2023.00047
https://doi.org/10.1109/ICST57152.2023.00047
https://doi.org/10.1109/QRS54544.2021.00044
https://doi.org/10.1080/08874417.2018.1520056
https://doi.org/10.1145/3331447
https://doi.org/10.1145/3331447
https://doi.org/10.1109/ICSA-C54293.2022.00030
https://doi.org/10.1109/ICSA-C54293.2022.00030
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1002/smr.2452
https://doi.org/10.1109/ISSRE.2017.10
https://doi.org/10.1002/spe.2869
https://doi.org/10.1145/3463274.3463361
https://doi.org/10.1145/3463274.3463361
https://doi.org/10.1016/j.jss.2022.111423
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.21203/rs.3.rs-3158138/v1
https://arxiv.org/abs/1909.03249
http://arxiv.org/abs/1909.03249
https://doi.org/10.1145/3555228.3555245
https://doi.org/10.1109/ICSE.2003.1201189
https://doi.org/10.1109/ICSE.2003.1201189
https://doi.org/10.1145/3501297
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1007/978-3-031-21388-5_3
https://doi.org/10.1007/978-3-031-21388-5_3
https://doi.org/10.5220/0006798302210232
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1007/978-3-319-62407-5_14
https://doi.org/10.1007/978-3-319-62407-5_14
https://doi.org/10.1109/APSEC51365.2020.00020
https://doi.org/10.1109/APSEC51365.2020.00020
https://doi.org/10.1016/j.jss.2020.110798
https://doi.org/10.1145/3183440.3194991

	Abstract
	1 Introduction
	2 Background
	2.1 Microservice-Based Systems
	2.2 Testing and Monitoring of Microservice-Based Systems
	2.3 Benchmark Systems for Evaluation

	3 Method
	3.1 Research Questions
	3.2 Overview of Literature Search and Mapping
	3.3 Apply Search (Step 1)
	3.4 Deduplicate & Filter Results (Step 2)
	3.5 Backward & Forward Snowballing (Step 3)
	3.6 Deduplicate & Filter Results (Step 4)
	3.7 Extract Systems (Step 5)
	3.8 Merge & Filter Systems (Step 6)
	3.9 Data Extraction

	4 Results
	4.1 Found Primary Studies
	4.2 Found Systems

	5 Discussion
	5.1 RQ1: Systems used for Experimentation
	5.2 RQ2: Common Microservice-Based Systems
	5.3 Threats to Validity

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

