INTRODUCTION TO QUANTUM MACHINE LEARNING

Oliver Sefrin, DLR-QT (Ulm) WAW ML 10, 23.09.2024

Content

- 1. Basics of Quantum Computing
 - From Qubits to Quantum Circuits
 - Technological Realizations
 - Algorithms & Applications

- 2. Quantum Machine Learning
 - Basic Ideas
 - Data Encoding
 - Model Ansätze

- 3. Coding Demos
 - Supervised Learning
 - Generative Learning

- 4. Wrap-Up
 - Challenges in QML
 - Conclusion & Outlook

Quantum Computing Basics

History of Quantum Physics and Quantum Computing

Oliver Sefrin, QT, 23.09.2024

The quantum bit or qubit has two basis states, e.g.,

$$|0\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix}$$
 and $|1\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix} \in \mathbb{C}^2$

In general, the qubit's state can be in any linear combination $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

with
$$\alpha, \beta \in \mathbb{C}$$
, $|\alpha|^2 + |\beta|^2 = 1$.

This is called superposition.

Only a measurement lets the wavefunction collapse to a basis state: $p("measure |0\rangle") = |\alpha|^2$ $p("measure |1\rangle") = |\beta|^2$

5

 $\hat{\mathbf{x}}$

 $\hat{\mathbf{z}} = |0\rangle$

Multiple Qubits

• Cf. *classical* bits:

$$n \text{ bits } \rightarrow 2^n \text{ combinations}$$

e.g., $n = 3$:
 $000, 001, \dots, 110, 111$
8 combinations

- Qubits:
 - Qubit A in state $|0\rangle$ and qubit B in state $|1\rangle \rightarrow \text{joint state: } |0\rangle_A |1\rangle_B \equiv |01\rangle_{AB}$

• Qubit A in state
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 and qubit B in state $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$
 \rightarrow joint state: $\frac{1}{\sqrt{2}}(|0\rangle_A + |1\rangle_A) * \frac{1}{\sqrt{2}}(|0\rangle_B - |1\rangle_B) = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$

 \rightarrow superposition of 2^n states possible

Operations on Qubits

- Gate logic as in classical computer science
- Operations have to be unitary (i.e., norm-preserving)
- Important single-qubit gates:

 - Pauli rotations
 - NOT gate |0⟩ ↦ |1⟩, |1⟩ ↦ |0⟩
 Hadamard gate |0⟩ ↦ ¹/_{√2}(|0⟩ + |1⟩), |1⟩ ↦ ¹/_{√2}(|0⟩ |1⟩)

https://de.wikipedia.org/wiki/Bloch-Kugel

- Two-qubit gates:
 - Controlled-NOT gate

 $|0\rangle_{\text{control}}|0\rangle_{\text{target}} \mapsto |0\rangle_{\text{control}}|0\rangle_{\text{target}}$ $|0\rangle_{\text{control}}|1\rangle_{\text{target}} \mapsto |0\rangle_{\text{control}}|1\rangle_{\text{target}}$ $|1\rangle_{\text{control}}|0\rangle_{\text{target}} \mapsto |1\rangle_{\text{control}}|1\rangle_{\text{target}}$ $|1\rangle_{\text{control}}|1\rangle_{\text{target}} \mapsto |1\rangle_{\text{control}}|0\rangle_{\text{target}}$

- We can approximate any unitary operation with finite sequence of operations from universal gate set
- Ex.: {Hadamard-gate, Pauli-Rotations, CNOT-gate}
- \rightarrow any *n*-qubit operation can be decomposed into one- and two-qubit gates

• Ex.:

Entanglement

- "quantum correlation"
- Multi-qubit state $|\psi\rangle_{AB}$ cannot be expressed as product of subsystems $|\varphi\rangle_A$ and $|\gamma\rangle_B$

• $\frac{1}{\sqrt{2}}(|00\rangle_{AB} + |11\rangle_{AB})$ is entangled

- $\frac{1}{\sqrt{2}}(|01\rangle_{AB} + |11\rangle_{AB}) = \frac{1}{\sqrt{2}}(|0\rangle_A + |1\rangle_A) \otimes |1\rangle_B$ is not entangled
- Capability to create entanglement is a crucial resource in QC

Circuit Diagrams

Technology of Quantum Computers

Universal Quantum Computer

DiVincenzo Criteria

- 1. Well-characterized and scalable qubits
- 2. Qubit initialization
- 3. Long coherence times
- 4. Universal set of gates
- 5. Measurement of individual qubits

Experimental Realizations

https://www.newscientist.com/article/2372828-superconducting-qubits-have-passed-a-key-quantum-test/

Ion Trap QC

https://www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing

Photonic QC

- Ion energy levels as qubits
- EM fields trap chain of ions
- Manipulation via microwave pulses

NV Center QC

- Nitrogen & Vacancy in diamond lattice
- Nitrogen nuclear spin as qubit
- Readout & coupling from NV electron spin

- encode special states as Qubits (GKP states)
- Operations via beam splitters, phase shifters, ...
- Readout via homodyne measurements

https://arstechnica.com/science/2018/09/engineering-tour-de-force-births-programmable-optical-quantum-computer/

http://qeg.mit.edu/research.php

Experimental Realizations: Roadmaps

Source: Arthur D. Little, Olivier Ezratty

https://www.adlittle.com/en/insights/viewpoints/quantum-computing

Superconducting

> Electron spin

> Trapped

ion

Cold

atom

Photon

The NISQ Era & beyond

NISQ = "noisy, intermediate-scale quantum":

- Large error rates ($\sim 10^{-3}$ for two-qubit gates)
- Relatively low qubit numbers
- Limited connectivity

Quantum Error Correction

- Encode several physical qubits into logical qubits
- Requires lower error rates to be useful
- Overhead: 100-1000 physical qubits per logical qubit

https://www.marketing-boerse.de/news/details/2124-guantensprung-in-ehningen-bei-stuttgart/177821

Quantum Algorithms

17

What Quantum Computing is not

• "Quantum Computing = massive parallel computing" ?

- Idea:
 - 1. Prepare superposition:
 - 2. Apply unitary *U* (to each element):
 - 3. ...
 - 4. Success?
- Caveat: measurement \rightarrow wavefunction collapse

$$\begin{aligned} |\psi\rangle &= \frac{1}{\sqrt{2^n}} \sum_{i=0}^{2^n - 1} |i\rangle \\ U|\psi\rangle &= \frac{1}{\sqrt{2^n}} \sum_{i=0}^{2^n - 1} U|i\rangle \end{aligned}$$

Some Quantum Algorithms

	Shor	Grover	HHL
Use Case	Prime factorization	Search in unstructured database	Solving linear equation systems $A\vec{x} = \vec{b}$
Quantum Complexity	$O((\log N)^2(\log \log N))$	$O(\sqrt{N})$	$O(\log(N) \kappa^2)$
Best Classical Complexity	$O(e^{1.9(\log N)^{1/3}(\log \log N)^{2/3}})$	0(N)	0(Νκ)
Speed Up	Exponential	Quadratic	Exponential

Common caveat: circuit complexity \rightarrow require fault-tolerant QC

- Quantum chemistry: ground state estimation, molecule simulation
- Optimization:
 - quantitative finance (e.g., with reinforcement learning)
 - pharma/healthcare (drug discovery)
- Material science (solving PDEs, simulation)
- Any classical classification or regression task

Summary

Basics

- Superposition and entanglement of multiple qubits are essential resources
- Universal gate sets of one- and two-qubit gates allow arbitrary operations

Technology

- Different technologies are examined for QC; no clear-cut favorite
- Currently: noisy and intermediate scale (NISQ) era

Algorithms

- QC ≠ free parallel computing
- Algorithms with proven speedups exist for some problem classes, but require better quantum computers (& quantum error correction)

Quantum Machine Learning

22

Overview

- Term "Quantum Machine Learning" coined ca. 2013
- Initially mainly kernel methods, later variational QML
- Mostly: processing of classical data with quantum computers

Variational QML

Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.

Hybrid algorithm: Classical optimization of a parametrized quantum circuit

- 1. Preparation of input data on $QC \rightarrow Encoding$
- 2. Choice of parametrized quantum circuit \rightarrow Model ansatz
- Output interpretation 3.
- 4. Definition of loss function
- 5. Choice of optimization method

24

Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018

Data Encodings

Basis Encoding

- Encode classical bitstrings $(b_1, b_2, ..., b_n) \in \{0,1\}^n$ as quantum state $|b_1, b_2, ..., b_n\rangle$
- n bit bitstring requires n qubits

Amplitude Encoding

- Classical feature vector $x \in \mathbb{R}^{2^n}$
- Encode entries x_i of (normalized) x as *amplitudes* of quantum state

$$|\psi_x\rangle = \frac{1}{|x|} \sum_{i=0}^{2^{n-1}} x_i |i\rangle$$

• Feature vector of length 2^n requires *n* qubits \rightarrow logarithmic scaling

Variational Model Ansatz

4

Problem-tailored approaches

- Unitary coupled cluster ansatz (UCC, quantum chemistry)
- Quantum alternating operator ansatz (QAOA, optimization)

Hardware efficient ansatz

- Heuristic approach
- Device-native gates & low circuit depth

Optimization

- Analogous to classical ML:
 - Start with randomly initialized parameters
 - Optimize each parameter θ_i w.r.t. the loss function \mathcal{L}
- Gradient-free methods:
 - Nelder-Mead, particle swarm opt., genetic algorithms
- Gradient methods:
 - Simultaneous perturbation stochastic approximation (SPSA)
 - Stochastic gradient descent, Adam, …
 - Parameter-shift rule: $\nabla_{\theta} \mathcal{L}(x; \theta) = \frac{1}{2} \left[\mathcal{L}\left(x; \theta + \frac{\pi}{2}\right) \mathcal{L}\left(x; \theta \frac{\pi}{2}\right) \right]$, if θ belongs to a Pauli-rotation

Some encodings, e.g. angle encoding

• The measurement!

- Maps amplitudes α_i to the absolute squared probabilities $|\alpha_i|^2$
- Randomly samples an output state according to the probabilities
- In classification tasks: threshold functions, e.g. $sgn(\cdot)$

Data Re-Uploading

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer.

"Effect of data encoding on the expressive power of variational quantum-machine-learning models." Physical Review A 103.3 (2021): 032430.

Repeated application of encoding unitary in **alternating fashion** with parametrized blocks can enhance the **circuit expressivity**

Challenges in QML & Conclusion

- = "vanishing gradients problem in QML"
- For large classes of variational quantum circuits with random initialization:
 - Average value of gradient $\frac{\partial \mathcal{L}}{\partial \theta}$ of loss function \mathcal{L} is zero
 - Variance of $\frac{\partial \mathcal{L}}{\partial \theta}$ decreases exponentially with the qubit number
 - \rightarrow Large "plateaus" in cost landscape which hinder learning

Classical Simulability

- Approaches to prevent / mitigate barren plateaus:
 - Local loss functions
 - Special parameter initializations
 - Circuit architectures which exploit problem symmetries

• ...

 \rightarrow These approaches make the problem also classically efficiently simulable

Advantages of QML?

Property	Problems studied in quantum computing	Problems solved by machine learning
classical performance	low – problems are carefully selected to be prov- ably difficult for classical computers	high – machine learning is applied on an indus- trial scale and many algorithms run in linear time in practice
size of inputs	small – near-term algorithms are limited by small qubit numbers, while fault-tolerant algorithms usually take short bit strings	very large – may be millions of tensors with mil- lions of entries each
problem structure	very structured – often exhibiting a periodic structure that can be exploited by interference	" messy " – problems are derived from the human or "real-world" domain and naturally complex to state and analyse
theoretical accessibility	high – there is a large bias towards problems about which we can theoretically reason	shifting – theory is currently been re-built around the empirical success of deep learning
evaluating performance	computational complexity – the dominant measure to assess the performance of an algorithm is asymptotic runtime scaling	practical benchmarks – machine learning re- search puts a strong emphasis on empirical com- parisons between methods

Schuld, Maria, and Nathan Killoran. "Is quantum advantage the right goal for quantum machine learning?". Prx Quantum 3.3 (2022): 030101.

Conclusion

- QML is promising in some aspects, but:
 - No actual quantum advantage is in sight
 - Classical hardware is far advanced & especially developed for ML
 - Questions of trainability (barren plateaus) and classical simulability are still unclear
- However:
 - Big players are involved (Google, IBM, Intel)
 - Can bridge the gap from the NISQ era to fault tolerant era
 - Still ongoing research