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Quantum Computing Basics
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History of Quantum Physics and Quantum Computing

1900’s:
- first ideas of quantized
energy & light
- wave-particle duality

1920’s:
development
of quantum
mechanics

Oliver Sefrin, QT, 23.09.2024
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1980 & 1981.:
proposal of quantum
computers to simulate
guantum physics

1994 & 1996:
Shor algorithm
(factorization),

Grover algorithm
(search)




Qubits & Quantum Superposition ‘#7
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The quantum bit or qubit has two basis states, e.g.,

10) = ((1)) and |1) = ((1)) € C?

In general, the qubit’s state can be in any linear combination
) = a|0) + B|1)

with a, 8 € C, |a|?>+]|B]* = 1.

This iIs called superposition. =)

https://de.wikipedia.org/wiki/Bloch-Kugel

Only a measurement lets the wavefunction collapse to a basis state:
p("measure [0)") = |a|?
p("measure |1)") = |B|*
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Multiple Qubits ‘#7
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= Cf. classical bits:

n bits — 2" combinations
e.g.,n = 3: \()00,001,...,110,113

—
8 combinations

= Qubits:
= Qubit Ain state |0) and qubit B in state |1) — joint state: |0)4]|1)5 = |01) 45

= Qubit A in state - =(10) + 1)) and qubit B in state le (]0) — |1))
— joint state: — (|0>A +11)4) * = (10)5 = [1)5) = 2 (100) — [01) + [10) — [11))

— superposition of 2™ states possible

Oliver Sefrin, QT, 23.09.2024




Operations on Qubits ‘#7
DLR

= Gate logic as In classical computer science
= Operations have to be unitary (i.e., norm-preserving)

* Important single-qubit gates:

= NOT gate |0) — |1), |1) — |0)
= Hadamard gate |0) — \/—15(|0) + 1)), 1) —» \/—15(|0) — 1))

= Pauli rotations

~2=1)
[ | TWO_qubrt gates https://de.wikipedia.org/wiki/Bloch-Kugel
= Controlled-NOT gate 0)controll0)target

0)control 0>target
0)control 1)target O)control 1)target

1)control 0>target 1)control 1)target

1 1 11

1)control 1)target 1)control O>target
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Universal Gate Sets ‘#7
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» \We can approximate any unitary operation with finite sequence of operations
from universal gate set

» EX.: {Hadamard-gate, Pauli-Rotations, CNOT-gate}

-> any n-qubit operation can be decomposed into one- and two-qubit gates

Oliver Sefrin, QT, 23.09.2024




Entanglement ‘#7
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= “quantum correlation”

= Multi-qubit state |) g cannot be expressed as product of subsystems |@) 4
and |y)g

" EX.
- 715(|00)AB + [11)ap) is entangled

" \/_1§(|01>AB +[11)ap) = \/—%(IO)A +]1)4) ® |1)p is not entangled

= Capability to create entanglement is a crucial resource in QC

Oliver Sefrin, QT, 23.09.2024




Circuit Diagrams ‘#7
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Hadamdpduli-X-Rotations CNOTs Measurement

0 ’ D
Implicit
initialization (1N ®
of qubits as |0) N

1N

CNEN&Y

l—l

Time
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Technology of Quantum Computers

i DLR



Universal Quantum Computer ‘#7
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DiVincenzo Criteria

Well-characterized and scalable qubits

Qubit initialization
Long coherence times
Universal set of gates

L A

Measurement of individual qubits

Oliver Sefrin, QT, 23.09.2024




Experimental Realizations

Supercond

- Different realizations: R

- Flux-qubit
- Phase-qubit
- Charge-qubit
- Manipulation via microwave

pulses, coupling circuits, )

\@/ \ (- Nitrogen & Vacancy in R
P C diamond lattice
{ | r-/ - Nitrogen nuclear spin as
& £ qubit
\r-’/< - Readout & coupling from
-~ C NV electron spin
/ \ / N J
/"J‘_i T s S —4
N

.

http://qeg.mit.edu/research.php
Oliver Sefrin, QT, 23.09.2024

DLR

lon Trap QC

~

- lon energy levels as qubits
- EM fields trap chain of ions

- Manipulation via
microwave pulses

https://www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing

Photonic QC

-

- encode special states as
Qubits (GKP states)

- Operations via
beam splitters, phase
shifters, ...

- Readout via homodyne
S measurements )

~

https://arstechnica.com/science/2018/09/engineering-tour-de-force-births-programmable-optical-quantum-computer/



Experimental Realizations: Roadmaps

2022 2023-2025 2025-2030 2030-2040+
2023 2024 2025 2025-2030 2029
Super-
conducting 1,121 qubits 50 qubits 1,024 qubits 1,000 qubits 1 million qubit
IBM Quantum QM Origin Quantum Fujitsu & RIKEN error-correct
Condor QC Google
2023 2025-2030 2029
Electron . . .
spin 10 qubits 100 qubits 100 logical qubits
SQC SQC Quantum Motion
2023 2025 2026 2023-2027 2028 2027-2030
Tre.‘pped 29 algorithm 64 algorithm 256 algorithm  Model H2-H4 1024 algorithm Model H5
on qubits lonQ qubits lonQ qubits lonQ Honeywell qubits lonQ  lon-trap tiling
Honeywell
2022 2023 2024 2025
Cold I I ‘ l
atom 100-200 qubit 1,000 qubit 1,024 qubits 1,000 qubits
Pasqal Pasqal QuEra ColdQuanta
Simulator Simulator
2022 2024 2026 2027-2030
Photon A A A A
6 qubit Computer 3 qubit computer 100+ qubit computer 1 million qubit computer
Quandela ORCA ORCA PsiQuantum

Source: Arthur D. Little, Olivier Ezratty
https://www.adlittle.com/en/insights/viewpoints/quantum-computing
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The NISQ Era & beyond

NISQ = “noisy, intermediate-scale quantum”:
= Large error rates (~10~3 for two-qubit gates)
» Relatively low qubit numbers
» Limited connectivity

Quantum Error Correction
» Encode several physical qubits
Into logical qubits
» Requires lower error rates to be useful

» Overhead: 100-1000 physical qubits
per logical qubit

https://www.marketing-boerse.de/news/details/2124-quantensprung-in-ehningen-bei-stuttgart/177821

Oliver Sefrin, QT, 23.09.2024

https://imwww.ibm.com/quantum/blog/whole-device-entanglement



Quantum Algorithms
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What Quantum Computing is not ‘#7
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= “Quantum Computing = massive parallel computing” ?

= |dea:
1. Prepare superposition: ) = Zzn‘llz)
2. Apply unitary U (to each element): Ulp) = \/_Zzn‘l Uli)
3.
4. Success?

= Caveat: measurement — wavefunction collapse

Oliver Sefrin, QT, 23.09.2024




Some Quantum Algorithms ‘#7
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I T T

Use Case Prime factorization Search in unstructured Solving linear equatlon
database systems Ax = b

Quantum 0((log N)?(loglog N)) 0(N) 0(log(N) k?)

Complexity

Best Classical 0 (e12og N)1/?(log log N)?/% O(N) O0(Nk)

Complexity

Speed Up Exponential Quadratic Exponential

Common caveat: circuit complexity = require fault-tolerant QC

Oliver Sefrin, QT, 23.09.2024




Potential Applications ‘#7
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= Quantum chemistry: ground state estimation, molecule simulation

= Optimization:
= guantitative finance (e.g., with reinforcement learning)
» pharma/healthcare (drug discovery)

» Material science (solving PDEs, simulation)

» Any classical classification or regression task

Oliver Sefrin, QT, 23.09.2024




Summary

Basics

* Qubits are the basic building block of guantum computers

= Superposition and entanglement of multiple qubits are essential resources
» Universal gate sets of one- and two-qubit gates allow arbitrary operations

Technology
» Different technologies are examined for QC; no clear-cut favorite
= Currently: noisy and intermediate scale (NISQ) era

Algorithms
= QC # free parallel computing

= Algorithms with proven speedups exist for some problem classes,
but require better quantum computers (& quantum error correction)

Oliver Sefrin, QT, 23.09.2024
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Overview ‘#7
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data processing device

» Term “Quantum Machine Learning”

coined ca. 2013
= |nitially mainly kernel methods, ,

later variational QML

quantum computers . .

data generating system

» Mostly: processing of classical data with

- classical, @) - quantum

Schuld, Maria, and Francesco Petruccione.
Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.

Oliver Sefrin, QT, 23.09.2024




Variational QML

Quantum device

0) — L

U(o)

0) — X

DLR

2

update

Classical device

g(t)
g(t+1)

Oliver Sefrin, QT, 23.09.2024

rerun

Hybrid algorithm:

Schuld, Maria, and Francesco Petruccione.
Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.

Classical optimization of a parametrized quantum circuit



Ingredients of a QML Algorithm ‘#7
DLR

1. Preparation of input data on QC — Encoding
2. Choice of parametrized quantum circuit — Model ansatz
3. Output interpretation

4. Definition of loss function

5. Choice of optimization method o e de"i‘:\ Classical device
— : U(o) : >
| (2)
Y i o g(t+1)
upd)ate

Oliver Sefrin, QT, 23.09.2024 rerun Schuld, Maria, and Francesco Petruccione.
Supervised learning with quantum computers. Vol. 17. Berlin; Springer, 2018.




Data Encodings ‘#7
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Basis Encoding
» Encode classical bitstrings (bq, b,,...,b,) € {0,1}"* as quantum state |b1, bz,...,bn)

* n bit bitstring requires n qubits

Amplitude Encoding

= Classical feature vector x € R2"

* Encode entries x; of (normalized) x as amplitudes of quantum state
2"—1

1 |
) = ZO x; i)

» Feature vector of length 2™ requires n qubits — logarithmic scaling

Oliver Sefrin, QT, 23.09.2024




Variational Model Ansatz ‘#7
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* Problem-tailored approaches
= Unitary coupled cluster ansatz (UCC, quantum chemistry)
= Quantum alternating operator ansatz (QAOA, optimization)

..................................................................................................................................

- Hardwqrg efficient ansatz + Rl A o R R Ly
. HeU.I’IS'[IC approach | | __ R(ab, Bb.41) %\ R(o2. 53.) . ()

= Device-native gates & low circuit depth * R(ab. A1) \U/L TR@.22) N
—{ Rlod, Birh) D4 Blad. B D+

...................................................................................................................................

repetition of blocks / layers

Oliver Sefrin, QT, 23.09.2024 https://docs.pennylane.ai/en/stable/code/api/pennylane. StronglyEntanglingLayers.html



Optimization ‘#7
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» Analogous to classical ML.:
= Start with randomly initialized parameters
= Optimize each parameter 6; w.r.t. the loss function £

» Gradient-free methods:
* Nelder-Mead, particle swarm opt., genetic algorithms

= Gradient methods:

= Simultaneous perturbation stochastic approximation (SPSA)
» Stochastic gradient descent, Adam, ...

= Parameter-shift rule: Vo L(x; 0) = % [L (x; 6 + g) — L (x; 6 — g)]
If 8 belongs to a Pauli-rotation

Oliver Sefrin, QT, 23.09.2024




Where does non-linearity come in? ‘#7
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= Some encodings, e.g. angle encoding

» The measurement!

= Maps amplitudes «; to the absolute squared probabilities |«a;|?
» Randomly samples an output state according to the probabilities

= In classification tasks: threshold functions, e.g. sgn(:)

Oliver Sefrin, QT, 23.09.2024




Data Re-Uploading ‘#7
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— layer 1 — — layer 2 — — layer L —

o 1T :

|| A

= 8@) & S@)] .|| S=)
0 H A b o 2
0) & - - - HA

W (L+1)

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer.
"Effect of data encoding on the expressive power of variational quantum-machine-learning models.” Physical Review A 103.3 (2021): 032430.

Repeated application of encoding unitary in alternating fashion with parametrized blocks

can enhance the circuit expressivity

Oliver Sefrin, QT, 23.09.2024



Challenges in QML & Conclusion
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Barren Plateaus ‘#7
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= “vanishing gradients problem in QML”"

» For large classes of variational guantum circuits with random initialization:

= Average value of gradlent — of loss function L is zero

= Variance of — decreases exponentlally with the qubit number

- Large “plateaus” in cost landscape which hinder learning

Oliver Sefrin, QT, 23.09.2024 McClean, Jarrod R., et al. "Barren plateaus in quantum neural network training landscapes.” Nature communications 9.1 (2018): 4812.




Classical Simulability ‘#7
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= Approaches to prevent / mitigate barren plateaus:
» Local loss functions
= Special parameter initializations
= Circuit architectures which exploit problem symmetries

- These approaches make the problem also classically efficiently simulable

. . Cerezo, Marco, et al. "Does provable absence of barren plateaus imply classical simulability?
Oliver Sefrin, QT, 23.09.2024 Or, why we need to rethink variational quantum computing.” arXiv preprint arXiv:2312.09121 (2023).




Advantages of QML?

DLR
Property Problems studied in quantum computing Problems solved by machine learning
classical low — problems are carefully selected to be prov- high — machine learning is applied on an indus-
performance ably difficult for classical computers trial scale and many algorithms run in linear time

size of inputs

problem
structure

theoretical
accessibility

evaluating
performance

small — near-term algorithms are limited by small
qubit numbers, while fault-tolerant algorithms
usually take short bit strings

very structured — often exhibiting a periodic
structure that can be exploited by interference

high — there is a large bias towards problems
about which we can theoretically reason

computational complexity — the dominant
measure to assess the performance of an algorithm
is asymptotic runtime scaling

in practice

very large — may be millions of tensors with mil-
lions of entries each

“messy” — problems are derived from the human
or “real-world” domain and naturally complex to
state and analyse

shifting — theory is currently been re-built
around the empirical success of deep learning

practical benchmarks — machine learning re-
search puts a strong emphasis on empirical com-
parisons between methods

Schuld, Maria, and Nathan Killoran. "Is quantum advantage the right goal for quantum machine learning?“. Prx Quantum 3.3 (2022): 030101.

Oliver Sefrin, QT, 23.09.2024



Conclusion ‘#7
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= QML is promising in some aspects, but:
* No actual guantum advantage is in sight
» Classical hardware is far advanced & especially developed for ML

= Questions of trainability (barren plateaus) and classical simulability are still
unclear

" However:
* Big players are involved (Google, IBM, Intel)
= Can bridge the gap from the NISQ era to fault tolerant era
= Still ongoing research

Oliver Sefrin, QT, 23.09.2024




