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Quantum Computing Basics



History of Quantum Physics and Quantum Computing

1900’s:
- first ideas of quantized 

energy & light
- wave-particle duality

1920’s:
development 
of quantum 
mechanics

1980 & 1981:
proposal of quantum 

computers to simulate 
quantum physics

1994 & 1996:
Shor algorithm 
(factorization), 

Grover algorithm 
(search)
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Qubits & Quantum Superposition

The quantum bit or qubit has two basis states, e.g.,

ۧȁ0 ≡
1
0

and ۧȁ1 ≡
0
1

∈ ℂ2

In general, the qubit’s state can be in any linear combination
ۧȁ𝜓 = ۧ𝛼ȁ0 + 𝛽 ۧȁ1

with 𝛼, 𝛽 ∈ ℂ, 𝛼 2+ 𝛽 2 = 1.

This is called superposition.

Only a measurement lets the wavefunction collapse to a basis state:

𝑝 "measure ۧȁ0 " = 𝛼 2

𝑝 "measure ۧȁ1 " = 𝛽 2
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https://de.wikipedia.org/wiki/Bloch-Kugel



Multiple Qubits

▪ Cf. classical bits: 

𝑛 bits → 2𝑛 combinations
e. g. , 𝑛 = 3: 000, 001,… , 110, 111

▪ Qubits: 

▪ Qubit A in state ۧȁ0 and qubit B in state ۧȁ1 → joint state: ۧȁ0 𝐴 ۧȁ1 𝐵 ≡ ۧȁ01 𝐴𝐵

▪ Qubit A in state 
1

2
( ۧȁ0 + ۧȁ1 ) and qubit B in state 

1

2
( ۧȁ0 − ۧȁ1 )

→ joint state: 
1

2
ۧȁ0 𝐴 + ۧȁ1 𝐴 ∗

1

2
ۧȁ0 𝐵 − ۧȁ1 𝐵 =

1

2
ۧȁ00 − ۧȁ01 + ۧȁ10 − ۧȁ11
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8 combinations

→ superposition of 2𝑛 states possible



Operations on Qubits

▪ Gate logic as in classical computer science

▪ Operations have to be unitary (i.e., norm-preserving)

▪ Important single-qubit gates:
▪ NOT gate ۧȁ0 ↦ ۧȁ1 , ۧȁ1 ↦ ۧȁ0

▪ Hadamard gate   ۧȁ0 ↦
1

2
ۧȁ0 + ۧȁ1 , ۧȁ1 ↦

1

2
ۧȁ0 − ۧȁ1

▪ Pauli rotations

▪ Two-qubit gates:
▪ Controlled-NOT gate ۧȁ0 control ۧȁ0 target ↦ ۧȁ0 control ۧȁ0 target

ۧȁ0 control ۧȁ1 target ↦ ۧȁ0 control ۧȁ1 target

ۧȁ1 control ۧȁ0 target ↦ ۧȁ1 control ۧȁ1 target

ۧȁ1 control ۧȁ1 target ↦ ۧȁ1 control ۧȁ0 target

7
Oliver Sefrin, QT, 23.09.2024
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Universal Gate Sets

▪ We can approximate any unitary operation with finite sequence of operations 

from universal gate set

▪ Ex.: {Hadamard-gate, Pauli-Rotations, CNOT-gate}

→ any n-qubit operation can be decomposed into one- and two-qubit gates
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Entanglement

▪ “quantum correlation”

▪ Multi-qubit state ۧȁ𝜓 AB cannot be expressed as product of subsystems ۧȁ𝜑 𝐴

and ۧȁ𝛾 𝐵

▪ Ex.: 

▪
1

2
( ۧȁ00 AB + ۧȁ11 AB) is entangled

▪
1

2
ۧȁ01 AB + ۧȁ11 AB =

1

2
ۧȁ0 A + ۧȁ1 A ⊗ ۧȁ1 B is not entangled

▪ Capability to create entanglement is a crucial resource in QC
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CNOTs

Circuit Diagrams

HadamardPauli-X-Rotations Measurement

Time

Implicit 

initialization 

of qubits as ۧȁ0



Technology of Quantum Computers



Universal Quantum Computer

1. Well-characterized and scalable qubits

2. Qubit initialization

3. Long coherence times

4. Universal set of gates

5. Measurement of individual qubits

12
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Experimental Realizations
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- Different realizations:

- Flux-qubit

- Phase-qubit

- Charge-qubit

- Manipulation via microwave 
pulses, coupling circuits, …

Superconducting QC

- Ion energy levels as qubits

- EM fields trap chain of ions

- Manipulation via
microwave pulses

Ion Trap QC

- Nitrogen & Vacancy in
diamond lattice

- Nitrogen nuclear spin as
qubit

- Readout & coupling from
NV electron spin

NV Center QC

- encode special states as
Qubits (GKP states)

- Operations via
beam splitters, phase
shifters, …

- Readout via homodyne
measurements

Photonic QC

https://www.newscientist.com/article/2372828-superconducting-qubits-have-passed-a-key-quantum-test/ https://www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing

http://qeg.mit.edu/research.php

https://arstechnica.com/science/2018/09/engineering-tour-de-force-births-programmable-optical-quantum-computer/



Experimental Realizations: Roadmaps
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https://www.adlittle.com/en/insights/viewpoints/quantum-computing



The NISQ Era & beyond

NISQ = “noisy, intermediate-scale quantum”:

▪ Large error rates (~10−3 for two-qubit gates)

▪ Relatively low qubit numbers

▪ Limited connectivity

Quantum Error Correction

▪ Encode several physical qubits

into logical qubits

▪ Requires lower error rates to be useful

▪ Overhead: 100-1000 physical qubits 

per logical qubit
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https://www.marketing-boerse.de/news/details/2124-quantensprung-in-ehningen-bei-stuttgart/177821

https://www.ibm.com/quantum/blog/whole-device-entanglement



Quantum Algorithms



What Quantum Computing is not

▪ “Quantum Computing = massive parallel computing” ?

▪ Idea:

1. Prepare superposition: ۧȁ𝜓 =
1

2𝑛
σ𝑖=0
2𝑛−1 ۧȁ𝑖

2. Apply unitary U (to each element): 𝑈 ۧȁ𝜓 =
1

2𝑛
σ𝑖=0
2𝑛−1𝑈 ۧȁ𝑖

3. …

4. Success?

▪ Caveat: measurement → wavefunction collapse
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Some Quantum Algorithms

Common caveat: circuit complexity → require fault-tolerant QC
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Shor Grover HHL

Use Case Prime factorization Search in unstructured 

database

Solving linear equation 

systems 𝐴 റ𝑥 = 𝑏

Quantum 

Complexity

𝑂( log𝑁 2(log log𝑁)) 𝑂( 𝑁) 𝑂(log(𝑁) 𝜅2)

Best Classical 

Complexity
𝑂(𝑒1.9 log 𝑁 1/3(log log 𝑁)2/3) 𝑂(𝑁) 𝑂(𝑁𝜅)

Speed Up Exponential Quadratic Exponential



Potential Applications

▪ Quantum chemistry: ground state estimation, molecule simulation

▪ Optimization: 

▪ quantitative finance (e.g., with reinforcement learning)

▪ pharma/healthcare (drug discovery)

▪ Material science (solving PDEs, simulation)

▪ Any classical classification or regression task
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Summary

Basics

▪ Qubits are the basic building block of quantum computers

▪ Superposition and entanglement of multiple qubits are essential resources

▪ Universal gate sets of one- and two-qubit gates allow arbitrary operations
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Technology

▪ Different technologies are examined for QC; no clear-cut favorite

▪ Currently: noisy and intermediate scale (NISQ) era

Algorithms

▪ QC ≠ free parallel computing

▪ Algorithms with proven speedups exist for some problem classes,
but require better quantum computers (& quantum error correction)



Quantum Machine Learning



Overview

▪ Term “Quantum Machine Learning” 

coined ca. 2013

▪ Initially mainly kernel methods,

later variational QML

▪ Mostly: processing of classical data with 

quantum computers
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Schuld, Maria, and Francesco Petruccione. 

Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.



Variational QML
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Schuld, Maria, and Francesco Petruccione. 

Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.

Hybrid algorithm:

Classical optimization of a parametrized quantum circuit



Ingredients of a QML Algorithm

1. Preparation of input data on QC → Encoding

2. Choice of parametrized quantum circuit → Model ansatz

3. Output interpretation

4. Definition of loss function

5. Choice of optimization method

24
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Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.



Data Encodings

Basis Encoding

▪ Encode classical bitstrings (𝑏1, 𝑏2,…,𝑏𝑛) ∈ {0,1}𝑛 as quantum state ൿห𝑏1, 𝑏2,…,𝑏𝑛

▪ n bit bitstring requires n qubits

Amplitude Encoding

▪ Classical feature vector 𝒙 ∈ ℝ2𝑛

▪ Encode entries 𝑥𝑖 of (normalized) 𝒙 as amplitudes of quantum state

ൿห𝜓𝑥 =
1

ȁ𝒙ȁ
෍

𝑖=0

2𝑛−1

𝑥𝑖 ۧȁ𝑖

▪ Feature vector of length 2𝑛 requires n qubits → logarithmic scaling
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Variational Model Ansatz

▪ Problem-tailored approaches

▪ Unitary coupled cluster ansatz (UCC, quantum chemistry)

▪ Quantum alternating operator ansatz (QAOA, optimization)

▪ Hardware efficient ansatz

▪ Heuristic approach

▪ Device-native gates & low circuit depth
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repetition of blocks / layers



Optimization

▪ Analogous to classical ML:

▪ Start with randomly initialized parameters

▪ Optimize each parameter 𝜃𝑖 w.r.t. the loss function ℒ

▪ Gradient-free methods:

▪ Nelder-Mead, particle swarm opt., genetic algorithms

▪ Gradient methods:

▪ Simultaneous perturbation stochastic approximation (SPSA)

▪ Stochastic gradient descent, Adam, …

▪ Parameter-shift rule: ∇𝜃ℒ 𝑥; 𝜃 =
1

2
[ℒ 𝑥; 𝜃 +

𝜋

2
− ℒ 𝑥; 𝜃 −

𝜋

2
], 

if 𝜃 belongs to a Pauli-rotation
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Where does non-linearity come in?

▪ Some encodings, e.g. angle encoding

▪ The measurement!

▪ Maps amplitudes 𝛼𝑖 to the absolute squared probabilities ȁ𝛼𝑖ȁ
2

▪ Randomly samples an output state according to the probabilities

▪ In classification tasks: threshold functions, e.g. sgn(⋅)
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Data Re-Uploading
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Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. 

"Effect of data encoding on the expressive power of variational quantum-machine-learning models." Physical Review A 103.3 (2021): 032430.

Repeated application of encoding unitary in alternating fashion with parametrized blocks

can enhance the circuit expressivity



Challenges in QML & Conclusion



Barren Plateaus

= “vanishing gradients problem in QML”

▪ For large classes of variational quantum circuits with random initialization:

▪ Average value of gradient 
𝜕ℒ

𝜕𝜃
of loss function ℒ is zero

▪ Variance of 
𝜕ℒ

𝜕𝜃
decreases exponentially with the qubit number

→ Large “plateaus” in cost landscape which hinder learning
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Classical Simulability

▪ Approaches to prevent / mitigate barren plateaus:

▪ Local loss functions

▪ Special parameter initializations

▪ Circuit architectures which exploit problem symmetries

▪ …

→ These approaches make the problem also classically efficiently simulable
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Cerezo, Marco, et al. "Does provable absence of barren plateaus imply classical simulability? 

Or, why we need to rethink variational quantum computing." arXiv preprint arXiv:2312.09121 (2023).



Advantages of QML?
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Schuld, Maria, and Nathan Killoran. "Is quantum advantage the right goal for quantum machine learning?“. Prx Quantum 3.3 (2022): 030101.



Conclusion

▪ QML is promising in some aspects, but:

▪ No actual quantum advantage is in sight

▪ Classical hardware is far advanced & especially developed for ML 

▪ Questions of trainability (barren plateaus) and classical simulability are still

unclear

▪ However:

▪ Big players are involved (Google, IBM, Intel)

▪ Can bridge the gap from the NISQ era to fault tolerant era

▪ Still ongoing research
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