Extending the Hybrid Agent for Reinforcement Learning Beyond Fixed-Length Scenarios

Oliver Sefrin, Sabine Wölk

Institute of Quantum Technologies, German Aerospace Center (DLR), Ulm

Abstract

- Based on amplitude amplification / Grover's algorithm, a hybrid algorithm can speed up Reinforcement Learning (RL) quadratically
- This algorithm requires knowledge of a sufficient number of steps per RL episode (=episode length)
- Here, we extend the algorithm to function without this knowledge, using a probabilistic strategy
- Simulations show a possible advantage towards "harder" RL environments

Extended Hybrid Algorithm

- Without knowledge of a sufficient episode length L, we need to vary it
- Main idea: start small, double L probabilistically
- © Re-use parameter *m* of Boyer's algorithm (upper bound for Grover iterations) as "impatience"

Algorithm 1 Probabilistic Hybrid Algorithm

```
Require: policy \pi(\vec{a})
   L \leftarrow 1, m \leftarrow 1, \lambda \leftarrow 6/5
                                                                                             \triangleright L: episode length
   rewarded \leftarrow false
   while not rewarded do
         r \leftarrow \text{random number in } [0, 1]
         if r < \frac{\log(m)}{\log(2) \cdot L} then
                                                      \triangleright prob. to double L: p_L(m) = \frac{\log(m)}{\log(2) \cdot L}
               L \leftarrow 2 \cdot L
               m \leftarrow 1
          k \leftarrow \text{random integer in } [0, \text{m})
          |\psi\rangle \leftarrow \sum_{\vec{a} \in \mathcal{A}^{\otimes L}} \sqrt{\pi(\vec{a})} |\vec{a}\rangle_A |0\rangle_S |-\rangle_R
                                                                                              > state preparation
          |\psi'\rangle \leftarrow G^k |\psi\rangle

    ▷ amplitude amplification

         \vec{a}' \leftarrow \text{measure } |\psi'\rangle
          if r(\vec{a}') = 1 then
                rewarded \leftarrow true
          else
               m \leftarrow \min(\lambda \cdot m, 2^L)
```

Simulation Details

Assume:

- $\mathcal{A} = \{\text{up, down, left, right}\}$
- untrained agent \rightarrow uniform policy $\pi(a) = \frac{1}{|\mathcal{A}|} \ \forall a \in \mathcal{A}$
- quadratic base area (inner square), no inner walls, start & goal in opposite corners
- outer walls in a distance d of the base area

Hybrid Agent for Reinforcement Learning

Agent

- Agent and Environment interact by exchanging quantum states
- \odot Environment's response $U_{\rm env}$ can be used to create an effective phase kickback oracle and thus a Grover operator G (for a certain class of environments) [1]
- Alternate between:

quantum round:

- perform amplitude amplification (AA) using Boyer's AA algorithm for an unknown number of solutions [2]
- measure an action sequence

classical round:

- test the measured action sequence
- update the policy according to the RL algorithm
- ⇒ Theoretically proven [3] and experimentally verified [4] quadratic speedup in terms of sample complexity

Results

Conclusion

- The probabilistic strategy provides a valuable addition in RL scenarios with little or no information about the problem layout, especially for finding the very first reward
- No further hyperparameters are introduced, requiring no extra tuning
- In environments with large state spaces and slowly increasing success probabilties (for increasing episode length), the hybrid agent outperforms classical agents (in terms of the total number of steps until a reward is found)

[1] Dunjko, V., Taylor, J. M., & Briegel, H. J. (2016). Quantum-enhanced machine learning. Physical review letters, 117(13), 130501.

Institut für

[2] Boyer, M., Brassard, G., Høyer, P., & Tapp, A. (1998). Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4-5), 493-505.
[3] Hamann, A., & Wölk, S. (2022). Performance analysis of a hybrid agent for quantum-accessible reinforcement learning. New Journal of Physics, 24(3), 033044.

Quantentechnologien

[4] Saggio, V., Asenbeck, B. E., Hamann, A., Strömberg, T., Schiansky, P., Dunjko, V., ... & Walther, P. (2021). Experimental quantum speed-up in reinforcement learning agents. Nature, 591(7849), 229-233.

