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Abstract Hybrid Agent for Reinforcement Learning

@ Based on amplitude amplification / Grover's algorithm, Agent
a hybrid algorithm can speed up Reinforcement
Learning (RL) quadratically

Environment

® This algorithm requires knowledge of a sufficient
number of steps per RL episode (=episode length)

@ Here, we extend the algorithm to function without this
knowledge, using a probabilistic strategy

@ Simulations show a possible advantage towards
"harder" RL environments

@ Agent and Environment interact by exchanging
gquantum states

Extended Hybrld Algorithm ® Environment's response U.., can be used to create an
effective phase kickback oracle and thus a Grover

@ Without knowledge of a sufficient episode length L, operator G (for a certain class of environments) [1]

we need to vary it
@ Alternate between:

quantum round:
- perform amplitude amplification (AA) using Boyer's
AA algorithm for an unkown number of solutions [2]
- measure an action sequence

@ Main idea: start small, double L probabilistically

@ Re-use parameter m of Boyer's algorithm (upper
bound for Grover iterations) as "impatience"

classical round:
- test the measured action sequence
- update the policy according to the RL algorithm

Algorithm 1 Probabilistic Hybrid Algorithm
Require: policy (@)
L+—1,m+< 1, A+ 6/5
rewarded < false
while not rewarded do
r < random number in [0, 1]

> L: episode length

=> Theoretically proven [3] and experimentally verified [4]
quadratic speedup in terms of sample complexity
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Simulation Details

Assume:

e A= {up, down, left, right}

e untrained agent

e quadratic base area (inner square),

no inner walls,
start & goal in opposite corners

e outer walls in a distance d

of the base area

Conclusion

— uniform policy 7(a) = |—j\| Vae A
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@ The probabilistic strategy provides a valuable addition in RL scenarios with little or no information about the problem layout,

especially for finding the very first reward

@ No further hyperparameters are introduced, requiring no extra tuning

@ In environments with large state spaces and slowly increasing success probabilties (for increasing episode length), the hybrid
agent outperforms classical agents (in terms of the total number of steps until a reward is found)
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