NOISE EMISSIONS FROM UNMANNED AERIAL VEHICLES

Michael Pott-Pollenske, DLR Institute of Aerodynamics and Flow Control, Technical Acoustics Department, ECAC Environmental FORUM7,**29-30 May 2024, Paris, France**

Outline

- **E** Introduction
- **Experienced Noise**
	- Helicopters
- **EXPERIENCE** POINT NOISE Experience
	- **UAS with VTOL capability**
- Concepts of operations and psycho-acoustic effects
- Research requirements for a precise noise prediction

Vehicles - Now and in Future

- Very short haul flights (≤10-15nm)
	- Small aircraft
	- Small helicopter
	- Two to nine PAX
- Operation from and to
	- small airports and
	- Heliports
- Operation for
	- **EXEDENTE:** Touristically driven transport, sightseeing
	- **E** Industrial off-shore business
	- On demand VIP transportation

- Very short haul flights (≤10nm)
	- Small electrically powered
		- Multicopter and
		- multi jet vehicles
	- One to six PAX
- **Operation from and to dedicated** helipads/"vertiports"
- Operation for
	- individuals (VIP, touristic)
	- **E** Shuttle like high frequency traffic

Vehicles – Acoustic Features

- Focus on vehicles with VTOL ability \rightarrow no conventional fixed wing aircraft
- **E** Leave out multi jet driven vehicles \rightarrow insufficient data and experience
- Helicopter acoustics (simplified)
	- Main rotor
		- Low rpm, discrete frequencies with BPF at 10 30 Hz + many harmonics
		- particularly audible for 2 bladed rotors (Bell Huey, "wap wap"-sound): "BVI-blade vortex interaction in descent"
		- Similar, forward directed characteristics in fast forward flight from transonics (+ thickness noise)
		- Broadband noise due to stochastic part of blade loading
	- Tail rotor
		- \blacksquare Higher rpm, BPF 50 80 Hz for conventional tail rotors and \sim 600 Hz for the Fenestron
		- Rear arc directed high frequency noise, in particular for the Fenestron
- In general: overall noise is the energetic summation of all acoustic sources, no meaningful acoustic interference effects

Helicopter Data

MAESUREMENT AND MODELING OF UAS NOISE

6

UAS Noise Characteristics – Small Octocopter

⁷ Michael Pott-Pollenske, Institute of Aerodynamic and Flow Technology, May 30th 2024

Quadcopter: Tones and Directivities

- Very complex tone combinations
- **Tone levels depend** on wind influence
- No option for modelling due to missing rpm-data as link between UAS operation and acoustic signal
- **Effect of rotor rotation** pattern

HolyBro Rec 14

160

 140

120

40

60

80

Phi_x $[^{\circ}]$

100

120

Noise Modeling

▪ **Target**

- Provision of sound pressure level spectra and directivities representative for both tonal and broadband noise
- Coupling of the noise model with a propagation tool to account for propagation effects

▪ **Representative**

- Modeling depends on available databases of UAS noise
- Separate modeling of tonal and broadband noise components
- Account for operating parameters like
	- rpm
	- thrust
	- flight speed and
	- meteo effects

Example: Octocopter - Tonal Noise

- **BPF pattern will be used for prediction: SPL(2BPF) =SPL(BPF) -8dB and SPL(3BPF)= SPL(BPF) -10dB**
- Tonal noise is predicted on basis Dobrzynski's work: "Ermittlung von Emissionskennwerten für Schallimmissionsrechnungen an Landeplätzen", DLR report IB 129-94/17
- Parameter: helical blade tip Mach number and blade loading
- Rotor/engine: blade number, blade diameter and number of rotors, power, rpm

$$
M_{H} = \frac{1}{c} \sqrt{\left(\frac{\pi DN_{P}}{60}\right)^{2} + v^{2}}
$$

Example: Octocopter - Broadband Noise

- Broadband noise model
	- \blacksquare 400 Hz to 1250 Hz linear increase from 35 dB to 45 dB *SPL(f) = 0.018*f^m + 30.28 dB*
	- \blacksquare 1250 Hz to 4000 Hz *constant 45 dB*
	- $\overline{=}$ 4000 Hz to 10 kHz linear decrease from 45 to 35 dB *SPL(f) = -0.00167*f^m + 38.32 dB*
	- Model provides correct OASPL
	- No consideration of wind influence
	- Omni-directional directivity

UAS Noise Simulation

- The empirical noise model was used as input for a numerical simulation of the acoustic field generated by a moving UAS
- DLR CAA code: PIANO-IBM
- **Extrong interference patterns**
- **Explicitly annyoing in quiet** environment \rightarrow modeling a rural scenery

UAS Noise Simulation

- Resolve the sound pressure pattern along the "main road"
- Within very short distances the sound pressure levels double or halve

Methodology to Improve the Noise Prediction Basic Concept to Establish a Realiable Tool Chain

Conclusions

- The operation of Multicopter type UAS is a challenge in terms of noise
	- The vehicles will operate in close vicinity to living areas and in low altitudes
	- The flight control (yaw, pitch, roll, climb/descent and speed control) is rpm driven with direct impact on propeller / rotor noise
	- For the acoustic classification a single physics based acoustic metric will not be sufficient, psychoacoustic parameter should be considered
- Most manufacturers keep their operational data incl. noise secret. It is not possible to rely on full scale data generated by the real vehicle, except for Joby cooperating with NASA

NASA Tests the Joby Aircraft

- Establish a valuable database
- Validate research codes
- **Gain technical advantage**
- → benefit for U.S. authorities and citizens
- The presented work shows identical capabilities of the European research institutes

Imprint

Topic: **Noise emissions from unmanned aerial vehicles** ECAC Environmental FORUM7,29-30 May 2024, Paris, France

Date: 2024-05-30

Author: Michael Pott-Pollenske

Institute: Aerodynamic and Flow Control

Image credits: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated