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Outline

▪ Introduction

▪ Experienced Noise

▪ Helicopters

▪ New Noise Experience

▪ UAS with VTOL capability

▪ Concepts of operations and psycho-acoustic effects

▪ Research requirements for a precise noise prediction
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Vehicles - Now and in Future

▪ Very short haul flights (≤10-15nm)
▪ Small aircraft

▪ Small helicopter

▪ Two to nine PAX

▪ Operation from and to
▪ small airports and

▪ Heliports

▪ Operation for
▪ Touristically driven transport, 

sightseeing

▪ Industrial off-shore business

▪ On demand VIP transportation
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▪ Very short haul flights (≤10nm)

▪ Small electrically powered

▪ Multicopter and

▪ multi jet vehicles

▪ One to six PAX

▪ Operation from and to dedicated 

helipads/”vertiports” 

▪ Operation for 

▪ individuals (VIP, touristic) 

▪ Shuttle like high frequency traffic

NOW FUTURE



Vehicles – Acoustic Features

▪ Focus on vehicles with VTOL ability → no conventional fixed wing aircraft

▪ Leave out multi jet driven vehicles → insufficient data and experience

▪ Helicopter acoustics (simplified)
▪ Main rotor

▪ Low rpm, discrete frequencies with BPF at 10 - 30 Hz + many harmonics

▪ particularly audible for 2 bladed rotors (Bell Huey, „wap wap“-sound): „BVI-blade vortex 
interaction in descent“

▪ Similar, forward directed characteristics in fast forward flight from transonics (+ thickness
noise)

▪ Broadband noise due to stochastic part of blade loading

▪ Tail rotor

▪ Higher rpm, BPF 50 – 80 Hz for conventional tail rotors and ~ 600 Hz for the Fenestron

▪ Rear arc directed high frequency noise, in particular for the Fenestron

▪ In general: overall noise is the energetic summation of all acoustic sources,
no meaningful acoustic interference effects

4
Michael Pott-Pollenske, Institute of Aerodynamic and Flow Technology, May 30th 2024



Helicopter Data 
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UAS Noise Characteristics – Small Octocopter
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Hover

D ~ 5dB
Low frequency noise

- 100 Hz to 1 kHz

- Strong tonal noise

components visible

- Not stable in level

and frequency

- Despite constant

operating conditions

(hover) a significant

wind induced level

increase is observed

- Wind: mean velocity,

gusts and direction



Quadcopter: Tones and Directivities

▪ Very complex tone

combinations

▪ Tone levels depend

on wind influence

▪ No option for modelling

due to missing rpm-data

as link between UAS 

operation and acoustic

signal

▪ Effect of rotor rotation

pattern
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Noise Modeling

▪ Target

▪ Provision of sound pressure level spectra and directivities representative for both tonal 

and broadband noise

▪ Coupling of the noise model with a propagation tool to account for propagation effects

▪ Representative
▪ Modeling depends on available databases of UAS noise

▪ Separate modeling of tonal and broadband noise components

▪ Account for operating parameters like 

▪ rpm

▪ thrust

▪ flight speed and 

▪ meteo effects
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▪ Tonal noise is predicted on basis Dobrzynski‘s work:  "Ermittlung von 

Emissionskennwerten für Schallimmissionsrechnungen an Landeplätzen", DLR report IB 

129-94/17

▪ Parameter: helical blade tip Mach number and blade loading

▪ Rotor/engine: blade number, blade diameter and number of rotors, power, rpm

10
Michael Pott-Pollenske, Institute of Aerodynamic and Flow Technology, May 30th 2024

Rotor# rpm [min-1] rotation [Hz] Rotor# rpm [min-1] rotation [Hz]

0 1598 27 0 1666 28

1 1912 32 1 1964 33

2 1931 32 2 1914 32

3 2181 36 3 2146 36

4 1909 32 4 1852 31

5 2092 35 5 2059 34

6 1820 30 6 1860 31

7 1899 32 7 1992 33

Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 7

Narrow peak 

frequency [Hz]
35 63 107 127 143 191 212

[1/min] BPF 2BPF 3BPF

2BPF of 27 Hz 2BPF of 36 Hz 4BPF of 27 Hz

▪ BPF pattern will be used for prediction: 

SPL(2BPF) =SPL(BPF) -8dB and  SPL(3BPF)= SPL(BPF) -10dB

Head wind Tail wind

Example: Octocopter - Tonal Noise



Example: Octocopter - Broadband Noise

▪ Broadband noise model

▪ 400 Hz to 1250 Hz

linear increase from 35 dB to 45 dB

SPL(f) = 0.018*fm + 30.28 dB

▪ 1250 Hz to 4000 Hz

constant 45 dB

▪ 4000 Hz to 10 kHz

linear decrease from 45 to 35 dB

SPL(f) = -0.00167*fm + 38.32 dB

▪ Model provides correct OASPL

▪ No consideration of wind influence

▪ Omni-directional directivity

11 Michael Pott-Pollenske, Institute of Aerodynamic and Flow Technology, May 30th 2024



UAS Noise Simulation

▪ The empirical noise model was used

as input for a numerical simulation of

the acoustic field generated by a 

moving UAS

▪ DLR CAA code: PIANO-IBM

▪ Strong interference patterns

▪ Explicitly annyoing in quiet

environment

→ modeling a rural scenery
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UAS Noise Simulation

▪ Resolve the sound pressure pattern along the „main road“

▪ Within very short distances the sound pressure levels double or halve

13
Michael Pott-Pollenske, Institute of Aerodynamic and Flow Technology, May 30th 2024



Methodology to Improve the Noise Prediction
Basic Concept to Establish a Realiable Tool Chain 

Task To do

Test the source itself One propeller

• parametric study with and without wind influence (mean velocity and gusts)

• Wind tunnel studies on models

• Numerical simulations of the wind tunnel situation

Test multiple sources Number of propellers >1

• Test different propeller configurations

• Number of propellers

• Sense of rotation, rotation patterns

• Rotate propeller assembly (Tilt wing / tilt rotor like)

• Wind tunnel studies on simple models

• Numerical simulations of the wind tunnel situation

Test the vehicle • Select a representative vehicle layout (Multicopter, Tiltwing or Tiltrotor) for

model tests in the wind tunnel

• Numerical simulations of the wind tunnel situation

• Numerical simulations of the full scale vehicle

• Flight test with full scale vehilce for validation

14
Michael Pott-Pollenske, Institute of Aerodynamic and Flow Technology, May 30th 2024



Conclusions

▪ The operation of Multicopter type UAS is a challenge in terms of noise

▪ The vehicles will operate in close vicinity to living areas and in low

altitudes

▪ The flight control (yaw, pitch, roll, climb/descent and speed control) is rpm

driven with direct impact on propeller / rotor noise

▪ For the acoustic classification a single physics based acoustic metric will 

not be sufficient, psychoacoustic parameter should be considered

▪ Most manufacturers keep their operational data incl. noise secret. It is not 

possible to rely on full scale data generated by the real vehicle, except for

Joby cooperating with NASA
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NASA Tests the Joby Aircraft

▪ Establish a valuable database

▪ Validate research codes

▪ Gain technical advantage

▪ ➔ benefit for U.S. authorities and

citizens

▪ The presented work shows

identical capabilities of the

European research institutes
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Figures are property of

Joby Aviation and NASA



▪
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▪
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