NOISE EMISSIONS FROM UNMANNED AERIAL VEHICLES

Michael Pott-Pollenske, DLR Institute of Aerodynamics and Flow Control, Technical Acoustics Department, ECAC Environmental FORUM7,29-30 May 2024, Paris, France

Outline

- Introduction
- Experienced Noise
 - Helicopters
- New Noise Experience
 - UAS with VTOL capability
- Concepts of operations and psycho-acoustic effects
- Research requirements for a precise noise prediction

Vehicles - Now and in Future

NOW

- Very short haul flights (≤10-15nm)
 - Small aircraft
 - Small helicopter
 - Two to nine PAX
- Operation from and to
 - small airports and
 - Heliports
- Operation for
 - Touristically driven transport, sightseeing
 - Industrial off-shore business
 - On demand VIP transportation

- Very short haul flights (≤10nm)
 - Small electrically powered
 - Multicopter and
 - multi jet vehicles
 - One to six PAX
- Operation from and to dedicated helipads/"vertiports"
- Operation for
 - individuals (VIP, touristic)
 - Shuttle like high frequency traffic

Vehicles – Acoustic Features

- Focus on vehicles with VTOL ability \rightarrow no conventional fixed wing aircraft
- Leave out multi jet driven vehicles \rightarrow insufficient data and experience
- Helicopter acoustics (simplified)
 - Main rotor
 - Low rpm, discrete frequencies with BPF at 10 30 Hz + many harmonics
 - particularly audible for 2 bladed rotors (Bell Huey, "wap wap"-sound): "BVI-blade vortex interaction in descent"
 - Similar, forward directed characteristics in fast forward flight from transonics (+ thickness noise)
 - Broadband noise due to stochastic part of blade loading
 - Tail rotor
 - Higher rpm, BPF 50 80 Hz for conventional tail rotors and ~ 600 Hz for the Fenestron
 - Rear arc directed high frequency noise, in particular for the Fenestron
- In general: overall noise is the energetic summation of all acoustic sources, no meaningful acoustic interference effects

Helicopter Data

Michael Pott-Pollenske, Institute of Aerodynamic and Flow Technology, May 30th 2024

MAESUREMENT AND MODELING OF UAS NOISE

UAS Noise Characteristics – Small Octocopter

Michael Pott-Pollenske, Institute of Aerodynamic and Flow Technology, May 30th 2024

Quadcopter: Tones and Directivities

- Very complex tone combinations
- Tone levels depend on wind influence
- No option for modelling due to missing rpm-data as link between UAS operation and acoustic signal
- Effect of rotor rotation pattern

HolyBro Rec 14

180

160

140

120

40

60

80

Phi_x [°]

100

Frequency

HolyBro Rec 17

Noise Modeling

Target

9

- Provision of sound pressure level spectra and directivities representative for both tonal and broadband noise
- Coupling of the noise model with a propagation tool to account for propagation effects

Representative

- Modeling depends on available databases of UAS noise
- Separate modeling of tonal and broadband noise components
- Account for operating parameters like
 - rpm
 - thrust
 - flight speed and
 - meteo effects

Example: Octocopter - Tonal Noise

Octocopter, V_{UAS} = 10 m/s

Head w	rind		Tail wind			
Rotor#	rpm [min-1]	rotation [Hz]	Rotor#	rpm [min-1]	rotation [Hz]	
0	1598	27	() 1666	28	
1	1912	32		L 1964	33	
2	1931	32		2 1914	32	
3	2181	36		3 2146	36	
4	1909	32		1852	31	
5	2092	35		5 2059	34	
6	1820	30	(5 1860	31	
7	1899	32		7 1992	33	

	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6	Peak 7
Narrow peak frequency [Hz]	35	63	107	127	143	191	212
[1/min]		BPF		2BPF		3BPF	
			2BPF of 27 Hz		2BPF of 36 Hz		4BPF of 27 Hz

- BPF pattern will be used for prediction: SPL(2BPF) = SPL(BPF) -8dB and SPL(3BPF)= SPL(BPF) -10dB
- Tonal noise is predicted on basis Dobrzynski's work: "Ermittlung von Emissionskennwerten f
 ür Schallimmissionsrechnungen an Landepl
 ätzen", DLR report IB 129-94/17
- Parameter: helical blade tip Mach number and blade loading
- Rotor/engine: blade number, blade diameter and number of rotors, power, rpm

$$M_H = \frac{1}{c} \sqrt{\left(\frac{\pi DN_P}{60}\right)^2 + v^2}$$

Example: Octocopter - Broadband Noise

- Broadband noise model
 - 400 Hz to 1250 Hz linear increase from 35 dB to 45 dB
 SPL(f) = 0.018*f_m + 30.28 dB
 - 1250 Hz to 4000 Hz
 constant 45 dB
 - 4000 Hz to 10 kHz linear decrease from 45 to 35 dB
 SPL(f) = -0.00167*f_m + 38.32 dB
 - Model provides correct OASPL
 - No consideration of wind influence
 - Omni-directional directivity

UAS Noise Simulation

p_norm -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

- The empirical noise model was used as input for a numerical simulation of the acoustic field generated by a moving UAS
- DLR CAA code: PIANO-IBM
- Strong interference patterns
- Explicitly annyoing in quiet environment
 → modeling a rural scenery

UAS Noise Simulation

- Resolve the sound pressure pattern along the "main road"
- Within very short distances the sound pressure levels double or halve

Methodology to Improve the Noise Prediction Basic Concept to Establish a Realiable Tool Chain

Task	To do
Test the source itself	 One propeller parametric study with and without wind influence (mean velocity and gusts) Wind tunnel studies on models Numerical simulations of the wind tunnel situation
Test multiple sources	 Number of propellers >1 Test different propeller configurations Number of propellers Sense of rotation, rotation patterns Rotate propeller assembly (Tilt wing / tilt rotor like) Wind tunnel studies on simple models Numerical simulations of the wind tunnel situation
Test the vehicle	 Select a representative vehicle layout (Multicopter, Tiltwing or Tiltrotor) for model tests in the wind tunnel Numerical simulations of the wind tunnel situation Numerical simulations of the full scale vehicle Flight test with full scale vehicle for validation

Conclusions

- The operation of Multicopter type UAS is a challenge in terms of noise
 - The vehicles will operate in close vicinity to living areas and in low altitudes
 - The flight control (yaw, pitch, roll, climb/descent and speed control) is rpm driven with direct impact on propeller / rotor noise
 - For the acoustic classification a single physics based acoustic metric will not be sufficient, psychoacoustic parameter should be considered
- Most manufacturers keep their operational data incl. noise secret. It is not possible to rely on full scale data generated by the real vehicle, except for Joby cooperating with NASA

NASA Tests the Joby Aircraft

- Establish a valuable database
- Validate research codes
- Gain technical advantage
- → benefit for U.S. authorities and citizens
- The presented work shows identical capabilities of the European research institutes

Imprint

19

Topic:Noise emissions from unmanned aerial vehiclesECAC Environmental FORUM7,29-30 May 2024, Paris,France

Date: 2024-05-30

Author: Michael Pott-Pollenske

Institute: Aerodynamic and Flow Control

Image credits: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated