
Future Generation Computer Systems 160 (2024) 442–456

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

CODE : Code once, deploy everywhere serverless functions in federated FaaS
Sashko Ristov a,∗, Simon Brandacher a, Mika Hautz a, Michael Felderer a,b,c, Ruth Breu a

a University of Innsbruck, Department of Computer Science, Innrain 52, 6020, Innsbruck, Austria
b German Aerospace Center (DLR), Institute for Software Technology, Linder Hoehe, 51147, Cologne, Germany
c University of Cologne, Department of Mathematics and Computer Science, Albertus Magnus Platz, 50923, Cologne, Germany

A R T I C L E I N F O

Keywords:
Automation
Domain specific language
Function-as-a-Service
Infrastructure-as-a-Code
Interoperability
Portability

A B S T R A C T

Infrastructure-as-Code (IaC) frameworks empower developers to swiftly define and provision their infrastruc-
ture with a single click. However, the domain-specific languages (DSLs) utilized for coding the infrastructure
often lean towards provider specificity rather than being application-centric. This results in increased developer
effort, as they are compelled to duplicate data when deploying serverless functions across diverse regions and
providers within federated FaaS environments. To mitigate this challenge, we introduce CODE , a framework
engineered to streamline the deployment of functions in federated FaaS settings. CODE facilitates automatic
deployment directly from the storage of any provider, eliminating the need for additional development effort
to upload or copy deployment packages between disparate providers. Aligned with the guiding principle of
‘‘code once, deploy everywhere’’, CODE adopts a three-level hierarchy: function → providers → cloud regions.
This architectural approach dramatically reduces the lines of code (LoC) in IaC scripts by up to 9.23× when
contrasted with prevailing IaC frameworks such as Terraform and Serverless Framework. Additionally, CODE ’s
unified storage interface slashes LoC by up to 81.8%, both within CODE itself and when coding functions
that use storage from providers such as AWS and GCP. In our comprehensive evaluation, we assessed the
correlation between deployment package size and deployment time for various functions within a real-world
serverless workflow across four regions of AWS and GCP. Our findings indicate that AWS deployment packages
are significantly larger, often in the tens of megabytes, compared to GCP. Despite the larger size, AWS deploys
these packages up to 6× faster than GCP.
1. Introduction

Function-as-a-Service (FaaS) has emerged as a prominent platform
for scientific computing [1] and edge [2] and cloud-based data analyt-
ics [3]. Typically orchestrated in the form of serverless workflows [4],
serverless functions are executed using specialized serverless workflow
management systems. Some of these systems are tailored for event-
driven workflows [5], while others focus on real-time data processing
using data flow streams [6]. Additional systems, like xAFCL [7], fa-
cilitate complex batch processing across multiple cloud regions and
providers, establishing a concept known as federated FaaS [8]. This
federation often circumvents the limitations inherent in a single re-
gion of a provider, such as the cap on concurrent function execu-
tions (e.g., up to 1,000 concurrent functions in a single region [3,
7]), and ensures resilience against massive failures in a single re-
gion [9]. In Section 2, utilizing two representative serverless workflows,
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we illustrate that even with low concurrency, serverless workflows
may experience considerably longer runtimes. Furthermore, we demon-
strate that FaaS federation can significantly reduce the makespan of
data-intensive serverless workflows, particularly when input data is
distributed globally.

State-of-the-art approaches.While many serverless workflow manage-
ment systems may run workflows across multiple FaaS providers [5,
7,10,11], several challenging steps must be performed beforehand to
prepare the setup for execution. These steps include coding the func-
tions for each specific provider, packaging the code with dependen-
cies into a deployment package [12], and deploying it across multiple
regions of various providers in a federated FaaS environment. Two
distinct approaches exist to automate deployment. First, state-of-the-
art frameworks like Terraform1 and Serverless Framework2 automate
deployment across various providers. These frameworks, known as
Infrastructure-as-a-Code (IaC), require developers to write scripts to
vailable online 10 June 2024
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define their infrastructure and then run the framework to provision it.
IaC scripts typically need to specify at least the function name, provider,
region, assigned memory, timeout (maximum duration), and runtime.
They may also include additional provider-specific configurations, such
as security roles on AWS, project names on GCP, or namespaces on
IBM. Another type of framework supporting all three steps – coding,
packaging, and deploying – are FaaSifiers, such as Node2FaaS [13]
nd M2FaaS [14]. These tools convert parts of monolithic applications
nto functions, packaging all dependencies into deployment packages
n the local file system before deploying the functions across different
roviders. While IaC frameworks allow deployment packages to be
tored in provider storage, FaaSifiers extract code from monolithic
pplications, package it with its dependencies locally, and deploy it
rom there.

tate-of-the-art limitations and challenges. More than 60% of functions
ely on managed cloud services, such as storage [15], which increases
heir deployment package size. For these functions, developers must
pload the deployment package to the storages of the target providers,
ften to each target region, increasing the manual effort required to
opy the package to all necessary locations. Our initial investigation
f IaC frameworks revealed additional challenges in deploying a func-
ion across multiple regions of different providers in federated FaaS
nvironments. While IaC frameworks simplify deployment by allowing
nfrastructure to be defined using a domain specific language (DSL),
hese DSLs are primarily provider-centric. IaC frameworks assume that
unctions will be deployed in a single region of a single provider.
his hierarchical structure of provider → region → function necessitates
edundant coding of function parameters for each target region. Given
hat top providers like AWS and GCP have more than 30 regions
ach, scripting deployments for multiple regions can become a tedious
nd time-consuming task, especially since serverless workflows often
onsist of multiple functions.

ode contribution. This paper introduces CODE , a framework designed
to overcome the limitations of existing IaC frameworks and facilitate
the deployment of functions in federated FaaS environments with
minimum effort. CODE builds upon our recent work, GoDeploy [16],3
which employs a three-level hierarchy placing the function at the
highest level, followed by providers and their respective regions. CODE
extends the capabilities of our GoDeploy deployer with the integration
of another Go library GoStorage. GoStorage offers a unified set of APIs
for provisioning, accessing, and interacting with AWS and GCP storage.
This abstraction of different cloud storage solutions allows developers
to use a single command to upload deployment packages or copy
them between storages of different providers, with dynamic selection
of source and destination storage providers. This approach significantly
reduces the time required to learn various provider SDKs and the lines
of code (LoC) that need to be written. Moreover, as a standalone library,
GoStorage also reduces the LoC for functions that use it to copy files
between any storage region of AWS S3 and GCP Storage.

Paper contributions. Apart from the extension with the GoStorage li-
rary, this paper contributes significant insights and comprehensive
valuations that are valuable for the community. First, we introduce
nd evaluate two serverless workflows that benefit from federated
aaS. Second, we conducted an evaluation of CODE against Serverless
ramework, Terraform, and the recent M2FaaS FaaSifier. Third, for
ach framework, we derived a general model for the required LoC
nd assessed them across various federated FaaS scenarios, scaling the
umber of providers and their regions across continents. Lastly, we
xamined several parameters influencing the deployment of functions
sing CODE . Overall, the paper contributions include:

3 This paper achieved the best paper award.
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• Publicly Available Framework in Go with GoDeploy4 and GoS-
torage5 repositories, providing tools for seamless deployment in
federated FaaS environments;

• Publicly available serverless workflow celebrityCollage,6 a
data-intensive, MapReduce-based workflow;

• CODE requires up to 9.23× less LoC compared to Terraform and
8.44× less LoC compared to Serverless Framework for coding the
deployment of a function across all regions of AWS and GCP;

• CODE introduces copy(srcURI, destURI), a single com-
mand enabling dynamic selection of storage providers without
needing to rewrite or redeploy functions;

• The GoStorage library reduces LoC by up to 81.8% compared to
using individual provider SDKs; and

• Despite AWS deployment packages being significantly larger (by
an order of magnitude) compared to GCP, AWS deploys these
packages up to 6× faster. This was observed for both Go and
Python functions.

aper outline. The rest of the paper is structured into five sections.
ection 2 presents the motivating use cases for deploying functions of
workflow application across multiple regions of various providers

nd addresses the need for high-frequency deployment in federated
aaS environments. In Section 3, we describe the overall architecture
nd implementation details of CODE and its two libraries GoDeploy
nd GoStorage, including their DSL and developer APIs for storage
rovisioning, access, and interaction. The results of the evaluation with
hree state-of-the-art frameworks, as well as the impact of different de-
loyment package size and deployment time are discussed in Section 4.
ection 5 discusses related work in automatic deployment of functions
nd how CODE advances beyond state-of-the-art approaches, as well as
ODE limitations and threats to validity. Finally, Section 6 concludes
he paper and presents several research areas that this paper opens for
uture work.

. Motivating use cases for deployment of serverless workflows in
ederated FaaS with high frequency

This section outlines the numerous benefits that federated FaaS
rings to serverless workflows. To demonstrate these advantages, we
onducted a series of preliminary experiments using two motivating use
ases - data-intensive serverless workflows (Fig. 1). These experiments
ighlight the constraints imposed by individual providers when oper-
ting within a single region, emphasizing the necessity of a federated
aaS environment. Additionally, we report the benefits of distributing
omputing tasks across cloud regions to efficiently process distributed
ata. Finally, we discuss the need to deploy serverless workflows in
ederated FaaS with high frequency.

.1. Use case 1: scalable serverless workflows suffer from spawn start and
oncurrency overhead

Montage [17] is widely used scientific workflow by many re-
earchers [5,6,18–20]. Details for Montage can be found in our recent
aper [21]. We are interested in the three parallel loops mPro-
ectPPs, mDiffFits, and mBackgrnds (see Fig. 1(a)). We used

wo versions to show the deviation in performance when scaling the
roblem size in a single region. The version 0.25 runs 30, 141, and 30
nstances in the parallel loops, while the version 2.0 738, 2,095, and
30, respectively. We deployed Montage in AWS and GCP Frankfurt
ith 2GB RAM for each function of the parallel loops. With this setup
e minimize network instability by avoiding multiple functions to

4 https://github.com/FaaSTools/GoDeploy
5 https://github.com/FaaSTools/GoStorage
6
 https://github.com/AFCLWorkflows/celebrityDetection
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Fig. 1. Motivating serverless workflows. (a) Montage is a scientific workflow used in
astronomy for processing and analyzing astronomical images and (b) celebrityCol-
lage is a data-intensive workflow based on MapReduce technology, which recognizes
celebrity faces in input images and generates a separate collage for each identified
celebrity, accompanied by a translated summary.

Fig. 2. Preliminary evaluation of Montage 0.25 and 2.0 versions on AWS. Each function
mProjectPP, mDiffFit, and mBackground is nested in a parallel loop.

share the underlying VM [22]. We executed both versions of Montage
four times and ignored the first execution due to the cold start. The
workflow on AWS was executed with concurrency limit of 1,000, while
on GCP with 100 to avoid the failures that we observed for higher
number of concurrent functions [7]. Figs. 2 and 3 illustrate the average,
minimum and maximum values of the round trip time 𝑅𝑇𝑇 when
the functions mProjectPP, mDiffFit, and mBackground of the
parallel loops run on AWS and GCP, respectively.

Observation 1: FaaS elasticity does not automatically provide scalability.
The parallel loops of Montage 2.0 run by up to 9.59× slower on AWS
and by up to 30.23× slower on GCP, compared to the version 0.25. The
main reason are concurrency overhead and spawn start when spawn-
ing numerous functions [23–25] and not the bandwidth constraints
between the functions and colocated storage.

2.2. Use case 2: Data-intensive workflows with distributed input data

Celebritycollage workflow. We additionally developed and ben-
chmarked a data intensive celebrityCollage serverless workflow
(Fig. 1(b)), which processes images that are scattered across multiple
cloud regions. celebrityCollage is a MapReduce-based workflow,
which contains two parallel loops to speed up image processing. The
444
Fig. 3. Preliminary evaluation of Montage 0.25 and 2.0 versions on GCP. Each function
mProjectPP, mDiffFit, and mBackground is nested in a parallel loop.

Fig. 4. The transformed celebrityCollage serverless workflow to run in a
federated FaaS environment. Functions nested in parallel loops must be deployed across
multiple regions to achieve scalability. The parallel constructs ParImg and ParFace
can have an arbitrary number of sections, for example, 68 for each AWS and GCP
region.

first parallel loop parImg iterates over all images to group the cropped
faces in a separate folder per celebrity, while the second parallel loop
parFace merges all images of each celebrity in a collage with a
summary text translated in German.

Celebritycollage adaptation for running in federated faas. We
adopted approaches from recent research [26,27] to distribute the
work across regions closer to the input data. Additionally, we transfer
intermediary data generated during the mapper phase (cropFaces)
across regions, which can significantly reduce data transfer time. To
achieve such scalability, the workflow must be transformed so that
functions nested in parallel loops are deployed across different regions.
Fig. 4 illustrates an implementation of celebrityCollage designed
to distribute the workload across two AWS regions and one GCP region.

Experiment. We used 200 input images distributed evenly, with 100 in
AWS S3 Frankfurt and 100 in AWS S3 North Virginia. Each input image
is 5MB and contains faces of 8 celebrities. Celebrities with names start-
ing from A to M, have their cropped faces stored in AWS S3 Frankfurt,
while those with names from N to Z have their cropped faces stored in
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Fig. 5. Preliminary evaluation of the celebrityCollage workflow that processes
00 images stored in AWS S3 North Virginia and 100 images stored in AWS S3 Frankfurt.
ingle region denotes all functions run exclusively in AWS North Virginia. Federated
aaS denotes that functions are distributed across both regions, running closer to where
he images are stored. The latter significantly reduces data access time, leading to 2.57×
ower makespan.

WS North Virginia. Two implementations of the celebrityCol-
age workflow were executed. In the first implementation, all 200

unctions ran in a single region - AWS Frankfurt. In the second imple-
entation, functions were colocated with the images: 100 functions in
WS Frankfurt and 100 in AWS North Virginia. This latter implementa-

ion follows a MapReduce-based approach, where the mapper functions
ropFaces map the faces based on the celebrity name. The reducer

unctions createCollage and Translate then work locally with
he colocated storage. To optimize throughput, we set the concurrency
f both loops to 25 in accordance with the throughput limits of AWS
ekognition and AWS Translate, which restrict the number of requests
er second.
Observation 2: Data-intensive serverless workflows with distributed input

ata benefit from federated FaaS as it reduces data access time. Fig. 5
resents the 𝑅𝑇𝑇 of the four functions that are part of the parallel
oops, as well as the overall makespan for both implementations of the
elebrityCollage workflow. We observe that all four functions
enefit from federation, which reduced the overall makespan by 2.57×,
espite using the same amount of resources. The primary reason for
his improvement is the reduced access time due to the colocation of
unctions with the input and intermediary data.

.3. Other benefits from federated FaaS

Apart from addressing the challenges discussed in the previous two
ections, federated clouds offer various benefits to users. Serverless
orkflow applications execute computations and download data faster
n AWS, while data downloads are quicker on GCP [21]. By employing
ingle-objective [28] or multi-objective [29] optimization, users can
hoose to run their workflows either more cost-effectively or faster.
dditionally, the recently introduced concept of Sky computing [30,31]
nables users to move large datasets between cloud providers and still
rocess the data more cheaply, despite the high costs associated with
ransferring data out of the source cloud provider.

Federated FaaS may overcome the provider concurrency limitation
f running 1,000 concurrent functions per user in a single region.7 While
he cloud users can extend the concurrency limit,8 it remains restricted
o a few thousand concurrent functions, which is often insufficient
or the required scalability of, for example, 800,000 tasks [18]. Many
esearchers reported significant speedup by exploiting multiple regions,
ither by distributing the serverless workflow functions across several
egions of multiple providers [7,32], or by offloading execution from
dge to cloud providers whenever edge resources are overloaded [33],
r by distributing files across storages and collocate functions closer to
he data [26].

7 https://cloud.google.com/functions/docs/configuring/concurrency
8 https://repost.aws/knowledge-center/lambda-concurrency-limit-increase
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2.4. The motivation for multiple deployments of a single function with high
deployment frequency in federated FaaS

The deviceless edge computing approach introduces vertical of-
floading of the computing to more powerful edge servers and horizontal
offloading on other similar edge devices [34]. Given that both edge
servers and edge devices have limited capacity [35–37], functions must
be dynamically redeployed after existing ones are deleted, necessitating
adjustments to IaC deployment scripts.

Microservice architecture is essentially an architectural style that
can be implemented with serverless functions [38]. The numerous
microservices are often orchestrated using state machines [39] and
deployed as serverless workflows [40]. Since one microservice may
comprise one or multiple functions, DevOps engineers must create
adapted IaC scripts for deploying these functions in federated FaaS
for each subset of updated microservices. Some reports9 indicate that
ertain companies perform up to 23,000 deployments per day. The

challenges mentioned above necessitate multiple deployments of the
same function across different regions and memory setups. These de-
ployments are referred to as ‘‘twins’’ and ‘‘siblings’’, respectively. [24].
Unfortunately, such deployments generate significant overhead in IaC
because users must redundantly specify information about the same
function multiple times. The evaluation results in Section 4.2 demon-
strate that CODE saves up to 9.23× the LoC compared to state-of-the-art
aC frameworks.

. CODE system architecture

This section presents the CODE ’s system architecture and imple-
mentation details for its two main modules, GoStorage and GoDeploy.
Additionally, it outlines the CODE ’s programming model and intro-
duces a novel approach to IaC DSL. Unlike traditional IaC tools such
as Terraform and Serverless Framework, which typically prioritize the
provider at the top of their hierarchy, this new approach places the
function at the apex of a three-level hierarchy.

3.1. CODE programming model

CODE uses the design principle ‘‘code once, deploy everywhere’’,
hich raises several requirements. CODE recommends that the function

s developed as a local function or method only once (e.g., DoWork()),
hich is then called from various handler methods, separately for each
rovider. With this programming model, the users need to create a sin-
le deployment package for federated FaaS and then simply specify the
pecific handler method for the target provider during the deployment.
fterwards, developers should bundle all dependencies in a deployment
ackage as a zip file so that the function can run properly, regardless
f the target provider and region. Note that sometimes the developers
ay need to build a jar instead of a zip, or a container, and store them

n the storage of the target provider.
Once a developer prepares the deployment package, including all

ependencies, they need to use the CODE DSL to configure where and
ow to deploy the function. The developer utilizes CODE ’s convenient
ierarchy - function → provider → region - to specify multiple regions
or each provider with minimum development effort for each function.

.2. CODE system architecture

Fig. 6 presents the system architecture of CODE , which comprises
wo modules GoDeploy and GoStorage. The former introduces a CLI,
SL, and federated deployer, while the latter provides a set of developer
PIs for federated storage infrastructure.

9 https://www.altexsoft.com/blog/dataops-essentials/
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Fig. 6. CODE architecture comprising two modules (i) GoStorage, which introduces a federated storage interface designed to manage the background copying of function deployment
packages across storage systems in target regions. GoStorage can also function independently as a library, enabling functions to dynamically select source and target cloud storage;
and (ii) GoDeploy which deploys all packages copied by GoStorage into a federated Function-as-a-Service (FaaS) environment.
Fig. 7. CredentialsHolder definition.

3.2.1. GoDeploy
CLI. CODE requires credentials for each provider to be stored in sepa-
rate files in the current working directory. The current implementation
supports two providers AWS and GCP. A custom CredentialsH-
older type needs to be created to store the credentials necessary for
invoking operations via the corresponding SDKs, as defined in Fig. 7.
This type stores pointers to provider-specific credential implementa-
tions, which are then used to configure the SDK clients for supported
FaaS providers. After setting up the credentials, the developer can
deploy functions using a single deploy command as an argument in
the YAML-based DSL input file.

DSL parser. This module parses the YAML-based configuration file with
the three-level hierarchy to determine the configuration setup for all
functions to be deployed in federated FaaS. This includes details such
as the function name, the providers where the function should be
deployed, the regions for each provider, the amount of memory to be
assigned, the maximum allowed duration of the function, the runtime
environment, and the handler method for each provider. The developer
can specify a single location for the deployment package (f1.zip) of a
function for all deployments, across different providers. This package
can be stored on the local file system or any storage service of the
supported providers. For instance, the deployment package f1.zip can
be stored on S3 in AWS North Virginia (us-east-1). The details of the
DSL are presented in Section 3.4.1.

Federated deployer. Based on the parsed provider configuration, the
federated deployer deploys the function in all specified regions where
the deployment package is stored. For example, if f1.zip is already
stored on AWS S3 in North Virginia, the federated deployer deploys
it immediately. However, if f1.zip is not present in AWS S3 in
us-west-2 (Oregon) and in GCP storage in us-central1 (North
Virginia), the federated deployer uses the GoStorage module to copy
the deployment package f1.zip to those cloud storages in the back-
ground, transparently to the user (step 1 in Fig. 6). Once the copy is
complete, the federated deployer utilizes the specific SDKs for each
provider to deploy the function in those two regions (step 2). This
approach significantly reduces the development effort required to copy
deployment packages of a single function to each region of federated
446

FaaS environment.
3.2.2. GoStorage
Developer API. GoStorage offers a set of developer APIs for access and
provisioning the storage on AWS and GCP, such as uploadFile,
downloadFile, or createBucket. APIs do not require any change
of the code and redeployment to be able to replace the storage. Imple-
mentation details and the usage of the developer APIs are presented in
Section 3.3.1.

URL parser. The developer APIs of GoStorage use the URI parser to
determine the SDK of the corresponding provider. Table 1 presents
the supported URIs for AWS and GCP. The URI parser identifies the
provider and its region from the provided URI for the deployment
package of each function. GoStorage uses URI 1 from Table 1 for AWS
URLs because it contains the AWS region of the bucket, along with
the bucket name and the key (the file). In contrast, GCP does not
require developers to specify the region as it supports multi-region.
Implementation details and the usage of the URI parser are presented
in Section 3.3.2.

Federated storage interface. One of the main innovations of CODE over
state-of-the-art IaC frameworks is its ability to copy the deployment
package from any storage to all target regions and providers in the
background. For instance, in the example shown in Fig. 6, if the
developer specifies deploying a function in AWS’ us-west-2 (Oregon)
and GCP’s us-central1 (North Virginia), the federated storage interface
automatically copies the deployment package to the storages in both
regions.

3.3. GoStorage software architecture

The GoStorage module abstracts the functionalities of different
providers using the Provider interface, as defined in Fig. 8. It serves
as a stand-alone library usable by any Go application, including func-
tions, enabling dynamic selection of target storages supported by var-
ious cloud providers. Currently, GoStorage implements the Provider
interface for two providers AWS and GCP. However, extending support
to other providers is straightforward by implementing the Provider
interface with the corresponding SDK of those providers. CODE pri-
marily utilizes copyFileWithinProvider() and uploadFile()
of GoStorage for copying the deployment package to another target
storage and uploading the deployment package to the target storage,
respectively. Additionally, other methods provided by GoStorage can
be leveraged by software practitioners for managing storages across
various providers. For instance, users can create a new bucket, copy the
deployment package of a function to that bucket, deploy the function
from that bucket, delete the function deployment package, and finally,
delete the bucket of the target storage for each provider.

Most methods of the Provider interface utilize one or two objects

of the GoStorageObject type, a custom object type designed to
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Table 1
Supported URIs for AWS and GCP storages.
URI Provider Scheme Authority Path

1 AWS https:// s3.region-code.amazonaws.com /bucket-name/key-name
2 GCP https:// storage.cloud.google.com /bucket-name/key-name
3 GCP http:// storage.cloud.google.com /bucket-name/key-name
4 GCP gs:// /bucket-name/key-name
Fig. 8. GoStorage Provider interface.
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Fig. 9. GoStorageObject definition.

ncapsulate all necessary information for the storage location, includ-
ng the bucket and file name, region, and provider (AWS or GCP).
ig. 9 presents the definition of the GoStorageObject struct. This
bject contains details about the object’s location of the object, which
an be either local or remote. If the GoStorageObject points to
local file, it also includes the local file path LocalFilePath. Given

hat GCP supports multi-region cloud storage deployments, developers
an optionally utilize the region key for GoStorageObject objects
ertaining to GCP. ProviderType is an enumeration consisting of
WS and GCP in the current implementation.

.3.1. GoStorage usage
ostorage initialization. At first, developers need to initialize GoStorage,
s presented in Fig. 10. They can use the utility function LoadCre-
entialsFromDefaultLocation() of the goStorage object to

oad the credentials file and retrieve the parameters needed for creating
he credentials types. Subsequently, developers should construct Cre-
entialsHolder type and utilize it to instantiate the goStorage
bject.

ownload a file from and upload a file to a storage with gostorage.
oStorage facilitates the downloading of files from and uploading files

o storage. Developers can accomplish these tasks by providing the
ource and destination paths. For example, in Fig. 11, we demonstrate
ow GoStorage downloads a remote object from AWS S3 to the local
ile system and subsequently uploading the same file to the storage
f a different cloud provider. Notably, neither AWS’ nor GCP’s SDKs
re directly employed for interacting with their storages; instead, a
nified interface, CopyFromString(), is utilized. Developers simply
447

eed to specify the file path of the local file system and the path of G
he remote location. It is worth noting that while the paths in Fig. 11
re hardcoded for clarity, they can be dynamically adjusted without
ecessitating rebuilding and redeploying.

opy a file (e.g., a function deployment package) between storages of dif-
erent providers. If developers need to copy a file from a source storage
o a destination storage, regardless whether the source and destination
torages belong to the same or to different providers, they can use the
ame CopyFromString() method, as presented in Fig. 12.

.3.2. GoStorage storage URI parser
The examples provided in the previous Section 3.3.1, demonstrating

1) uploading a file to a storage, (2) downloading a file from a storage,
nd (3) copying files between storages, are intended for software prac-
itioners to easily utilize the GoStorage module as a stand-alone library.
owever, in the context of CODE , the source and target storages are
ynamically determined by the DSL parser when parsing the provided
torage URIs from the input DSL for deployment. GoStorage identifies

whether the URI corresponds to AWS or GCP by parsing the infor-
mation from parseUrlToGoStorageObject(...). Based on the
determined storage provider, either parseAWSUrl(...) or parse-
GoogleUrl(...) is called. If the URI does not match with AWS or
GCP, GoStorage examines whether the object is a file with a given file
path from the local file system. If so, GoStorage sets the IsLocal flag
and the LocalFilePath field. Otherwise, GoStorage raises an error
and exits.

3.4. GoDeploy software architecture

CODE introduces GoDeploy to abstract the deployment of providers
n Federated FaaS. The current version of GoDeploy supports deploy-
ent on two providers AWS and GCP.

.4.1. GoDeploy domain-specific language
GoDeploy offers developers a YAML-based DSL to encode the nec-

ssary information for each function to be deployed in federated FaaS.
oDeploy supports the deployment of multiple functions at once. Each

unction can be deployed across multiple regions of AWS and GCP, all
rom a single deployment package, which can be stored either in the
ocal file system where CODE runs, or on AWS S3 in any region, or
n any region of GCP storage. The location of the deployment package
oes not affect where the function should be deployed. In particular,

oDeploy parses the location of the deployment package and, based
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Fig. 10. GoStorage initialization.
Fig. 11. An example of how to download and upload a file with GoStorage.
Fig. 12. An example of how to copy a file between two different storages with GoStorage, regardless if they belong to one or two providers.
n the URI, selects the appropriate SDK of AWS or GCP to deploy the
unction.

Fig. 13 presents an example of GoDeploy ’s DSL when the developer
tilizes the recommended programming model of CODE to prepare a
ingle deployment package for multiple providers. In this example, the
eployment package of the function function1 is stored on some
egion of AWS S3 and needs to be deployed in two AWS regions
s-east-1 (North Virginia) and us-west-2 (Oregon) with the AW-
Handler handler method. The same deployment package also needs

o be deployed on GCP’s region us-east1 (South Carolina) with the
oogleHandler handler method and the Go runtime, as shown in
ig. 6. While the IaC frameworks Terraform and Serverless Framework
lace the provider at the top level of the hierarchy, GoDeploy places the
unction at the top of the hierarchy. The developer specifies in which
roviders and their regions to deploy a single deployment package only
fter defining the parameters of the function. In general, GoDeploy ’s
SL introduces a three-level hierarchy starting from deployment pack-
ge, then the providers, and finally regions for each provider where the
unction should be deployed. Note that the developer does not need to
anually copy the deployment package of function function1 from
WS S3 to GCS cloud storage in North Virginia because the deployment
ackage will be copied by CODE in the background.

evel 1 (top): Function. The infrastructure coding begins with the
unctions keyword, which serves as the root for defining multiple

unction parameters. Each function definition consists of several keys.
he location of the deployment package, to be deployed, is specified

n the archive field. The string can point to either a local file
ath of the zip file or a URI of GCP storage or AWS S3. The name
ield, set to function1, designates the name of the deployed function
cross all locations. If the specified name already exists in any of the
egions specified later in the DSL, the existing function will be updated
ith the new deployment package. The subsequent fields memory
448
Fig. 13. Example of deployment script in GoDeploy DSL using the CODE programming
model.

and timeout determine the memory allocation in megabytes and the
timeout duration in seconds, respectively, for the function.

Level 2 (middle): Providers. The second level in the hierarchy is fo-
cused on the providers and begins with the key providers. After
specifying the archive in level 1, developers can designate the provider
on which the deployment package should be deployed. To do this,
developers fill in the name of the provider (AWS or GCP), the handler
method, and the runtime. Ideally, developers can deploy the same
deployment package on multiple providers. In such case, developers
do not need to reenter the same information from level 1. Instead,
they continue filling in the values for the second provider under a
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new field called name. When filling in the handler, developers use
the file name (e.g., example), followed by a separator character ‘‘.’’,
and the handler method (e.g., AWSHandler) that is invoked when the
function is called. Although all top providers support common runtime
environments, their names may differ. For example, developers need to
specify go116 and go1.x for GCP and AWS Go runtime environments,
respectively. Therefore, we place the value for runtime at level 2,
instead of level 1.

Level 3 (bottom): Regions. After specifying each provider, developers
eed to specify its regions in the third level of the hierarchy. This
tep must be repeated for each provider. This level is the simplest,
s developers use the regions parameter to specify a list of strings
ontaining the regions for the parent provider. Developers must use the
tandardized code names of AWS and GCP regions, such as us-east-
for AWS North Virginia and us-east4 for GCP North Virginia. Once

ll entries in the three layers have been coded for the function func-
ion1, developers repeat the same procedure for the next function
unction2, and so on.

SL without the code programming model. In Section 3.1, we recom-
ended that developers should use the CODE programming model and

reate a single deployment package of a function across all providers.
his approach reduces the amount of code that needs to be written

n CODE . However, some developers may prefer not to adopt the
rogramming model proposed in Section 3.1. For example, they may
refer smaller deployment packages and exclude dependencies for
roviders not in use. In this alternative approach, developers need to
reate a total of 𝑝 deployment packages for a single function, one for
ach of the 𝑝 providers. However, the advantage of this approach is
hat the deployment packages per provider are smaller, as they do
ot include unnecessary dependencies. If developers choose not to use
he recommended CODE programming model, they will need to write
ore LoC in the CODE DSL, as illustrated in Fig. 14. Additionally,
aintenance becomes more complex, as developers must manage 𝑝
eployment packages for each function. As shown in Fig. 14, apart from
he common lines for the GCP provider (the last 5 lines), developers
ust re-enter the provider-specific LoC to specify the URI of the archive

or the second provider — GCP, as well as memory, timeout, and the
redefined key providers. The LoC for both programming models
re evaluated in Section 4.2.1, revealing that both approaches result in
he same complexity for the DSL when the number of regions where
he function needs to be deployed is large.

.4.2. GoDeploy DSL parser implementation
GoDeploy utilizes several internal structures to accurately parse the

nput DSL and convert it into equivalent objects. For this purpose, a
ata transfer object [41] (DTO) was used, which represents data in a
orm that is easily transferable. The structure of a DeploymentDto
bject corresponds to the definition for a function in the input DSL file,
s presented in Fig. 15. The ‘mapstructure:‘‘<KEY>’’‘ identi-
iers are necessary for deserializing the deployment file and populating
he correct fields in the struct.

Utilizing the CODE ’s innovative three levels of abstraction, a single
unction can be deployed across multiple providers. Consequently,
eploymentDto includes a list of providers, represented by the
rovider structure in GoDeploy, as illustrated in Fig. 16. Each in-
tance of the Provider structure corresponds to a provider block of
function within the input DSL file.

Once CODE parses the DSL file and creates the objects of De-
loymentDto and Provider structures, it generates objects of the
eployment structure, as shown in Fig. 17. With this approach,
oDeploy converts the list of Provider objects and the list of region
trings for each Provider object into separate objects deployment,
hich can then be processed and deployed simultaneously, as described
449

n the following section.
Fig. 14. Example of deployment script in GoDeploy DSL without using the recom-
ended CODE programming model. In this case, the developer creates a separate
eployment package (archive) for each provider, which requires to repeat the lines
rom level 1 (archive, name, memory, and providers). The other lines (levels 2
nd 3) are anyway needed.

Fig. 15. DeploymentDto structure definition, which corresponds to the function in
CODE ’s DSL.

Fig. 16. Provider structure definition, which corresponds to the provider in CODE ’s
DSL.

Fig. 17. Internal Deployment structure definition, whose objects contain all neces-
sary information that are needed to deploy a function.

3.4.3. Parallel deployment
Using the CODE DSL, users can specify that a single function be

deployed across multiple regions of several providers. Given that some
providers have more than 30 regions and users may need to deploy
multiple functions in Federated FaaS, a single deployment script could
specify hundreds of deployments. To minimize the overall deployment
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Fig. 18. Parallelized functions deployment with goroutines.

Fig. 19. CODE integrates GoStorage into GoDeploy.

Fig. 20. Evaluation of CODE internal federated storage interface with and without
oStorage with LoC for three scenarios (1) to upload a deployment package to AWS
3, (2) upload a deployment package to GCP, and (3) copy a deployment package
etween AWS S3 and GCP storage.

ime, the GoDeploy module utilizes goroutines, creating a lightweight
hread for each deployment separately.

The current implementation of GoDeploy supports deployment on
WS and GCP. However, CODE can be easily extended by adding new
onstants for the ProviderName (e.g., ProviderIBM) and imple-
enting IBM_Deploy to enable deployment across three providers.
epending on the selected cloud provider, GoDeploy calls either go
ws.Deploy(..) or go google.Deploy(..) to initiate the func-

ion’s deployment on the corresponding provider in a separate thread,
s shown in Fig. 18. The &waitgroup variable tracks the state of the
arallel threads and ensures that all deployments finish properly.

.5. CODE integrates GoStorage into GoDeploy

Fig. 19 illustrates the internal structure of CODE . The general
odule deploy manages most of the setup, credential management,

nd DSL validation. The abstraction is then divided into provider-
pecific implementations. The current implementation includes the
WS_Deploy and Google_Deploy modules, which can be easily ex-

ended with similar modules for other providers. These modules lever-
ge the internal shared logic of the Shared module, which contains
tility functions, error handling, and constants. Finally, the Shared
odule utilizes the GoStorage library, which transparently copies de-
loyment packages of the functions from either the local file system
r the source storage to the target storage in the regions where the
unctions are to be deployed.

. CODE evaluation

This section evaluates the benefits of CODE and its two modules
oStorage and GoDeploy. Given that LoC is a relevant metric that is
450

ften used by other researchers [4,42–44], we first assess the benefit of
oStorage as an internal module of CODE for federated storage inter-
faces in Section 4.1. This evaluation focuses on its ability to upload or
copy deployment packages to AWS S3 and GCP storage. In Section 4.2,
we then evaluate GoDeploy ’s DSL in terms of deployment script length
measured in LoC, and compare it with DSLs of state-of-the-art IaC
frameworks such as Terraform and Serverless Framework, as well as the
recent M2FaaS FaaSifier [14]. Additionally, we evaluate the correlation
between the deployment package size and deployment time on AWS
and GCP for several functions that use GoStorage in Section 4.3. We also
repeat the assessment for the functions of our motivating workflow,
celebrityCollage, written in Python, in Section 4.4.

4.1. CODE benefit from GoStorage

Evaluation methods. We evaluate the usage of GoStorage in CODE in
terms of LoC that the developer needs to write with GoStorage and
compare it with providers’ SDK without GoStorage, which is the original
version of GoDeploy [16]. We evaluate GoStorage with the three scenar-
ios in which CODE uses GoStorage internally. Specifically, we measure
the LoC needed to (1) upload the deployment package of a function
on AWS S3, (2) upload the deployment package of a function on GCP
storage, and (3) copy the deployment package of a function between
AWS S3 and GCP storage.

Code reduction with gostorage. Fig. 20 presents the evaluation of how
much LoC is reduced by GoStorage compared with the state-of-the-
art approaches with the corresponding storage client SDKs in Go for
AWS S3 and GCP storage. We observe that GoStorage significantly
reduces LoC, especially when the storage client needs to use SDKs from
both AWS and GCP to copy the deployment package. Regardless of
the evaluated scenario, GoStorage requires the same number of LoC
(four) to initiate the gostorage object and use the single method
goStorage.CopyFromString(). With GoStorage, CODE reduced
LoC by 71.4% compared to the AWS S3 SDK and up to 81.8% compared
to using both storage SDKs in Go (for copying).

4.2. GoDeploy DSL evaluation

Methods. We evaluate the usage of CODE in terms of DSL’s LoC with
two experiments that scale the number of regions of an individual
provider and the number of regions in federated FaaS. For this purpose,
we derive equations for each evaluated framework for deployment. We
compare CODE with the two state-of-the-art IaC frameworks Terraform
and Serverless Framework, as well as the FaaSifier M2FaaS, which also
offers a DSL for deploying a code block of a monolith as a function
across multiple providers and their regions.

Fairness. Apart from automatic deployment of functions in federated
FaaS, Terraform and Serverless Framework support deployment of
different resources, such as buckets, message queues, security roles, API
gateways, etc. Also, they support integration with GitHub actions or
automatic creation of deployment packages (packaging). These features
require more LoC per function than CODE and M2FaaS. Therefore, for
fair comparison, we evaluate both IaC frameworks for LoC needed only
to deploy functions.

4.2.1. CodeDSL
CodeDSL with the code programming model. CODE ’s approach, prioritiz-
ing the serverless application over the cloud provider, initially reduces
the LoC in the deployment script. For a single function, CODE needs 5
LoC to specify the location of the deployment package (archive), the
name (name), allocated memory (memory), timeout (timeout) and
finally, a fixed line for the predefined key providers. Further on, if
the developer uses the CODE programming model and creates a single
deployment package for multiple providers, then the same deployment
package is deployed on multiple providers. In this case, the CODE DSL
requires only 4 LoC per provider to specify: its name, the handler that
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is called when the function is invoked, runtime, and the predefined key
regions. Finally, for each region of the provider, CODE needs a single
LoC. Based on the above-mentioned complexity analysis, in Eq. (1) we
model the total number of LoC needed to be written for deployment
of a function in federated FaaS. The total number of LoC is affected
by the number of providers 𝑝 and the average number of regions 𝑟 per
provider on which the function needs to be deployed.

𝐿𝑜𝐶𝑤
𝐶𝑂𝐷𝐸 = [5 + 𝑝 ⋅ (4 + 𝑟)] ∼ 𝑝 ⋅ 𝑟 (1)

CodeDSL without the code programming model. If the developers choose
to create a separate deployment package per provider, they need to
write five more LoC per each provider, as presented in Fig. 14. We
generalize this approach in Eq. (2). Although this approach requires
5 ⋅ (𝑝 − 1) LoC more than packaging with CODE programming model,
the complexity remains the same 𝑝 ⋅ 𝑟 for large number of regions per
provider.

𝐿𝑜𝐶𝑤∕𝑜
𝐶𝑂𝐷𝐸 = 𝑝 ⋅ (9 + 𝑟) ∼ 𝑝 ⋅ 𝑟 (2)

4.2.2. Terraform DSL
Terraform’s DSL uses a declarative way to describe functions that

should be deployed, usually in multiple files, one for each provider.
It uses a proprietary language, with three basic elements: blocks, argu-
ments, and expressions. Blocks usually represent the configuration of an
object (e.g. a resource), arguments appear in blocks to assign a value
to a name, while expressions represent values. Terraform supports
deployment of functions to all top providers. The total number of LoC of
Terraform is given in Eq. (3). For a single function, Terraform requires
developers to write 2 LoC to define the region. Additionally, they need
2 LoC to specify the region in the function, and yet another 7 LoC to
define the needed parameters of the function. The entire procedure
needs to be repeated for each provider.10

𝐿𝑜𝐶𝑇 𝑒𝑟𝑟𝑎𝑓𝑜𝑟𝑚 = 11 ⋅ 𝑝 ⋅ 𝑟 (3)

4.2.3. Serverless framework’s DSL
Serverless Framework uses an imperative two level hierarchy re-

gions and functions. Developers need to compose scripts for each
provider separately. They also need to code a separate file per region
of that provider. Within the script, developers need to specify the
service, provider, provider name, region, runtime, memory, duration,
deployment package, function, and function name. The total number
of LoC required by the Serverless Framework is given in Eq. (4). For
a single function to be deployed on 𝑝 providers and 𝑟 regions per
provider, Serverless Framework requires developers to write 2 LoC per
provider in the compose file. Additionally, in each deployment script
per region, developers need to write: 2 LoC for the provider, 1 LoC to
specify the region, and 6 LoC for the function parameters.

𝐿𝑜𝐶𝑆𝑒𝑟𝑣𝑒𝑟𝑙𝑒𝑠𝑠 = 9 ⋅ 𝑝 ⋅ 𝑟 + 2 ⋅ 𝑝 ∼ 9 ⋅ 𝑝 ⋅ 𝑟 (4)

.2.4. M2FaaS DSL
M2FaaS uses a JSON-based DSL to describe where and how to

eploy annotated code-block as a function on two supported providers
WS and IBM. M2FaaS does not require all deployment parameters
ecause some of them are predefined within the FaaSifier. Among
thers, the location of the deployment package is not required because
t is created locally, while the provider default handler method is used
or each provider.

Unlike the other three frameworks, M2FaaS does not use any hi-
rarchy to group the code, which means that developers need to
pecify the same number of LoC for each deployment of each function,
egardless of the target provider and region. Due to its flat-based DSL,

10 https://github.com/terraform-aws-modules/terraform-aws-lambda/blob/
5.0.0/examples/multiple-regions/main.tf
451
Fig. 21. LoC to be coded in the DSLs of M2FaaS, Serverless Framework, TerraForm,
and CODE to deploy a function in four different real life scenarios (i) all 8 AWS regions
n Europe (EU A), (ii) all 8 AWS and 12 GCP regions in Europe (EU AG), (iii) all 31
WS regions globally (Global A), and (iv) all 31 AWS and 37 GCP regions globally

Global AG).

2FaaS does not require any LoC per provider, but it needs 6 LoC for
ach function deployment in one region, which includes name of the
unction, provider, region, memory, runtime, and timeout. Based on
his, Eq. (5) models the complexity of M2FaaS’ DSL in terms of LoC.

𝑜𝐶𝑀2𝐹𝑎𝑎𝑆 = 6 ⋅ 𝑝 ⋅ 𝑟 (5)

.2.5. Real-case evaluation
We used Eqs. (1), (3), (4), and (5) to evaluate the LoC required for

our real case scenarios. These scenarios involve deploying a function
cross: (i) all 8 AWS regions in Europe (EU A), (ii) all 8 AWS and 12 GCP
egions in Europe (EU AG), (iii) all 31 AWS regions globally (Global A),
nd (iv) all 31 AWS and 37 GCP regions globally (Global AG). For the
cenarios EU AG and Global AG, we used the average number of 10
nd 34 regions per provider, respectively. Fig. 21 presents the results
f this evaluation. We observe that, from all evaluated frameworks,
ODE requires the lowest number of LoC to deploy a function for each
cenario. Terraform requires from 5.18× to 9.23×, Serverless Framework
rom 5.18× to 8.44×, while M2FaaS requires from 2.82× to 5.04× more
oC than CODE , respectively. Note that these values are smaller than
he theoretical ones 11×, 9×, and 6×, respectively. The reason is that
ODE requires five LoC for each function and yet another four LoC for
ach provider. Because of this fact, all DSLs require similar LoC if a
unction needs to be deployed in a few regions. For instance, M2FaaS’
SL needs 6 LoC only to deploy a function in a single region, CODE
nd Terraform 9, while Serverless Framework 11 LoC.

.3. Evaluation of GoStorage inside the functions

enchmark functions. Further on, we developed four implementations
f a function ListBucket. The first two implementations for AWS
ambda in Go list files in AWS S3 and GCP storage, respectively. The
ther two implementations were for GCP, which also list files in AWS
3 and GCP storage, respectively. We will refer to these functions as
2 A, A2G, G2 A, and G2G, respectively. Finally, we used the CODE
rogramming model to create a single function that uses GoStorage
nd lists files from both storages. Additionally, we deployed the same
eployment package in AWS and GCP, to which we refer as CODE .

oc. We first present in Fig. 22 LoC of the four implementations
ithout GoStorage and the two implementation with GoStorage. We
bserve that using GoStorage, developers need to code 6 or 7 LoC,

compared to 14 to 17 LoC for the function implementations without
GoStorage, or reduction of 57.38% on average. In reality, this percentage
is even higher since developers need to code 2 handler methods only
(one for AWS and one for GCP). This leads in total of 13 LoC, or a

reduction of 78.7%.

https://github.com/terraform-aws-modules/terraform-aws-lambda/blob/v5.0.0/examples/multiple-regions/main.tf
https://github.com/terraform-aws-modules/terraform-aws-lambda/blob/v5.0.0/examples/multiple-regions/main.tf
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Fig. 22. LoC for various implementations of the function ListBucket in Go with
nd without GoStorage.

Fig. 23. Deployment package size for the four implementations of the function
istBucket without GoStorage and the single deployment package with GoStorage.

Deployment package size. Fig. 23 shows the size of deployment pack-
age for the same implementations of the function listBucket. As
expected, the deployment packages that use provider’s SDK of a single
cloud storage have a smaller deployment package than the CODE func-
tion, since it uses SDKs for both cloud storages of AWS and GCP using
GoStorage. We also observe that the size of the deployment packages
is higher for AWS Lambda functions (6.8MB and 10.7MB) compared
to respective deployment packages for GCP (1.1MB and 3.39MB). The
reason for the 3.16× to 6.18× larger deployment packages is that AWS
ambda requires all dependencies to be stored inside the deployment
ackage (the zip file). In contrast, for GCP, the developers need to list
ll dependencies in the requirements.txt file only to be included
n the function during the deployment. Another interesting observation
s that the deployment package of functions A2G and G2G that use the
DK for GCP storage is larger by 3.9MB and 2.29MB than the respective
unctions A2 A and G2 A that use the AWS S3 SDK, respectively. Finally,
lthough the deployment package of the function that uses CODE has
larger size of 18.6MB, its deployment package is smaller by 29.06%

han all four functions together (21.99MB). This justifies running the
unction on both clouds and listing files from the cloud storages of both
roviders, AWS and GCP.

eployment time. We further evaluate deployment time of the packages
o both providers to examine the correlation with the size of the
eployment package. Fig. 24 presents the results for deployment times
f the packages to regions in North Virginia of both providers. Contrary
o expectations, we observed that the deployment to GCP takes signif-
cantly longer than to AWS, despite the deployment packages being
arger for AWS. The implementations G2G, G2A require, on average,
2.5 s longer deployment time than their Lambda counterparts. In total,
user would need 253 s to deploy all four functions on both providers,
hile they would only need 116 s to deploy the single function on both
roviders, resulting in an overall deployment time reduction of 46%.

4.4. Evaluation of the deployment of Python functions

Benchmark python functions. To generalize our findings for deploying
functions written in different programming languages, we also evalu-
ated the functions of the workflow presented in Fig. 4. All functions are
452
Fig. 24. Deployment time for the four implementations of the function ListBucket
without GoStorage and the single deployment package with GoStorage.

Fig. 25. Size of the deployment package for functions DI (Distribute Images),
DC (Detect Celebrities), CF (Crop Faces), DF (Distribute Faces), CC
(Create Collage), 𝑇 (Translate) of the celebrityCollage serverless work-
flow implementations in Python for AWS.

Fig. 26. Size of the deployment package for functions DI (Distribute Images),
DC (Detect Celebrities), CF (Crop Faces), DF (Distribute Faces), CC
(Create Collage), 𝑇 (Translate) of the celebrityCollage serverless work-
flow implementations in Python, for GCP.

written in Python for both for GCP and AWS implementations. The only
exception is the function detectCelebrities, which was deployed
only on AWS because GCP restricts the use of celebrity detection to
industrial partners, preventing us from using the GCP service.

Deployment package size. Fig. 25 presents the size of deployment pack-
age for each function of the workflow for AWS. We observe that
deployment packages for all functions have a similar size, ranging from
10.1MB up to 16.96MB on AWS. However, similar to the functions
in Go presented in the previous Section 4.3, Fig. 26 shows that de-
ployment packages for GCP functions are significantly smaller, ranging
from 2 kB to 15 kB. This size difference is because AWS deployment
packages include all dependencies, while GCP functions only require
references in the requirement.txt file only, which are included
during deployment.

Deployment time. The time needed to deploy the Python functions does
not follow the pattern of deployment package size, either. Fig. 27
presents deployment times for all functions across two regions. We
observe that it takes 133.7 s and 206.2 s to deploy all functions of
the serverless workflow in AWS’s North Virginia and Oregon regions,
respectively. In contrast, significantly longer times of 649.2 s and 735.7 s
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Fig. 27. Deployment time for functions presented in Figs. 25 and 26 in AWS’s North
Virginia and Oregon and GCP’s Oregon and Iowa.

are required for GCP’s Oregon and Iowa regions, respectively, which
is 3.6× to 4.9× longer. Note that the function detectCelebrities
is not included in the calculation for GCP. Additionally, we observe
a consistently longer deployment time for AWS Oregon compared to
the ‘‘closer’’ AWS North Virginia, due to network proximity [24]. For
GCP, this is not observed for the distributeImages and dis-
tributeFaces functions since their deployment package are only a
few kilobytes, making the impact of network proximity negligible.

5. Discussion

This section presents the related work and explains how CODE goes
beyond the state-of-the-art approaches for automatic deployment of
functions in federated FaaS and federated storage infrastructures. It
also highlights the novelty of this paper compared to our previous
work [16]. We also discuss CODE limitations and threats to validity.

5.1. Related work

We separate the related work in four areas (i) DSLs of IaC frame-
works, (ii) automatic deployment of functions with FaaSifiers in Fed-
erated FaaS, (iii) unified storage access, and (iv) the novelty compared
to the original paper [16].

5.1.1. Automatic deployment with IaC tools
Provider specific iac. AWS introduced their YAML-based DSL CloudFor-
mation. Unfortunately, while the DSL is open source, CloudFormation
works for AWS infrastructure only. Therefore, developers need to learn
SDKs of all providers to deploy functions across multiple providers in
federated FaaS.

Iac frameworks. Most popular open source IaC frameworks, such as
Terraform and Serverless Framework, offer their own DSLs to code
and automatize deployment of functions. Unfortunately, DSLs of both
frameworks are mainly focused on the provider, rather than the func-
tion (applications). Such a hierarchy, as our evaluation has shown,
requires writing redundant LoC when the same deployment package
needs to be deployed across multiple regions of the same or different
providers. SEAPORT [45] automatically evaluates the portability of
serverless orchestration tools with respect to a chosen target provider or
platform. QuickFaaS [46] improves portability of FaaS code by defining
a uniform programming model across providers, while also taking care
of the deployment steps to different cloud providers.

FaaSifiers. The recent FaaSifier M2FaaS [14] introduces a DSL without
ierarchy. M2FaaS DSL requires fewer parameters to be coded for each
eployment, since some parameters are predefined. For instance, the
rchive location is not needed as the archive is created automatically
uring FaaSification. Still, it needs six parameters (function name,
rovider, region, timeout, memory, and runtime), which are needed to
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e filled for each function deployment.
Code novelty. While all above-mentioned approaches automate the
deployment of functions in federated FaaS, they require many LoC to
be coded multiple times for each region of each provider separately.
Developers need to repeatedly specify several parameters, such as
the name and deployment package location, even when they are the
same. Unlike these approaches, CODE puts the function at the top
of the hierarchy, allowing developers to simply add provider-specific
information and regions at the lower levels. This hierarchy reduces LoC
compared to state-of-the-art IaC frameworks.

5.1.2. Automatic packaging and deployment with FaaSification
In order to benefit from FaaS scalability and elasticity, monolithic

applications are faasified, that is, converted into hybrid applications by
exporting parts of its code as equivalent functions [3,8,12,14]. Still,
the interface to the user is retained and running the offloaded code is
transparent [47,48].

Serverless Application Analytic Framework (SAAF) [49] automati-
cally creates a deployment package by wrapping the local method with
the specific handler and deploys it. While SAAF supports deployment
on multiple providers, it supports a single region per provider, that
is, the default region that is configured in the local credentials. The
Node2FaaS FaaSifier [13] extracts methods that contain loops as func-
tions and can deploy them on three providers AWS, GCP, and Azure,
but also supports the default regions only. Another weakness of SAAF
and Node2FaaS is that they support isolated functions only.

Ristov et al. [12] enhanced FaaSification by automating the packag-
ing of code and its dependencies, and deploying the functions on AWS.
The same authors further automated data dependencies and intro-
duced fault tolerance with multi-provider support [14]. IaC frameworks
also support packaging of functions during deployment. While IaC
frameworks support deployment of functions in different programming
languages, FaaSifiers are not language agnostic and support only a
single programming language.

5.1.3. Unified storage access
Storage federation systems. Several works have presented systems that
support unified global access to storages of different cloud providers,
which are complementary to CODE as they can speed up data access
times. Onedata [50] improves block-based data transfer in federated
storage by splitting files and distributing their chunks across different
storages. Lithops [11] shares files between multiple functions of a par-
allel loop. Although both systems allow seamless global data access by
keeping multiple copies with reduced access time, they do not provide
mechanisms to select the appropriate storage region. The GoDeploy
module of our CODE supports dynamic URIs from AWS S3 or GCP
storage, allowing developers to specify any bucket from both providers
or a local file path.

Libraries for unified storage access. Several libraries support unified data
access to multiple storages. pkgcloud [51] is a Node.js library that
abstracts the storage services of different providers behind a common
interface. Similarly, Apache Libcloud [52] hides the storages behind
common interfaces for Python applications, while Apache jClouds [53]
offers similar support for Java applications. Unfortunately, although
these libraries provide a common interface for accessing federated
storage, developers need to hardcode the provider in the code and the
corresponding driver to their storage accordingly. In contrast, CODE ’s
GoStorage module offers developers to dynamically select the storage
by simply replacing a URI from one provider with another one from
other provider. This feature is already utilized by CODE for specifying

archive locations of deployment packages.
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5.1.4. Extensions compared to our previous paper godeploy
This paper significantly extends our previous paper [16]. In partic-

ular, this paper introduces:

• A novel library GoStorage, which dynamically selects the target
storage driver based on the given URI, regardless if it is from AWS
or GCP;

• The GoStorage library reduces LoC by up to 81.8% compared to
the individual provider SDKs;

• Extended evaluation with Serverless Framework, apart from Ter-
raform and the M2FaaS FaaSifier;

• Generalized model for LoC of DSLs (9.23× reduction);
• Evaluation of deployment package size and deployment time of

functions with CODE .

5.2. CODE limitations

Support for two providers. Both modules of CODE support developer
APIs for unified storage access and deployment of functions on two
providers AWS and GCP. However, CODE ’s architecture is designed to
be easily extendable to support the deployment of workflow functions
on other providers and abstract their storages. Developers simply need
to implement the provider specific implementations of the general mod-
ule <Provider>_Deploy presented in Fig. 19 and the Provider
interface presented in Fig. 8, respectively.

Attaching layers to functions. CODE facilitates the deployment of func-
tions with dependencies included in the deployment package or refer-
enced in the references.txt file for functions on GCP. However,
certain functions may utilize layers, a feature not yet supported by
CODE , but available in the state-of-the-art IaC frameworks Terraform
and Serverless Frameworks. Nevertheless, CODE prioritizes enhancing
the DSL rather than duplicating features already present in existing IaC
frameworks.

5.3. Threats to validity

Loc reduction vs. other programming languages. CODE is implemented in
Go programming language and utilizes the corresponding Go SDKs of
AWS and GCP for copying deployment packages and deploying them
in federated FaaS. Our evaluation revealed that CODE significantly
reduces LoC compared to these SDKs. However, SDKs in other program-
ming languages require fewer LoC than Go’s. Nonetheless, CODE has
already minimized the necessary LoC, potentially narrowing the gap.
For instance, AWS’ Boto3 library in Python typically demands 10 LoC
for file transfer to AWS S3,11 with an additional 7 LoC for GCP storage
transfer with Boto3.12 This suggests that similar LoC are required for
Python SDKs as for Go’s.

Loc reduction vs. IaC frameworks. It is essential to note that reducing
LoC could conceal some provider-specific functionalities from users.
Our evaluation was based on the current version of IaC framework
DSLs. Still, to mitigate bias, we only considered the minimum configu-
ration necessary for function deployment.

6. Conclusion and future work

CODE is an IaC framework designed to automate the deployment
of functions in federated FaaS environments. Adopting the principle of
‘‘code once, deploy everywhere’’, CODE enables developers to create
a single deployment package for all supported providers and write
minimal deployment scripts to deploy functions across federated FaaS.

11 https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-
ploading-files.html
12 https://russell.ballestrini.net/copying-files-between-cloud-object-stores-like-s3-gcp-
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The deployment package can reside in the local file system or a single
storage region, with CODE transparently copying it to all target regions
cross different providers. Currently, CODE supports copying deploy-

ment packages to AWS S3 and GCP storage, as well as deploying the
function.

Novelty. The main novelty of this work is the publicly available GoS-
torage library, integrated within CODE but also usable in any Go
application, including serverless functions. It enables unified access to
AWS S3 and GCP Storage and allows dynamic switching of storage
providers during runtime.

Contribution. CODE ’s DSL reduces the lines of code needed for deploy-
ment by up to 9.23× for all AWS and GCP regions due to its innovative
three-layer hierarchy, which prioritizes the function above providers
and regions. Within the function, the GoStorage library offers two main
benefits: (i) it reduces lines of code by up to 78.7% compared to
using both provider SDKs, and (ii) unlike state-of-the-art storage access
libraries that hard code the storage driver, GoDeploy allows for dynamic
selection of storage providers during runtime.

Insights. Although CODE and other IaC frameworks automate deploy-
ment, the deployment time can be considerable, particularly on GCP
where dependencies are integrated into the function during deploy-
ment. This approach poses a challenge for federated FaaS. For example,
AWS Lambda requires up to half a minute to deploy a function across
two regions (North Virginia and Oregon), whereas GCP can take up
to three minutes for nearby regions — resulting in a deployment time
that is six times longer. Notably, GCP reports longer deployment time
despite having significantly smaller deployment packages (in kilobytes)
compared to AWS functions, which are in the range of megabytes.

Future work. We plan to extend CODE in five directions:

1. Model deployment time: One insight from this paper is the para-
doxical deployment time, which does not correlate with the deployment
package size but rather with the network proximity of the region where
the function is deployed. We will investigate function deployment
in federated FaaS in more detail and develop a mathematical model
to estimate deployment time based on various parameters, including
provider, region, deployment package size, programming language,
layers, and other significant factors;

2. Benchmarking deployed functions: We plan to extend CODE , in-
cluding its DSL, to specify benchmarking of various non-functional
requirements of deployed functions, such as performance and cost.
This will involve using different data inputs to attach different storage
with GoStorage, concurrency, repetitions, memory, etc. Finally, it will

aintain Pareto-optimal deployments across federated FaaS;
3. Unified interface for other managed cloud services: Our evaluation

howed significant reduction of lines of code when using the GoStorage
ibrary. We will extend its architecture to support other managed cloud
ervices, such as object recognition, speech2text, text2speech, OCR, etc;

4. We plan to develop libraries for other programming languages such
s Python, Java, and Node.js, as well as for other providers;

5. We will develop middleware for the automatic deployment of AFCL
orkflows in federated FaaS using CODE , based on the decision of a

cheduler.
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