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Abstract

Critical infrastructure (CRITIS) protection requires the skillful integration of security measures to maintain integrity and
functionality in the event of a potential attack. This involves the identification, categorization and assessment of elements
requiring protection, followed by the astute allocation of security measures, al within the constraints of limited resources. The
challenge is to make simple decisions about security-related investments. One solution is the use of risk-adjusted scorings.
While risk-adjusted scoring scales are well established in functional safety (e.g. Braband, 2008), their application to physical
vulnerability assessment remains a mostly unexplored area. This paper presents a versatile approach to performance-based
physical vulnerability analysis using risk-adjusted scorings. Based on Harnser's (2010) framework, the presented method
defines different barrier types and resistance classes. Each type is associated with a scale mapping probability intervals to
vulnerability scores. By aligning with Termin et al.'s (2023) metric compatibility approach, these scores are locally adjusted to
replicate quantitative vulnerability values derived from the application of Lichte et al.'s (2016) quantitative vulnerability metric.
To illustrate the potentia of the approach, a vulnerability analysis based on the risk-adjusted scoring framework is
demonstrated. This approach can support CRITIS operators in making informed security investment decisions when using the
presented toolkit. Finally, challenges and opportunities are discussed and the findings summarized.

Keywords: metrical analysis, physical security, vulnerability analysis, decision-making, generic approach

1. Introduction

In an increasingly interconnected and vulnerable world, the protection of critical infrastructures (CRITIS) has
emerged as a paramount concern (Hurst et al., 2014). Ensuring their uninterrupted operation and resilience against
deliberate threats has become a cross-industry and cross-national imperative (Farrell et al., 2004). As the security
risk landscape continues to evolve, so does the need for sophisticated and adaptable methodologies to assess and
improve physical security measures (Krisper, 2021). In the field of physical security, probabilistic approaches have
become established over time, which can assist users in conducting cost-benefit analyses. However, the
quantification often involves rather complex calculations, raising the question of whether simpler ways in the form
of simple scoring systems could provide comparable results.

The paper by Termin et al. (2023) illustrates how the adjustment of the results of a vulnerability scoring to the
results of a quantitative vulnerability metric can be conducted. The present contribution builds upon these
considerations and explores the applicability of risk-adjusted vulnerability metrics through concrete examples. In
the context of the three-part risk formula of threat probability, vulnerability and impact, this paper focuses on the
assessment of physical vulnerability, assuming that an attack occurs (p = 1). The assumption of disjointedness and
strict independence between threats, vulnerabilities and impacts allows individual risk contributions to be analyzed
and assessed separately. This facilitates risk assessment, as uncertain variables, especially those that are highly
epistemic, can be excluded (Lichte et al., 2016). At the end of this paper, challenges in the application of adjusted
scoring metrics are identified, using the example of cost-benefit analysis.
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2. Background

In today's world, where the functioning of societies and economies relies heavily on interconnected critical
infrastructures (CRITIS) and systems, ensuring their security and resilience has become a vital concern (Aradau,
2010). These infrastructures span various sectors such as energy, transport, communications and healthcare, each
of which plays an essential role in maintaining the stability of our daily lives (De Felice et al., 2022). The prevailing
threat landscape has evolved significantly in recent years, marked by a significant increase in deliberate attacks on
CRITIS. Malicious actors, ranging from cybercriminals to state-sponsored entities, are constantly exploiting
vulnerabilities to disrupt services, compromise data and potentially endanger lives. As a result, there is an urgent
need for robust security measures (Kovacevic & Nikolic, 2015).

Historically, security assessments for CRITIS have often been static and compliance-based, addressing specific
known threats without the flexibility to adapt to emerging risks. Recognizing the limitations of traditional
approaches, the concept of performance-based security assessment has emerged, particularly in the physical
security domain. In the energy sector in particular, performance-based security assessments are based on scorings,
e.g. according to Harnser (2010). The Harnser metric includes three variables to assess vulnerability: Protection,
Observation (or Detection respectively) and Intervention. Each variable has five descriptive levels from one to
five, with five being the strongest and one being the weakest. For example, level five is defined as "There is no
ability to prevent this scenario from occurring and causing the worst consequences” (Harnser, 2010, p. 109). In
this vulnerability metric, protection, observation and intervention are scored and summed based on expert
judgement. The sum of these three variables serves as a measure of vulnerability, with the highest sum (“15)
indicating low vulnerability/high performance and the lowest sum (“3”) indicating high vulnerability/low
performance. However, the Harnser metric poses challenges in its application (see also: Termin et al, 2021):

a) Harnser does not differentiate between individual barriers; b) the three assessment variables are considered
equivalent, which does not reflect real-world situations (protection can theoretically be effective on its own, while
observation and intervention cannot); c¢) he descriptive nature of the levels from one to five complicates the
classification of security measures and the repeatability of assessments (different experts may provide very
different assessments); d) sharp vulnerability criterion cannot be represented, as is possible with the quantitative
Intervention Capability Metric (ICM) according to Lichte et al. (2016).

In the ICM, the temporal interplay between protection, observation and intervention is used as a measure of
physical vulnerability. For the three assessment variables, not only discrete time values but also probabilistic
density functions can be chosen to account for uncertainties. In Termin et al. (2023), a five-step approach is
developed to reconcile the results of the Harnser scoring with the results based on the ICM. These five steps are:

1) Define time steps (probabilistic density functions) in the quantitative ICM for each Harnser score. A set
of defined score density function pairs corresponds to an ICM variant.

2) Extend the Harnser vulnerability scale ("3" to "15") with assumed probability intervals.

3) Compute all score combinations from 1 x 1 x 1 to 5 x 5 x 5 once using the Harnser metric and once using
the ICM.

4) Compare the results of the two metrics.

5) Adjust the probabilities behind the Harnser vulnerability scale scores to match the quantitative results.

This paper analyzes the applicability of the approach proposed in Termin et al. (2023) using fictional scenarios
and infrastructures (asset-barrier constellations) as examples.

3. Approach

The methodology presented in this contribution is designed to bridge the gap between semi-quantitative
assessments and quantitative assessments, providing a pragmatic framework to conduct a scoring-based
assessment of physical vulnerability with the aim of achieving results comparable to those of a quantitative
assessment regarding accuracy. The foundation of the approach presented is the risk-adjusted scoring scheme
developed by Termin et al. (2023) combined with the vulnerability analysis approach suggested by Lichte et al.
(2016). A risk-adjusted scoring scheme is derived for different barrier types, i.e. the adjustment takes place locally
for each barrier. It is assumed that every barrier of an infrastructure can have different expansion stages, e.g. weak
barrier, medium barrier and very strong barrier - or simply put, there can be a door made of wood, sheet metal or
thick steel. It is also assumed that the protection, observation and intervention characteristics improve with each
level of expansion. Put simply, a thick steel door will deter an attacker for longer than a wooden door. The third
assumption is that every barrier and every expansion stage has all three properties mentioned, i.e. always
protection, observation and intervention. The fourth assumption is a simplifying assumption; it states that cach
barrier has five expansion stages in total (corresponding to the Harnser scores “17, “27, “3”, “4” and “5”). The
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fourth assumption leads to the conclusion that there are five possible protection, observation and intervention
measures for each barrier. The fifth assumption is that each security measure is associated with a corresponding
time, represented by a probabilistic density function. The last assumption is that the scorings are adjusted locally
for each specific barrier under consideration, i.e. the residual protection along a path (multiple barriers in a row),
as it is considered in the ICM for attack path assessments, is not given here because each barrier with its properties
of protection, observation and intervention are considered “in isolation”.

In summary, this results in a scoring matrix for each barrier type, in which the Harnser scores from "1" to "5"
are assigned to protection, observation and intervention times. The approach in Termin et al. (2023) is now applied
to these scoring matrices. The result is vulnerability scales for ecach barrier type. Behind each vulnerability score
of each vulnerability scale is therefore a probability or probability interval for physical vulnerability. In a first step,
it is assumed that the same score number for each security measure corresponds to a resistance class, i.e. protection
="1", observation = "1" and intervention = "1" is, for example, resistance class A, etc. If there were a catalogue
with predefined resistance classes or predefined risk-adjusted scorings for different barrier types in industrial
practice, vulnerability could be quickly determined using the corresponding scoring scheme. In a second step, it is
assumed that a CRITIS operator has a catalogue of security measures with corresponding times for protection,
observation and intervention. The question here is how risk-adjusted scoring evaluation systems for the individual
barriers of an infrastructure can be built from the existing "construction kit" of measures in order to evaluate
physical vulnerability on a scoring basis. In a third step, challenges are discussed using the example of carrying
out cost-benefit analyses using scorings.

The approach is aimed to build a basis for practical implementation in the operational context of scoring-based
vulnerability assessments of CRITIS. It allows for adaptability in the selection of vulnerability scales based on
infrastructure attributes and barriers in place. The following chapters explore the application and implications of
this approach, highlighting its potential to simplify physical security assessments for critical infrastructures.

3.1. Reference Model Setup

In this paper, three barrier types are defined exemplarily, Barrier I, Barrier II and Barrier III. Each of the three
barriers has five levels, hereinafter referred to as Resistance Class (RC) A, B, C, D, and E. Each RC corresponds
to a score for protection (P), a score for observation (O) and a score for intervention (I) (see Table 1).

Table 1. Mapping of Resistance Classes to Harnser Scores.

RC P (6] |

mi ojO|w|>
alb|lw|(N|R

1 1
2 2
3 3
4 4
5 5

In the example in Table 1, the RC are assigned 1:1 to the scores for protection, observation and intervention.
However, depending on the RC, P, O and I may have different "strengths" (see Table 2 as an example). What is
fundamentally important here is the specific time behind the scores.

Table 2. Mapping of Resistance Classes to Harnser Scores (Variant 2).

RC P o I
A 1 3 2
B 1 3 3
c 2 3 3
D 3 4 4
E 5 5 4

In a next step, expert knowledge is used to determine a protection time, an observation time and an intervention
time for each RC of each barrier. The collection of expert knowledge is not shown further in this paper. It is
assumed that for each score, a timely mean and a standard deviation can be estimated by experts. In the case of
our paper, P, O and I are normally distributed variables. The following correlations are assumed for the
aforementioned barriers (see Table 3 to Table 5):
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Table 3. Barrier Type I Configuration: Mapping of Scores to Specific Time Values (in sec.).

RC P Ptime O OTime | |Time
W R
B2 pip 2 w2 iy
c 3 4% 3 blm 3 4o
D 4 'Tw 4 6i% 4 bowm
E 5T 5 6im 5 4ix

Table 4. Barrier Type II Configuration: Mapping of Scores to Specific Time Values (in sec.).

RC P Ptime O OTime | ITime
N
R
S L e
D 4 4 5T 4 e
e s h s ah s el

Table 5. Barrier Type III Configuration: Mapping of Scores Classes to Specific Time Values (in sec.).

RC P Ptime O OTime | |Time
BN RN R
B 2 4l10 2 %2 2 4lin
o tE s bR s ap
D 4% 4 6i% 4 aliw
E 5o 5 bim St

It should be noted here that the differences between each RC do not have to be linear in nature, i.e. there can
also be correlations in which the mean and standard deviation of P, O and I are fundamentally different from RC
to RC. In addition, the barriers do not always have to have five levels (see Barrier X configuration in Table 6).

Table 6. Barrier Type X Configuration: Mapping of Scores Classes to Specific Time Values (in sec.).

RC P Ptime O OTime | |Time
AL glx P Tl b boiw
o 0 12D o 1% o now
3 bl 3 5w 3 4w

From the user's point of view, it must be asked whether there can also be barriers for which P, O and I can be
unoccupied for certain RC, i.e. for RC A at a fictitious barrier Y, for example, there are properties of protection
and properties of observation, but (as yet) no properties of intervention (see Table 7). Such a configuration is
permissible in principle because there may not yet be any intervention features at RC A, but it must be borne in
mind that in such a case the physical vulnerability is at a maximum because an attacker is never stopped in this
particular case.

Table 7. Barrier Type Y Configuration: Mapping of Scores to Specific Time Values (in sec.).

RC P Ptime O OTime | [Time

n=15 pn=135
Alo-io t 6=100 T

n=45 n =105 pn =105

B 2 o =100 2 o =100 2 ¢ =100
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n=75 u=75 n=75
€ % 6=10 % 6=10 % 5=100
u=105 n=35 n=45
D 4 s=10 4 ¢ =100 4 5=100

The next step is to develop vulnerability scales for the outlined three barrier types that conform to the
vulnerability results of a quantitative assessment metric. For the scoring-based assessment, the Harnser metric is
used (Harnser, 2010). The scores of protection, observation and intervention are added together. This results in a
score range from "3" to "15", where a high vulnerability score means low vulnerability. In order to be able to
compare the Harnser results with the results of a quantitative metric, the vulnerability scores are expanded by
presumed probability intervals, see Table 8 as an example.

Table 8. Harnser Scale (Source: Termin et al., 2023).

Vulnerability 4 4 .. 13 14 15
Score

LowerValue 0924 0847 .. 0154 077 O

UpperVaue 1 0924 .. 0231 0154 077

MeanValue 0.962 0.8855 ... 0.1925 0.462 0.385

For the "time-based" assessment, the quantitative vulnerability metric according to Lichte et al. (2016) is used,
in this paper named intervention capability metric (ICM). Each P, O and I score therefore corresponds to a time in
the ICM. To make the results of both vulnerability assessments compatible, the compatibility approach according
to Termin et al. (2023) is applied. For Tables 3 to 5, this results in the following vulnerability-adjusted rating scales
(sce Table 9 to Table 11):

Table 9. Vulnerability Scale Barrier Type 1.
Vulnerability

Score 3 4 4 . 14 15
Lower Vaue 1 1 1 .. 0.077  0.024
Upper Value 1 1 1 .. 0.09 0.024
Mean Value 1 1 1 .. 0.084  0.024

Table 10. Vulnerability Scale Barrier Type 1.
Vulnerability

Score 3 4 5 .. 14 15
Lower Vaue 099 099 099 .. 015 0.079
Upper Value 099 099 099 .. 0168 0.079
MeanVaue 099 099 099 .. 0162 0.079

Table 11. Vulnerability Scale Barrier Type 111

Vulnerability

Score 3 4 5 .. 14 15
Lower Value 0999 099 0987 ... 0316 0.246
Upper Value 0.999 0998 0993 ... 0.36 0.246
MeanVaue 0.999 0997 099 .. 0338 0246

In a fictitious reference model, our infrastructure consists of one asset to be protected and twelve barriers. Each
of the twelve barriers can be assigned to one of the previously defined three barrier types. Within the scope of an
attack path analysis, the following paths to reach the asset could be outlined (see Figure 1):
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Fig. 1. Attack Paths of a Fictitious CRITIS (Left: Barrier Designation Bl — B12; Right: Barrier Type Categorization I - III).

3.2 Performance-based Assessment Using Local, Risk-Adjusted Scorings

In total, the following five attack paths can be realized:

1) BI-B2-B3-Asset

2) B4-B5-B6-B7-B8-Asset
3) B9-B10-B11-B12-Asset
4) B1-B2-B6-B7-B8-Asset
5) B9-B5-B6-B7-B8-Asst

In a next step, experts are asked, for example, to specify the RC for each barrier. The following is an example
on the first path "B1-B2-B3-Asset": Barrier 1 is to be assigned to barrier type I, or B1.I for short. Barrier 2 is to be
assigned to barrier type II (B2.II) and barrier 3 to barrier type III (B3.III). The following classification was
determined within the framework of an expert survey: The first barrier has the properties of RC A, the second
barrier the inherent shadows of RC D and the third barrier the property RC E. This attack path can consequently
be written as the following code: B1.I.LRCA - B2.1I.RCD - B3.1I1.RCE — Asset. As there are scores for protection,
observation and intervention behind each RC, these can be added up according to the Harnser metric and sorted
into the respective vulnerability scale of the barrier type in question, i.e. e.g. for "BI.ILRCA", P =1, 0 =1 and
I =1 results in a vulnerability score V = 3. According to Table 9, this corresponds in this example to a presumed
probability of vulnerability of 100 % (Lower, Upper and Mean). Based on this principle, the probability values for
physical vulnerability can be determined for the other barriers along the path considered (see Table 12).

Table 12. Vulnerability Values Path 1.

V“'gég"‘y B1IRCA B2ILRCD  B3.II.RCE
Lower Vaue 1 0.42 0.246
Upper Value 1 0.56 0.246
Mean Value 1 0.49 0246

Using the vulnerability-adjusted Harnser scoring metric, a range of probability values for the physical
vulnerability at a given barrier configuration can be determined. In contrast to the ICM, not all results determined
in Table 12 have the same discrete value. From the user's point of view, there is a problem if not the individual
vulnerability is determined, but the total vulnerability along the considered path. If the events at barrier 1 to n are
disjoint from cach other and strictly independent of each other (Lichte et al., 2016), then the individual
vulnerabilities at the barriers can be multiplied with each other to obtain the total vulnerability.

The question when applying this scoring-based assessment method is which vulnerability values (Lower, Upper,
Mean) should be multiplied together. One possible approach can be to distinguish between different views of risk
affinity. For example, a general recommendation could be to take the pessimistic (worst case) perspective from a
defender's point of view (Harnser, 2010). In this case, the determined upper values are multiplied by each other.
Another possibility can, of course, be an optimistic stance. In such a case, the lower values are multiplied together
along the path. A third variant would be "indifferent". In this case, the mean values would be used as the evaluation
measure. It should be noted at this point that the choice of probability values for determining the overall volatility
depends strongly on the use case. Thus, a plausible approach can also be to carry out two calculations, once only
with the lower values and once only with the upper values, in order to reveal the spread in the total vulnerability
"The total vulnerability goes from x to y". To demonstrate the principle described, all four variants shown are
calculated using the example of attack path one (see Table 13 to Table 16).
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The delta in vulnerability from Lower to Upper is quite small in this example, but it can be much larger in
concrete use cases. Furthermore, working with the RC is not compulsory. Experts can also score P, O and I per
barrier and classify the result in the vulnerability scale of the respective barrier type.

Table 13. Total Vulnerability Value Path I, Optimistic View (Lower Values).

B1I.RCA B2ILRCD B3II.RCE V total
1 0.42 0.246 0.1

Table 14. Total Vulnerability Value Path I, Pessimistic View (Upper Values).

B1I.RCA B2IL.RCD B3IIL.RCE V total
1 0.56 0.246 0.14

Table 15. Total Vulnerability Value Path I, Indifferent View (Mean Values).

B1I.RCA B2ILRCD B3II.RCE V total
1 0.49 0.246 0.12

Table 16. Total Vulnerability Value Path I, Spread of Results (Lower and Upper).

B1I.RCA B2ILRCD B3II.RCE V total

1 0.56 0.246 0.14
1 0.42 0.246 0.1
Deltain Vulnerability 0.04

3.3 Practical Example of Using the Local, Risk-Adjusted Approach

The target under evaluation consists of two barriers (B1 and B2), one asset (A) and one attack path (B1-B2-A)
(see Figure 2).

Fig. 2. System Architecture of a Fictitious CRITIS.

The provider of the CRITIS has a measure toolbox that describes the scope the defender capabilities in general.
There exist three types of measures: protection measures (PM), observation measures (OM), intervention measures
(IM). The toolbox consists of five possible measures that can be chosen and assigned to each barrier. There are 5
x 5 x 5 =125 feasible configurations for each barrier in total. To each measure, a normal probability distribution
is assumed (estimated by experts); there are no discrete time values (see Table 17).

Table 17. List of Measures.

Protection Measure (PM) Protection Timein Sec.

PM 1 u=15;06=10
PM 2 pn=105;6=10
PM 3 u=750=10
PM 4 n=4506=10
PM 5 p=135;6=10
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Observation Measure (OM)  Observation Timein Sec.

OM 1 u=1506=75
OM 2 p=1056=75
OM 3 u=456=75
OM 4 n=750=75
OM 5 p=1356=75

Intervention Measure (IM) Intervention Timein Sec.

IM 1 p=7506=100
IM 2 u=105; =100
IM 3 pu=135;6=100
IM 4 p=15,06=100
IM5 p=45;06=100

The following rules apply for assessing physical vulnerability of the target under evaluation: 1. If not a full
triplet of measures (PM, OM, IM) is assigned to a barrier, then the barrier vulnerability is equal to 1. 2. If a measure
is already chosen e.g. for barrier 1, it can also be assigned to barrier 2. As a perquisite for the vulnerability
assessment, the measures are sorted according to size of the assigned time, using the Harnser scoring as a frame:
PM: upward rising time sorted; OM: upward falling time sorted and IM: upward falling time sorted. To the lowest
PM, highest OM and highest IM, the lowest score (and resistance class, RC) is assigned, and so on (see Table 18).
The score-time pair values correspond to Table 5. With this, we can use Table 11 as a risk-adjusted Harnser metric
vulnerability scale in this context.

Table 18. Sorted List of Measures in the Harnser Scoring Scheme.

RC P Ptime O OTime | I Time
A 1 PM 1 1 OM 5 1 IM 3
B 2 PM 4 2 OM 2 2 IM 2
C 3 PM 3 3 OM 4 3 IM 1
D 4 PM 2 4 OM 3 4 IM5
E 5 PM 5 5 OM 1 5 IM 4
RC P Ptime O OTime | | Time

p=15 p=135 p=135
Al 6o Y -1 Y 6-100

n=45 n=105 p=105
B 2 =10 2 =75 2 5 =100

n=75 n=75 n=75
c 3 =10 8 =75 8 o =100

u=105 n=45 u=45
b 4 =10 4 c=75 4 5 =100

n=135 p=15 n=15
E S 5-10 % 6-715 5 s-100

The fictitious configurations of measures assigned to the barriers are as follows: B1: PM 5, OM 1 and IM 4;
B2: PM 2, OM 1 and IM 4. By using Table 18, the following Harnser scores can be assigned to B1 and B2:

e BI:P=5
e B2:P=4;
In a next step, the scores are summed. For Bl, the vulnerability results in a score of 15 and for B2, the

vulnerability results in a score of 14. By looking at Table 11, we see that the quantitative vulnerability values (V)
are as follows (see Table 19):
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Table 19. Estimating Physical Vulnerability Using the Adjusted Harnser Scale.

Optimistic View (Lower Values)

V B1 V B2 V total
0.246 0.0.316 0.078
Pessimistic View (Upper Values)

V B1 V B2 V total
0.246 0.36 0.089
Indifferent View (Mean Values)

V B1 V B2 V total
0.246 0.338 0.083
As a Reference: Calculation using the ICM
V B1 V B2 V total
0.246 0.33 0.081

As can be seen in Table 19, when comparing the ICM vulnerability values with the results of the adjusted
Harnser scoring, the indifferent view gives the closest result. With the approach presented before, we can build a
Common Physical Vulnerability Scoring System (CPVSS) in analogy to the Common Vulnerability Scoring
System from IT Security (First.org, 2023) (see Figure 3). The sum of the individual scores of PM, OM and IM can
be sorted into the adjusted vulnerability scale of Table 11. The vulnerability sum score corresponds to a CPVSS
score here.

1 Vfry 5 Medium

Low High

High 4 Low Low 2
Ve

Medium e 1

Low

Low Very 5
High

Very

High High 4

Fig. 3. CPVSS for the Specific Context in Fig. 2 and Table 17.
3.4 Discussion of Scorings and Cost-Benefit Analyses

For conducting a cost-benefit analysis, taking into account the formulated assumptions, it can be assumed that
the asset has a specific monetary value, e.g. x monetary units. The provider of the fictitious CRITIS in this paper
has a budget of y monetary units. The optimization objective is to equip the two barriers with measures that
minimize the total vulnerability of the path. To find the configuration that leads to the lowest path vulnerability in
general, the total vulnerability can be calculated for all possible combinations of measures that lie within the
defined budget. The first step is to calculate the cost of all 5 x 5 x 5 x 5 x 5 x 5 theoretically possible configurations.
The provider's defined budget then acts as a filter to select those configurations for further analysis that are
practically feasible in this use case. The physical vulnerability can then be estimated for all feasible variants using
the adapted Harnser vulnerability metric. This approach can be used to identify the minimum path vulnerability.

In general, it is a challenge to make a good cost-benefit decision despite the adjusted vulnerability scoring
metrics. This is because the scores are inherently uncertain, i.e. there is always a range of probabilities behind the
vulnerability scores. Depending on the scale structure used (e.g. three, four, five, ten or n categories), the interval
width of the assumed probability intervals can vary greatly. The interval width behind the vulnerability ratings is
usually greater for a few scale levels than for many scale levels. This poses a problem for cost-benefit analysis
users, because the expected monetary loss values cover a range that depends on the interval width of the probability
values behind the vulnerability scores.

Therefore, a sharp decision criterion does not exist here, but one criterion with an “error” with respect to the
quantitative ICM vulnerability values that consists of a lower level and an upper level. In principle, a user could
choose a view (optimistic, pessimistic, and indifferent) but it would be advisable to take the pessimistic view as a
worst-case scenario, just to be on the secure side.
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4. Summary

This research presents a pioneering approach in the field of performance-based physical security assessment,
centered on the use of scoring metrics that are locally adjusted for different barrier types. A key advantage of risk-
adjusted scoring in this case presented is its performance-based nature. By capturing the real-world probabilities
for physical vulnerability for specific barriers, it provides a dynamic and adaptive framework. In particular, the
scoring tables generated can serve as a comprehensive 'security catalogue', confirming with quantitatively
calculated results using the ICM. This flexibility allows the selection of relevant vulnerability scales based on
infrastructure attributes and deployed barriers, resulting in a versatile, adaptive and efficiency-oriented approach.
A distinguishing feature of this approach is its ability to provide results comparable to those obtained from
quantitative calculations (e.g. based on the ICM), thus underlining its reliability for local adjustments. In addition,
it offers significant benefits to critical infrastructure operators. The use of a scoring system, a semi-quantitative
metric, eliminates the use of complex mathematical formula. This not only streamlines decision-making, but also
provides a pragmatic trade-off between accuracy and practicality.

In essence, risk-adjusted scoring is proving to be a transformative and inclusive methodology that skillfully
bridges the gap between traditional security approaches and quantitative assessments. Its adaptability to specific
use cases make it a useful tool for assessing the security posture of critical infrastructure with a simple scoring.
While this paper lays a solid foundation for the integration of risk-adjusted scoring metrics into performance-based
physical security assessments, several avenues for future research should be explored. First, developing an
approach for “global” scoring adjustments, considering the residual protection times in different attack path
combinations, could provide a more comprehensive and nuanced assessment of security measures across various
scenarios and barrier combinations. In addition, conducting empirical studies to validate the effectiveness of the
proposed approach in a range of real-world scenarios could strengthen its credibility and practical applicability.

Despite its first promising attributes, the integration of risk-adjusted scoring into physical security assessment
also presents certain challenges. The development of comprehensive and accurate vulnerability metrics, as well as
the determination of appropriate probability distributions, remains an ongoing endeavor. Balancing the need for
simplicity in decision making with the desire for granularity in assessment is a delicate challenge. It should be
noted additionally, that when using scores for cost-benefit analysis, a margin of security must be considered. This
is due to the nature of scoring, which always reflects a range of vulnerability values. Furthermore, ensuring the
seamless integration of risk-adjusted scoring into existing security frameworks and compliance requirements
requires careful navigation. The potential for subjectivity in scoring underscores the importance of establishing
consistent and transparent scoring criteria. As the field advances, overcoming these challenges through
collaborative efforts, empirical validation and continuous refinement of methodologies will be essential to
unlocking the full potential of risk-adjusted scoring in strengthening critical infrastructure security.
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